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Distance Sampling the strip or circle boundary are ignored. If the width

of the strip or the radius of the circle is made suffi-

ciently small that detection of any object within the
Distance sampling is a widely-used group of closelysurveyed area is almost certain, then perhaps 50% or
related methods for estimating the density and/ormore of detections are outside the surveyed area and
abundanceof biological populations. The main meth- so are ignored. Distance sampling extends quadrat-
ods ardine transects andpoint transects (also called based methods by relaxing the assumption that all
variable circular plots). These have been used suc- objects within the circle or strip are counted. By mea-
cessfully in a very diverse array of taxa, including suring distances to the objects that are observed, the
trees, shrubs and herbs, insects, amphibians, reptileprobability of observing an object within the circle
birds, fish, marine and land mammals. In both casesor strip can be estimated.
the basic idea is the same. The observer(s) perform a Another approach to estimating wildlife abun-
standardized survey along a series of lines or pointsgdance involvesapture—recapture methods These
searching for objects of interest (usually animals orare often more labour-intensive and more sensitive
clusters of animals). For each object detected, theyo failures of assumptions than distance sampling.
record the distance from the line or point to the object.However, they are applicable to some species that
Not all the objects that the observers pass will beare not amenable to distance sampling methods,
detected, but a fundamental assumption of the basiand can yield estimates of survival and recruit-
methods is that all objects that are actually on the linement rates, which distance sampling cannot do. Cap-
or point are detected. Intuitively, one would expect ture—recapture methods can be useful for populations
that objects become harder to detect with increasinghat aggregate at some location each year, whereas
distance from the line or point, resulting in fewer distance sampling methods are more effective on
detections with increasing distance. The key to dis-dispersed populations. They should therefore be seen
tance sampling analyses is to fidatection function  as different tools for different purposes (see also trap-
to the observed distances, and use this fitted funcping webs under Related Methods below).
tion to estimate the proportion of objects missed by In fisheries applications, catch per unit effort,
the survey. From here we can readily obtain pointcatch-at-age and catch-at-length are all commonly
and interval estimates for the density and abundanc@sed to estimate abundance [10], as they require
of objects in the survey area. The basic methodghat the commercial catch is sampled, which is more
(sometimes calledonventional or standard distance  cost-effective than sampling the living fish. Acoustic
sampling) are described in detail in [5], which is an surveys of fish schools can provide data amenable to
updated version of [4]. Free software, Distance [19],distance sampling methods.
provides for the design and analysis of distance sam- Alternative methods for estimating animal abun-
pling surveys, and is being updated to include muchdance are reviewed and compared in [15]-[18]
of the work mentioned in the section on Current and [21].
Research below.

Distance sampling is an extension of quadrat-

based sampling methods. Two forms of quadrat samt.ine-transect Sampling
pling arestrip transects, in which the observer travels
along a line, counting all objects within a predeter- In line-transect sampling a series of straight lines
mined distance of the line, ammint counts, in which  (tracklines) is traversed by an observer. This may be
numbers of objects (usually birds or plants) in a circleachieved in various ways, depending on the study
about a point are counted. Population density is therspecies. In terrestrial studies, these include walking,
estimated by dividing the total count by the total areahorseback, all-terrain vehicle, aeroplane and heli-
surveyed. A fundamental assumption of these meth€opter. Transect surveys in agquatic environments can
ods is that all objects within the strip or circle are be conducted by divers with snorkels or SCUBA gear,
counted. This assumption is difficult to meet for many from submarines, surface vessels, aircraft, or from
populations, and cannot be tested using the survegleds with mounted video units pulled underwater by
data. Furthermore, for scarce species, the methoda surface vessel. In the case of large observation plat-
are wasteful, because detections of objects beyonfbrms, there is typically a team of observers.
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Estimation 909 A

Perpendicular distances are measured from the

line to each detected object of interest. In practice, 1
detection distanceg and detection angle® are

often recorded, from which perpendicular distances

are calculated asc = r sind. Supposek lines of
lengths I4, ..., Iy (with }°I; =L) are positioned
according to some randomized scheme, magimals

are detected at perpendicular distanaes..., x,.
Suppose in addition that animals further than some
distancew from the line (the truncation distance) are

not recorded. Then the surveyed areaais 2wL,

within which n animals are detected. L&, be the
probability that a randomly chosen animal within the
surveyed area is detected, and suppose an estitpate

is available. Then animal density is estimated by  Figure 1 The areau under the detection functiog(x),
when expressed as a proportion of the areaof the
— (D] rectangle, is the probability that an object within the
2wLP, surveyed area is detectegs; is also the effective strip

