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Distance sampling

Distance sampling is a widely-used group of closely
related methods for estimating the density and/or
abundanceof biological populations. The main meth-
ods areline transects andpoint transects (also called
variable circular plots). These have been used suc-
cessfully in a very diverse array of taxa, including
trees, shrubs and herbs, insects, amphibians, reptiles,
birds, fish, marine and land mammals. In both cases,
the basic idea is the same. The observer(s) perform a
standardized survey along a series of lines or points,
searching for objects of interest (usually animals or
clusters of animals). For each object detected, they
record the distance from the line or point to the object.
Not all the objects that the observers pass will be
detected, but a fundamental assumption of the basic
methods is that all objects that are actually on the line
or point are detected. Intuitively, one would expect
that objects become harder to detect with increasing
distance from the line or point, resulting in fewer
detections with increasing distance. The key to dis-
tance sampling analyses is to fit adetection function
to the observed distances, and use this fitted func-
tion to estimate the proportion of objects missed by
the survey. From here we can readily obtain point
and interval estimates for the density and abundance
of objects in the survey area. The basic methods
(sometimes calledconventional or standard distance
sampling) are described in detail in [5], which is an
updated version of [4]. Free software, Distance [19],
provides for the design and analysis of distance sam-
pling surveys, and is being updated to include much
of the work mentioned in the section on Current
Research below.

Distance sampling is an extension of quadrat-
based sampling methods. Two forms of quadrat sam-
pling arestrip transects, in which the observer travels
along a line, counting all objects within a predeter-
mined distance of the line, andpoint counts, in which
numbers of objects (usually birds or plants) in a circle
about a point are counted. Population density is then
estimated by dividing the total count by the total area
surveyed. A fundamental assumption of these meth-
ods is that all objects within the strip or circle are
counted. This assumption is difficult to meet for many
populations, and cannot be tested using the survey
data. Furthermore, for scarce species, the methods
are wasteful, because detections of objects beyond

the strip or circle boundary are ignored. If the width
of the strip or the radius of the circle is made suffi-
ciently small that detection of any object within the
surveyed area is almost certain, then perhaps 50% or
more of detections are outside the surveyed area and
so are ignored. Distance sampling extends quadrat-
based methods by relaxing the assumption that all
objects within the circle or strip are counted. By mea-
suring distances to the objects that are observed, the
probability of observing an object within the circle
or strip can be estimated.

Another approach to estimating wildlife abun-
dance involvescapture–recapture methods. These
are often more labour-intensive and more sensitive
to failures of assumptions than distance sampling.
However, they are applicable to some species that
are not amenable to distance sampling methods,
and can yield estimates of survival and recruit-
ment rates, which distance sampling cannot do. Cap-
ture–recapture methods can be useful for populations
that aggregate at some location each year, whereas
distance sampling methods are more effective on
dispersed populations. They should therefore be seen
as different tools for different purposes (see also trap-
ping webs under Related Methods below).

In fisheries applications,catch per unit effort,
catch-at-age and catch-at-length are all commonly
used to estimate abundance [10], as they require
that the commercial catch is sampled, which is more
cost-effective than sampling the living fish. Acoustic
surveys of fish schools can provide data amenable to
distance sampling methods.

Alternative methods for estimating animal abun-
dance are reviewed and compared in [15]–[18]
and [21].

Line-transect Sampling

In line-transect sampling, a series of straight lines
(tracklines) is traversed by an observer. This may be
achieved in various ways, depending on the study
species. In terrestrial studies, these include walking,
horseback, all-terrain vehicle, aeroplane and heli-
copter. Transect surveys in aquatic environments can
be conducted by divers with snorkels or SCUBA gear,
from submarines, surface vessels, aircraft, or from
sleds with mounted video units pulled underwater by
a surface vessel. In the case of large observation plat-
forms, there is typically a team of observers.
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Estimation

Perpendicular distancesx are measured from the
line to each detected object of interest. In practice,
detection distancesr and detection angles� are
often recorded, from which perpendicular distances
are calculated asx D r sin�. Supposek lines of
lengths l1, . . . , lk (with