. . . - width, and takes a value between 0 amd Reproduced
To provide a framework for estimating,, we define from Buckland, S.T., Anderson, D.R., Burnham. K.p. &

the detection functiorz(x) to be the probability that Laake, J.L. (1998). Distance sampling, Encyclopedia
an object at distance from the line is detected, of Bjostatistics, P. Armitage & T. Colton, eds, Wiley,
0 < x < w, and assume thgi0) = 1. That is, we are  Chichester, Figure 2, p. 1192 by permission of John Wiley
certain to detect an animal on the trackline. If we plot & Sons, Ltd
the recorded perpendicular distances in a histogram,
then conceptually the problem is to specify a suitablegnctions is now available to us. The Distance pro-
model for g(x) and to fit it to the perpendicular gram yses the methods of [3], in which a parametric
dlstange data. As shown in Figure 1, if we define ey function is selected and, if it fails to provide an
w=Jo g(x)dx, thenP, = ju/w. The parametep. is  aqequate fit, polynomial or cosine series adjustments
called the effective strip (half-) width; itis the distance 5,6 added until the fit is judged to be satisfactory by
from the line for which as many objects are detected,ne or more criteria.
beyondu as are missed withip (Figure 1). Thus Often, the perpendicular distances are recorded
Bt _ n _n 5 by distance category, so that each exact distance
- E T 2wLi/w  20L @) need not be measured, or data are grouped into dis-
o _ tance categories before analysis. Standard likelihood
We now need an estimaje of n. We can turn this  methods for multinomial data are used to fit such
into a more familiar estimation problem by noting ‘grouped’ data.

that the probability density function (pdf) of perpen-
dicular distances to detected objects, denoféd),

is simply the detection functiog(x), rescaled so that
it integrates to unit Frequency curves. That ~
is, f()?) — g0/ 1. Inygzerticulgr, beglause Wse assume ' he variance ofD is well approximated using the
¢(0)=1, it follows that f(0) = 1/u (Figure 2). formula [5]:
Hence

X

-~ n
D =

Variance and Interval Estimation

5o " _ nf(0) 3 var(D) = D? @r(zn) + ng[f (O)]} (4)
SuLT 2 © n2 T FOPR

The problem is reduced to modeling the pdf of per- The variance ofn generally is estimated from the

pendicular distances, and evaluating the fitted funcsample variance in encounter ratag/! ;, weighted

tion atx = 0. The large literature for fitting density by the line lengthd ;. When f(0) is estimated by
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A whales, etc. If one animal in a cluster is detected,
. then it is assumed that the whole cluster is detected,
*) < _~ _~ and the distance to the center of the cluster is

\<€‘| recorded. Equation (3) then gives an estimate of the

density of clusters. To obtain the estimated density

of individuals, we must multiply by an estimate of

freq mean cluster size in the population,sE(

n f (0)E(s)
2L

J /% > Probability of detection is often a function of clus-

H W x ter size, so that the sample of detected cluster
sizes exhibits size bias (larger clusters are easier to

Figure 2 The pdf of perpendicular distance(x), plot- detect and so are over-represented in_the sample).

ted on a histogram of perpendicular distance frequenciesin the absence of size bias, we can t&@) =5

(scaled so that the total area of histogram bars is unity).

The area below the curve is unity by definition. Because thethe mean size of detected clusters. Several meth-

two shaded areas are equal in size, the area of the rectads exist for estimating EY in the presence of
gle, L f(0), is also unity. Hence:. = 1/ £(0). Reproduced Size bias [5] ¢ee Size-biased sampliny One that
from Buckland, S.T., Anderson, D.R., Burnham, K.P. & works well in practice is to regress legon g(x),

Laake, J.L. (1998). Distance sampling, Eincyclopediaof  the estimated probability of detection at distance

Biostatistics, P. Armitage & T. Colton, eds, Wiley, Chich- ignoring the effect of cluster size, and then pre-

ester, Figure 3, p. 1192 by permission of John Wiley & dict logs when detection is certaing(x) = 1, as
Sons, Ltd !

there can be no size bias in that circumstance.