∑
lj D L) are positioned

according to some randomized scheme, andn animals
are detected at perpendicular distancesx1, . . . , xn.
Suppose in addition that animals further than some
distancew from the line (the truncation distance) are
not recorded. Then the surveyed area isa D 2wL,
within which n animals are detected. LetPa be the
probability that a randomly chosen animal within the
surveyed area is detected, and suppose an estimateP̂a
is available. Then animal densityD is estimated by

D̂ D n

2wLP̂a
�1�

To provide a framework for estimatingPa, we define
the detection functiong�x� to be the probability that
an object at distancex from the line is detected,
0 � x � w, and assume thatg�0� D 1. That is, we are
certain to detect an animal on the trackline. If we plot
the recorded perpendicular distances in a histogram,
then conceptually the problem is to specify a suitable
model for g�x� and to fit it to the perpendicular
distance data. As shown in Figure 1, if we define
� D ∫ w

0 g�x� dx, thenPa D �/w. The parameter� is
called the effective strip (half-) width; it is the distance
from the line for which as many objects are detected
beyond� as are missed within� (Figure 1). Thus

D̂ D n

aP̂a
D n

2wL O�/w
D n

2 O�L
�2�

We now need an estimateO� of �. We can turn this
into a more familiar estimation problem by noting
that the probability density function (pdf) of perpen-
dicular distances to detected objects, denotedf�x�,
is simply the detection functiong�x�, rescaled so that
it integrates to unity (see Frequency curves). That
is, f�x� D g�x�/�. In particular, because we assume
g�0� D 1, it follows that f�0� D 1/� (Figure 2).
Hence

D̂ D n

2 O�L
D n Of�0�

2L
�3�

The problem is reduced to modeling the pdf of per-
pendicular distances, and evaluating the fitted func-
tion at x D 0. The large literature for fitting density

1.0

g(x)

m

m w

1.0 × w

x

Figure 1 The area� under the detection functiong�x�,
when expressed as a proportion of the areaw of the
rectangle, is the probability that an object within the
surveyed area is detected;� is also the effective strip
width, and takes a value between 0 andw. Reproduced
from Buckland, S.T., Anderson, D.R., Burnham, K.P. &
Laake, J.L. (1998). Distance sampling, inEncyclopedia
of Biostatistics, P. Armitage & T. Colton, eds, Wiley,
Chichester, Figure 2, p. 1192 by permission of John Wiley
& Sons, Ltd

functions is now available to us. The Distance pro-
gram uses the methods of [3], in which a parametric
‘key’ function is selected and, if it fails to provide an
adequate fit, polynomial or cosine series adjustments
are added until the fit is judged to be satisfactory by
one or more criteria.

Often, the perpendicular distances are recorded
by distance category, so that each exact distance
need not be measured, or data are grouped into dis-
tance categories before analysis. Standard likelihood
methods for multinomial data are used to fit such
‘grouped’ data.

Variance and Interval Estimation

The variance ofD̂ is well approximated using the
formula [5]:

v̂ar�D̂� D D̂2

[
v̂ar�n�

n2 C v̂ar[ Of�0�]

[ Of�0�]2

]
�4�

The variance ofn generally is estimated from the
sample variance in encounter rates,nj/lj, weighted
by the line lengthslj. When f�0� is estimated by
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Figure 2 The pdf of perpendicular distances,f�x�, plot-
ted on a histogram of perpendicular distance frequencies
(scaled so that the total area of histogram bars is unity).
The area below the curve is unity by definition. Because the
two shaded areas are equal in size, the area of the rectan-
gle, �f�0�, is also unity. Hence� D 1/f�0�. Reproduced
from Buckland, S.T., Anderson, D.R., Burnham, K.P. &
Laake, J.L. (1998). Distance sampling, inEncyclopedia of
Biostatistics, P. Armitage & T. Colton, eds, Wiley, Chich-
ester, Figure 3, p. 1192 by permission of John Wiley &
Sons, Ltd

maximum likelihood, its variance is estimated from
the information matrix .

If we assume that̂D is lognormally distributed,
approximate 95% confidence limits are given by
(D̂/C, D̂C) where

C D expf1.96[v̂ar�ln D̂�]0.5g �5�

with

v̂ar�ln D̂� D ln

[
1 C v̂ar�D̂�

D̂2

]
�6�

Often,bootstrap resampling for variance and inter-
val estimation is preferred. Resamples are usually
generated by sampling with replacement from the
lines, so that independence between the lines is
assumed, but independence between detections on the
same line is not. If the model selection procedure
for the detection function is applied independently
to each resample, the bootstrap variance includes a
component due to model selection uncertainty.

Cluster Size Estimation

Animals often occur in groups, which we term
clusters. These may be flocks of birds, pods of

whales, etc. If one animal in a cluster is detected,
then it is assumed that the whole cluster is detected,
and the distance to the center of the cluster is
recorded. Equation (3) then gives an estimate of the
density of clusters. To obtain the estimated density
of individuals, we must multiply by an estimate of
mean cluster size in the population, E(s):

D̂ D n Of�0�Ê�s�

2L
�7�

Probability of detection is often a function of clus-
ter size, so that the sample of detected cluster
sizes exhibits size bias (larger clusters are easier to
detect and so are over-represented in the sample).
In the absence of size bias, we can takeÊ�s� D s,
the mean size of detected clusters. Several meth-
ods exist for estimating E(s) in the presence of
size bias [5] (see Size-biased sampling). One that
works well in practice is to regress logs on Og�x�,
the estimated probability of detection at distancex
ignoring the effect of cluster size, and then pre-
dict logs when detection is certain,Og�x� D 1, as
there can be no size bias in that circumstance.
The prediction is back-transformed using a bias
adjustment.

Assumptions

The physical setting for line-transect sampling is
idealized as follows:

1. N objects are distributed through an area of
sizeA according to some stochastic process with
average rate parameterD D N/A.

2. Lines, placed according to some randomized
design, are surveyed and a sample ofn objects
is detected.

It is not necessary that the objects be randomly
(i.e. Poisson) distributed. Rather, it is critical that the
line or point be placed randomly with respect to the
local distribution of objects. This ensures that objects
in the surveyed strip are uniformly distributed with
respect to distance from the line. Thus, if the strip
has half-widthw, object-to-line distances available
for detection are uniformly distributed between zero
andw.

Three assumptions are essential for reliable esti-
mation of density using standard line-transect
methods:
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1. Objects directly on the line are always detected,
g�0� D 1.

2. Objects are detected at their initial location, prior
to any movement in response to the observer.

3. Distances are measured accurately (for un-
grouped distance data), or objects are correctly
allocated to distance interval (for grouped data).

A fourth assumption is made in many derivations
of estimators and variances: whether an object is
detected is independent of whether any other object
is detected. Point estimates ofD are robust to the
assumption of independence, and robust variance
estimates are obtained by taking the line to be the
sampling unit, either by bootstrapping on lines, or by
calculating a weighted sample variance of encounter
rates by line.

It is also important that the detection function
has a ‘shoulder’; that is, the probability of detection
remains at or close to one initially as distance
from the line increases from zero. This is not an
assumption, but a property that allows more reliable
estimation of object density.

Given the above, the point and interval estimates
of D are extremely robust to variation ing�x� due
to other factors such as observer, habitat, etc. Large
variations in density over the study area are also not a
problem, although if areas of differing density can be
defined in advance then stratification of survey effort
could be used to increase precision.

Point-transect Sampling

In point-transect sampling, an observer visits a num-
ber of points, the locations of which are determined
by some randomized design. The method is usually
(but not exclusively) used for songbird populations, in
which typically many species are recorded and most
detections are aural. By recording from points, the
observer can concentrate on detecting the objects of
interest, without having to navigate along a line, and
without having to negotiate a randomly positioned
line through possibly difficult terrain. The principal
disadvantages are that detections made while trav-
elling from one point to the next are not utilized, a
problem especially for scarce species, and the method
is unsuited to species that are generally detected by
flushing them, or to species that typically change their
location appreciably over the time period of the count
(see below).

Estimation

Detection distancesr are measured from the point to
each detected object. Suppose the design comprises
k points, and distances less than or equal tow are
recorded. Then the surveyed area isa D k�w2, within
which n objects are detected. As for line-transect
sampling, denote the probability that an object within
the surveyed area is detected byPa with estimatêPa.
Then we estimate object densityD by

D̂ D n

k�w2P̂a
�8�

We now define the detection functiong�r� to be the
probability that an object at distancer from the point
is detected, and we again assume thatg�0� D 1. For
line transects, the area of an incremental strip at
distancex from the lines isL dx, independently of
x, which leads to the result that the pdf of distances
differs from the detection function only in scale. By
contrast, an incremental annulus at distancer from
a point has area 2�r dr, proportional tor, so that
the pdf of detection distances isf�r� D 2�rg�r�/�,
where� D 2�

∫ w
0 rg�r� dr. The respective shapes of

the two functionsg�r� and f�r� are illustrated in
Figure 3. If we define an effective radius�, analogous
to the effective strip width of line-transect sampling,
then� D ��2 is the effective area surveyed per point
(Figure 4). Hence

D̂ D n

aP̂a
D n

k�w2� O�2/�w2 D n

k O� �9�

The area of the triangle in Figure 4 is�2f0�0�/2
wheref0�0� is the slope off�r� at r D 0. Since this
is equal to the area underf�r�, which is unity, it
follows that� D ��2 D 2�/f0�0�, and

D̂ D n Of0�0�

2�k
�10�

We therefore need to model the pdf of detection
distances, and evaluate the slope of the fitted function
at r D 0. The program Distance does this using the
same set of models for the detection function as for
line-transect sampling.

Variance and Interval Estimation

The methods for variance and interval estimation for
line-transect sampling also apply to point transects
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Figure 3 Histograms of detection distances from a
point-transect survey. In (a) each histogram frequency has
been scaled by dividing by the midpoint of the corre-
sponding group interval. Also shown are the corresponding
fits of the detection function [g�r� in (a)] and the pdf of
detection distances [f�r� in (b)]. Reproduced from Buck-
land, S.T., Anderson, D.R., Burnham, K.P. & Laake, J.L.
(1998). Distance sampling, inEncyclopedia of Biostatistics,
P. Armitage & T. Colton, eds, Wiley, Chichester, Figure 4,
p. 1194 by permission of John Wiley & Sons, Ltd

with minor modifications. The variance ofn is usu-
ally estimated from the sample variance in encounter
rates between points. However, point-transect surveys
are often designed by defining a series of lines, as
if a line-transect survey is to be carried out, then
locating a series of points along each line. If the
distance between neighboring points on the same
line is smaller than the distance between neighbor-
ing points on different lines, then the data for all
points on the same line should be pooled and the
variance ofn estimated from the sample variance in
encounter rates between lines, weighted by the num-
ber of points on each line. Similarly, in this situation,
bootstrap variance estimates should be calculated by

r w
r

f(r)

Figure 4 The pdf of detection distances,f�r�. The area
under the curve is unity by definition. Because the two
shaded areas are equal in size, the area of the trian-
gle, �2f0�0�/2, is also unity. Hence� D ��2 D 2�/f0�0�.
Reproduced from Buckland, S.T., Anderson, D.R., Burn-
ham, K.P. & Laake, J.L. (1998). Distance sampling, in
Encyclopedia of Biostatistics, P. Armitage & T. Colton, eds,
Wiley, Chichester, Figure 5, p. 1195 by permission of John
Wiley & Sons, Ltd

resampling lines with replacement, rather than indi-
vidual points.

Assumptions

Assumptions are virtually unchanged from those
given for line-transect sampling. As there, the
standard analyses are very robust to failure of the
assumption of independent detections. Point-transect
sampling is, however, more subject to bias than line-
transect sampling when objects move through the
area around a point. In principle, we try to obtain a
snapshot, locating each object at the position it occu-
pied at one instant in time. However, the count is
not instantaneous, because the observer needs time
to detect all objects close to that point. If, during that
time, movement brings new objects into the neigh-
borhood of the point, then object density will be
overestimated. To minimize bias, we recommend that
the amount of time spent at the point before and after
the snapshot instant be fixed in advance, and be as
small as possible, given the requirement to detect all
objects close to the point.

Related Methods

Trapping webs [5, 22] provide an alternative to
traditional capture–recapture sampling for estimating
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animal density. They represent the only application
of distance sampling in which trapping is an integral
part, and where data are taken passively. Traps are
placed along lines radiating from randomly chosen
points; the traditionally used rectangular trapping grid
cannot be used as a trapping web. Here detection by
an observer is replaced by animals being caught in a
trap at a known distance from the center of a trapping
web. The trap could be a camera or other similar
device. Trapping continues for several occasions and
data from either the initial capture of each animal or
all captures and recaptures are analyzed. To estimate
density over a wider area, several randomly located
webs are required.