) - _ _ ) ) The prediction is back-transformed using a bias
maximum likelihood, its variance is estimated from adjustment.

the information matrix .

If we assume thaD is lognormally distributed, .
approximate 95% confidence limits are given byAssumptlons
(D/C, DC) where

)
|
|
|
:/ D= 7
I/

The physical setting for line-transect sampling is
C = exp{1.96[var(In D)]°5) (5) idealized as follows:
1. N objects are distributed through an area of

with vard) sizeA according to some stochastic process with
varinD) = In |1+ —5 (6) average rate parametBr= N/A.
D 2. Lines, placed according to some randomized

design, are surveyed and a samplenobbjects

Often, bootstrap resampling for variance and inter- is detected.

val estimation is preferred. Resamples are usually
generated by sampling with replacement from the |t is not necessary that the objects be randomly
lines, so that independence between the lines igj.e. Poisson) distributed. Rather, it is critical that the
assumed, but independence between detections on tii@e or point be placed randomly with respect to the
same line is not. If the model selection procedure|ocal distribution of objects. This ensures that objects
for the detection function is applied independently in the surveyed strip are uniformly distributed with

to each resample, the bootstrap variance includes gespect to distance from the line. Thus, if the strip

component due to model selection uncertainty. has half-widthw, object-to-line distances available
for detection are uniformly distributed between zero
Cluster Sze Estimation andw.

Three assumptions are essential for reliable esti-
Animals often occur in groups, which we term mation of density using standard line-transect
clusters. These may be flocks of birds, pods ofmethods:
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=

Objects directly on the line are always detected,Estimation
g(0) = 1.
2. Objects are detected at their initial location, prior Detection distances are measured from the point to
to any movement in response to the observer. €ach detected object. Suppose the design comprises
3. Distances are measured accurately (for un points, and distances less than or equahtare
grouped distance data), or objects are correctlyecorded. Then the surveyed area is kzw?, within
allocated to distance interval (for grouped data).WhiCh n objects are detected. As for line-transect
sampling, denote the probability that an object within
A fourth assumption is made in many derivations the surveyed are is detected by, with estimateP,.
of estimators and variances: whether an object isThen we estimate object densify by
detected is independent of whether any other object
is detected. Point estimates Of are robust to the D=———
assumption of independence, and robust variance krw?Pq

estimates are obtained by taking the line to be theye now define the detection functisir) to be the
sampling unit, either by bootstrapping on lines, or by yropapility that an object at distanedrom the point
calculating a weighted sample variance of encountets getected. and we again assume @ = 1. For
rates by line.. _ _line transects, the area of an incremental strip at
It is also important that the detection function gistancex from the lines isL dx, independently of
has a ‘shoulder’; that is, the probability of detection ;. '\yhich leads to the result that the pdf of distances
remains at or close to one initially as distance yiters from the detection function only in scale. By
from the line increases from zero. This is not an .qntrast an incremental annulus at distandeom
ass_umption, but_a proper_ty that allows more reliable, point has areas@ dr, proportional tor, so that
estimation of object density. , _ the pdf of detection distances i&(r) = 27rg(r)/v,
Given the above, the point and interval estimatesypare ) — 27 [ rg(r)dr. The respective shapes of
of D are extremely robust to variation ig(x) dué  he o functionsg(r) and f(r) are illustrated in
to other factors such as observer, habitat, etc. Larg%igure 3. If we define an effective radigsanalogous

variations in density over the st_udy_area are also not 3, the effective strip width of line-transect sampling,
problem, although if areas of differing density can bethenv — 702 is the effective area surveyed per point
defined in advance then stratification of survey eﬁort(Figure 4). Hence

could be used to increase precision.

n

®)

. . "~ aP, knw2mp?/mw? kD
Point-transect Sampling

_ _ o The area of the triangle in Figure 4 js2f’(0)/2
In point-transect sampling, an observer visits a NUM-yhere #/(0) is the slope off () at r = 0. Since this

ber of points, the. Iocation; of which are de.'[erminediS equal to the area undef(r), which is unity, it

by some randomized design. The method is usuallyows thaty = 7p2 = 2/ £'(0), and

(but not exclusively) used for songbird populations, in

which typically many species are recorded and most . n}/(o)

detections are aural. By recording from points, the D=—== (10
observer can concentrate on detecting the objects of

interest, without having to navigate along a line, and We therefore need to model the pdf of detection
without having to negotiate a randomly positioned distances, and evaluate the slope of the fitted function
line through possibly difficult terrain. The principal atr = 0. The program Distance does this using the
disadvantages are that detections made while travSame set of models for the detection function as for
elling from one point to the next are not utilized, a line-transect sampling.