Cue counting [9] was developed as an alternative
to line-transect sampling for estimating whale abun-
dance from sighting surveys. Observers on a ship or
aircraft record all sighting cues within a sector ahead
of the platform and their distance from the platform.
The cue used depends on species, but might be the
blow of a whale at the surface. The sighting distances
are converted into the estimated number of cues per
unit time per unit area using a point-transect model-
ing framework. The cue rate (usually corresponding
to blow rate) is estimated from separate studies, in
which individual animals or pods are monitored over
a period of time.

Indirect methods are often used when the animals
are rare, cryptic or tend to move away before being
detected. Instead of counting the animals, the objects
counted are something produced by the animals,
for example animal dung (e.g. deer dung [11])
or nests (e.g. great apes [12]). To convert object
density to animal density one must then estimate two
further parameters: object production rate and object
disappearance rate, from separate studies.

Related techniques sometimes used by botanists
to estimate densities (and sometimes also termed
distance sampling) arenearest neighbor meth-
ods and point-to-nearest object methods [6]. These
approaches do not involve modeling the detection
function, and so are outside the definition of distance
sampling used here.

Current Research

The basic theory of distance sampling is now
well established, as are the standard estimation and
field methods [5]. Most research is now focused
on methods for increasing precision and relaxing

the assumptions of the standard methods, and on
advanced design issues. There is still much to be done
in these areas, so the subject is still a lively one for
statistics and ecology.

Generally, probability of detection is a function
of many factors other than distance of the object
from the line or point. We have considered briefly
one other factor, cluster size, because if we do not
allow for size bias in detection when objects occur
in clusters then our object density estimator may
be biased. Other sources of heterogeneity contribute
little to bias, providedg�0� D 1. Nevertheless, higher
precision might be anticipated if additional covariates
are recorded and their effects ong�x� modeled. One
approach, first used by [14], is to allow covariates
to affect the scale of the detection function but not
its shape. Marques and Buckland (unpublished) have
extended the detection function estimation methods
outlined in the section on line-transect sampling
above to allow the scale parameter of the key function
to be a function of covariates. This approach is
implemented in the software Distance.

In some surveys, detection on the trackline is not
certain�g�0� < 1�, perhaps because some animals are
underground or under water, or simply hidden by
vegetation, when the observer passes. In this case,
capture–recapture methods may be combined with
distance sampling, through the use of two observa-
tion platforms [2]. The platforms might be treated as
mutually independent so that, provided that animals
detected by both platforms (duplicate detections) can
be identified, two-sample capture–recapture methods
that incorporate covariates can be used. Bias in such
methods is typically large enough to be of concern
unless heterogeneity in detectability is well-modeled.
However, it is seldom possible to record covariates
that reflect this heterogeneity adequately. For exam-
ple if a whale produces a blow that is particularly
visible from one platform, due to light conditions or
some other factor in the environment that is difficult
to measure, then it will tend to be more visible
from the other platform too, and abundance will be
underestimated. These problems may be reduced by
separating the areas of search for the two platforms,
and using one to set up trials for the other. The result-
ing binary data may then be modeled usinglogistic
regression [1]. In some studies, the platform that
sets up the trials could be provided, for example,
by a radio-tagging study, where locations of ani-
mals are known, or by an underwater acoustic array
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(so long as species could be identified accurately).
In double-platform methods, Horvitz–Thompson-like
estimators are used to estimate density, given the esti-
mated probability of detection for each observation
(see Sampling, environmental).

Spatial modeling of distance sampling data is
potentially useful for several reasons: animal density
may be related to habitat and environmental variables,
potentially increasing precision and improving under-
standing of factors affecting abundance; abundance
may be estimated for any subregion of interest, by
integrating under the fitted spatial density surface;
and a model-based approach allows data collected
from nonrandom surveys (platforms of opportunity)
to be used. One approach [7] is to conceptualize the
distribution of animals as an inhomogeneousPoisson
process, in which the detection function represents
a thinning process. If, in the case of line-transect
sampling, the data are taken to be distances along
the transect line between successive detections, this
allows us to fit a spatial surface to these data. We
can refine this further by conceptualizing the observa-
tions as waiting areas, i.e. the effective area surveyed
between one detection and the next, where the effec-
tive width of the surveyed strip varies according to
environmental conditions and observer effort [7, 8].