problem especially for scarce species, and the method

is unsuited to species that are generally detected bysgriance and Interval Estimation

flushing them, or to species that typically change their

location appreciably over the time period of the count The methods for variance and interval estimation for
(see below). line-transect sampling also apply to point transects
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Figure 4 The pdf of detection distanceg,(r). The area
under the curve is unity by definition. Because the two
shaded areas are equal in size, the area of the trian-
— gle, p21/(0)/2, is also unity. Hence = mp? = 27/ f(0).
f(r) Reproduced from Buckland, S.T., Anderson, D.R., Burn-
\ ham, K.P. & Laake, J.L. (1998). Distance sampling, in
Encyclopedia of Biostatistics, P. Armitage & T. Colton, eds,
Wiley, Chichester, Figure 5, p. 1195 by permission of John
freq Wiley & Sons, Ltd

resampling lines with replacement, rather than indi-
vidual points.

(b) Yoy .
Assumptions

Figure 3 Histograms of detection distances from a ) .

point-transect survey. In (a) each histogram frequency haéssumptions are virtually unchanged from those
been scaled by dividing by the midpoint of the corre- given for line-transect sampling. As there, the
sponding group interval. Also shown are the correspondingstandard analyses are very robust to failure of the
fits of the detection functiong{r) in (a)] and the pdf of  assumption of independent detections. Point-transect
detection distancesf[r) in (b)]. Reproduced from Buck- sampling is, however, more subject to bias than line-

land, S.T., Anderson, D.R., Burnham, K.P. & Laake, J.L. transect sampling when obiects move throuah the
(1998). Distance sampling, incyclopedia of Biostatistics, pling | 9

P. Armitage & T. Colton, eds, Wiley, Chichester, Figure 4, &éa around a point. In principle, we try to obtain a
p. 1194 by permission of John Wiley & Sons, Ltd shapshot, locating each object at the position it occu-
pied at one instant in time. However, the count is
) i o ) . not instantaneous, because the observer needs time
with minor modifications. The variance @fis usu- 5 detect all objects close to that point. If, during that
ally estimated from the sample variance in encountelime movement brings new objects into the neigh-
rates betweenlpoints. Howgvgr, point-transec’gsurveygorhood of the point, then object density will be
are often designed by defining a series of lines, agyerestimated. To minimize bias, we recommend that
if a line-transect survey is to be carried out, thenhe amount of time spent at the point before and after
locating a series of points along each line. If the {he spapshot instant be fixed in advance, and be as

distance between neighboring points on the samemg|| as possible, given the requirement to detect all
line is smaller than the distance between neighborypiacts close to the point.

ing points on different lines, then the data for all

points on the same line should be pooled and the

variance ofn estimated from the sample variance in Related Methods

encounter rates between lines, weighted by the num-

ber of points on each line. Similarly, in this situation, Trapping webs [5, 22] provide an alternative to
bootstrap variance estimates should be calculated byraditional capture—recapture sampling for estimating