Geographic information systems(GISs) are now
widely available. This makes it possible to implement
automated design algorithms that generate survey
designs with known properties rapidly and simply.
The software Distance has a built-in GIS and imple-
ments methods developed by Strindberg (unpub-
lished). It can generate surveys based on a range
of point- and line-transect designs, as well as per-
forming simulations to compare the efficiency of
different designs and to investigate design properties
such as probability of coverage. For complex sur-
veys in which coverage probability is not uniform,
but has been calculated analytically or by simulation,
Horvitz–Thompson-like estimators can be used to
estimate abundance. This avoids the biased estimates
that result from standard estimation methods, which
assume that coverage probability is even. For exam-
ple, ship-board surveys typically use continuous zig-
zag survey lines, so that costly ship time is not wasted
in traveling from one line to the next. For convex
survey regions or strata, a design with approximately
even coverage probability can be obtained by defin-
ing a principal axis for the design and adjusting the
angle of the survey line with respect to this axis as the

ship progresses through the area. By contrast, fixed-
angle or fixed-waypoint zig-zag designs do not give
even coverage probability unless the survey region is
rectangular (Figures 5 and 6). If the survey region or
stratum is not convex, a combination of splitting the
region into a number of almost convex sub-regions
and placing a convex hull around the sub-regions can
be used.

Adaptive sampling [20] (see Adaptive designs)
offers a means of increasing sample size, and hence
increasing precision, by concentrating survey effort
where most observations occur. Standard adaptive
sampling methods can readily be extended to dis-
tance sampling surveys [20]. For example, for point
transect sampling we can define a grid of points,
randomly superimposed on the study region, and
randomly or systematically sample from the grid
to form the primary sample. When a detection is
made at a primary sample point, points from the

Figure 5 A trapezoidal survey region illustrating three
zig-zag designs: equal-angle (dotted line); fixed-waypoint
(dashed line); and even-coverage (solid line). The prin-
cipal axis of the design is parallel to the base of the
trapezium in this example, and for the fixed-waypoint
design, waypoints are equally spaced with respect to dis-
tance along the principal axis, alternating between the top
boundary and the base. Reproduced from Buckland, S.T.,
Thomas, L., Marques, F.F.C., Strindberg, S., Hedley, S.L.,
Pollard, J.H., Borchers, D.L. & Burt, M.L. (2001). Dis-
tance sampling: recent advances and future directions, in
Quantitative Methods for Current Environmental Issues,
V. Barnett, A. El-Shaarawi, C. Anderson & P. Chatwin,
eds, Springer-Verlag, New York, Figure 8, by permission
of Springer-Verlag
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Figure 6 Coverage probability against distance along the
principal axis for the three designs of Figure 5. Also shown
is the height of the trapezium as a function of distance
along the principal axis, which indicates that the fixed-angle
design has too low coverage where the study region is wide,
and too high where it is narrow. For the fixed-waypoint
design, coverage probability changes at each waypoint, and
between waypoints varies smoothly in the same manner as
the fixed-angle design. Reproduced from Buckland, S.T.,
Thomas, L., Marques, F.F.C., Strindberg, S., Hedley, S.L.,
Pollard, J.H., Borchers, D.L. & Burt, M.L. (2001). Dis-
tance sampling: recent advances and future directions, in
Quantitative Methods for Current Environmental Issues,
V. Barnett, A. El-Shaarawi, C. Anderson & P. Chatwin,
eds, Springer-Verlag, New York, Figure 9, by permission
of Springer-Verlag

grid that surround the primary sample point are sam-
pled. If detections are made at these extra points,
then further sampling is triggered. A major practi-
cal problem of adaptive sampling is that the required
survey effort is not known in advance. This is par-
ticularly problematic for shipboard surveys, in which
the ship is available for a predetermined number of
days. A method has been developed [13] that avoids
this problem. When additional effort is triggered,
the ship changes to a zig-zag (and hence continu-
ous) course, centered on the nominal trackline. The

angle of the zig-zag is a function of how far the ship
is ahead or behind schedule. Unlike standard adap-
tive sampling, the method is not design-unbiased, but
simulations indicate that the bias is small. An exper-
imental trial on a survey of harbor porpoise in the
Gulf of Maine yielded substantially more detections
and better precision than did conventional line tran-
sect sampling [13].
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