6 Distance sampling

animal density. They represent the only applicationthe assumptions of the standard methods, and on
of distance sampling in which trapping is an integral advanced design issues. There is still much to be done
part, and where data are taken passively. Traps arin these areas, so the subject is still a lively one for
placed along lines radiating from randomly chosenstatistics and ecology.
points; the traditionally used rectangular trapping grid  Generally, probability of detection is a function
cannot be used as a trapping web. Here detection bgf many factors other than distance of the object
an observer is replaced by animals being caught in drom the line or point. We have considered briefly
trap at a known distance from the center of a trappingone other factor, cluster size, because if we do not
web. The trap could be a camera or other similarallow for size bias in detection when objects occur
device. Trapping continues for several occasions andn clusters then our object density estimator may
data from either the initial capture of each animal or be biased. Other sources of heterogeneity contribute
all captures and recaptures are analyzed. To estimalitle to bias, provideg(0) = 1. Nevertheless, higher
density over a wider area, several randomly locatedprecision might be anticipated if additional covariates
webs are required. are recorded and their effects gx) modeled. One
Cue counting [9] was developed as an alternativeapproach, first used by [14], is to allow covariates
to line-transect sampling for estimating whale abun-to affect the scale of the detection function but not
dance from sighting surveys. Observers on a ship ofts shape. Marques and Buckland (unpublished) have
aircraft record all sighting cues within a sector aheadextended the detection function estimation methods
of the platform and their distance from the platform. outlined in the section on line-transect sampling
The cue used depends on species, but might be thghove to allow the scale parameter of the key function
blow of a whale at the surface. The sighting distanceso be a function of covariates. This approach is
are converted into the estimated number of cues pefmplemented in the software Distance.
unit time per unit area using a point-transect model- |n some surveys, detection on the trackline is not
ing framework. The cue rate (usually correspondingcertain(g(0) < 1), perhaps because some animals are
to blow rate) is estimated from separate studies, inunderground or under water, or simply hidden by
which individual animals or pOdS are monitored over Vegetation7 when the observer passes. In this case,
a period of time. capture—recapture methods may be combined with
Indirect methods are often used when the animalgjistance sampling, through the use of two observa-
are rare, cryptic or tend to move away before beingtjon platforms [2]. The platforms might be treated as
detected. Instead of counting the animals, the QbJeCt?mutuaIIy independent so that, provided that animals
counted are something produced by the animalSgetected by both platforms (duplicate detections) can
for example animal dung (e.g. deer dung [11]) pe identified, two-sample capture—recapture methods
or nests (e.g. great apes [12]). To convert objecCtnat incorporate covariates can be used. Bias in such
density to animal dens!ty one must. then estimate FWOmethods is typically large enough to be of concern
further parameters: object production rate and objectnjess heterogeneity in detectability is well-modeled.
disappearance rate, from separate studies. _ However, it is seldom possible to record covariates
Related techniques sometimes used by botanistg,a reflect this heterogeneity adequately. For exam-
to estimate densities (and sometimes also termege if a whale produces a blow that is particularly
distance sampling) arevearest neighbor meth-  \igihje from one platform, due to light conditions or
ods and point-to-nearest object methods [6]. Thesegome other factor in the environment that is difficult
approaches do not involve modeling the detection;, measure, then it will tend to be more visible

functic_)n, and so are outside the definition of distances o the other platform too, and abundance will be
sampling used here. underestimated. These problems may be reduced by
separating the areas of search for the two platforms,
Current Research fand qsing one to set up trials for the other_. Th_e r_esult-
ing binary data may then be modeled usiriggistic
The basic theory of distance sampling is nowregression[1]. In some studies, the platform that
well established, as are the standard estimation andets up the trials could be provided, for example,
field methods [5]. Most research is now focusedby a radio-tagging study, where locations of ani-
on methods for increasing precision and relaxingmals are known, or by an underwater acoustic array
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(so long as species could be identified accurately)ship progresses through the area. By contrast, fixed-
In double-platform methods, Horvitz—Thompson-like angle or fixed-waypoint zig-zag designs do not give
estimators are used to estimate density, given the esteven coverage probability unless the survey region is
mated probability of detection for each observationrectangular (Figures 5 and 6). If the survey region or
(see Sampling, environmenta). stratum is not convex, a combination of splitting the
Spatial modeling of distance sampling data isregion into a number of almost convex sub-regions
potentially useful for several reasons: animal densityand placing a convex hull around the sub-regions can
may be related to habitat and environmental variablesbe used.
potentially increasing precision and improving under-  Adaptive sampling [20] ee Adaptive design3d
standing of factors affecting abundance; abundanceffers a means of increasing sample size, and hence
may be estimated for any subregion of interest, byincreasing precision, by concentrating survey effort
integrating under the fitted spatial density surface;where most observations occur. Standard adaptive
and a model-based approach allows data collectedampling methods can readily be extended to dis-
from nonrandom surveys (platforms of opportunity) tance sampling surveys [20]. For example, for point
to be used. One approach [7] is to conceptualize th@ransect sampling we can define a grid of points,
distribution of animals as an inhomogene®sson  randomly superimposed on the study region, and
process in which the detection function represents randomly or systematically sample from the grid
a thinning process. |f, in the case of ”ne'transectto form the primary Samp|e_ When a detection is

Sampling, the data are taken to be distances along']ade at a primary Samp|e point’ points from the
the transect line between successive detections, this
allows us to fit a spatial surface to these data. We
can refine this further by conceptualizing the observa-
tions as waiting areas, i.e. the effective area surveyed
between one detection and the next, where the effect
tive width of the surveyed strip varies according to /\
environmental conditions and observer effort [7, 8]. / \ ;

Geographic information systemg(GISs) are now | \
widely available. This makes it possible to implement j N
automated design algorithms that generate survey j \R A\
designs with known properties rapidly and simply. )
The software Distance has a built-in GIS and imple- / \ .y _.\
ments methods developed by Strindberg (unpub- / \ AN\ AR
lished). It can generate surveys based on a range / 1% R 7
of point- and line-transect designs, as well as per-| [/ \ / \ /
forming simulations to compare the efficiency of |/ \ / Lo '
different designs and to investigate design propertieg \/
such as probability of coverage. For complex sur-
veys in which coverage probability is not uniform, Figure 5 A trapezoidal survey region illustrating three
but has been calculated analytically or by simulation,Zi9-zag designs: equal-angle (dotted line); fixed-waypoint
Horvitz—Thompson-like estimators can be used to(dashed line); and even-coverage (solid line). The prin-

. . . . . cipal axis of the design is parallel to the base of the
estimate abundance. This av.0|ds.the biased est|m.atq§pezium in this example, and for the fixed-waypoint
that result from standard estimation methods, whichgesign, waypoints are equally spaced with respect to dis-
assume that coverage probability is even. For examtance along the principal axis, alternating between the top
ple, ship-board surveys typically use continuous zig-boundary and the base. Reproduced from Buckland, S.T.,
zag survey lines, so that costly ship time is not wasted'homas, L., Marques, F.F.C., Strindberg, S., Hedley, S.L.,
in traveling from one line to the next. For convex Pollard, J.H., Borchers, D.L. & Burt, M.L. (2001). Dis-

- . . . tance sampling: recent advances and future directions, in
survey regions or strata, a design with apprOXImatelyQuantitative Methods for Current Environmental [ssues,

even coverage probability can be obtained by defin; ‘garnett, A. El-Shaarawi, C. Anderson & P. Chatwin,
ing a principal axis for the design and adjusting theeds, Springer-Verlag, New York, Figure 8, by permission
angle of the survey line with respect to this axis as theof Springer-Verlag
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Figure 6 Coverage probability against distance along the [5]
principal axis for the three designs of Figure 5. Also shown
is the height of the trapezium as a function of distance
along the principal axis, which indicates that the fixed-angle
design has too low coverage where the study region is wide[6]
and too high where it is narrow. For the fixed-waypoint
design, coverage probability changes at each waypoint, angf]
between waypoints varies smoothly in the same manner as
the fixed-angle design. Reproduced from Buckland, S.T.,
Thomas, L., Marques, F.F.C., Strindberg, S., Hedley, S.L.,[8]
Pollard, J.H., Borchers, D.L. & Burt, M.L. (2001). Dis-
tance sampling: recent advances and future directions, in
Quantitative Methods for Current Environmental |ssues, [9]
V. Barnett, A. El-Shaarawi, C. Anderson & P. Chatwin,
eds, Springer-Verlag, New York, Figure 9, by permission
of Springer-Verlag

[10]

grid that surround the primary sample point are sam-
pled. If detections are made at these extra pointsgll]
then further sampling is triggered. A major practi-

cal problem of adaptive sampling is that the required
survey effort is not known in advance. This is par-
ticularly problematic for shipboard surveys, in which [12]
the ship is available for a predetermined number of
days. A method has been developed [13] that avoid?13]
this problem. When additional effort is triggered,
the ship changes to a zig-zag (and hence continu-
ous) course, centered on the nominal trackline. The

angle of the zig-zag is a function of how far the ship
is ahead or behind schedule. Unlike standard adap-
tive sampling, the method is not design-unbiased, but
simulations indicate that the bias is small. An exper-
imental trial on a survey of harbor porpoise in the
Gulf of Maine yielded substantially more detections
and better precision than did conventional line tran-
sect sampling [13].
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