2

Assumptions and
modelling philosophy

2.1 Assumptions

This section provides material for a deeper understanding of the as-
sumptions required for the successful application of distance sampling
theory. The validity of the assumptions allows the investigator assurance
that valid inference can be made concerning the density of the popula-
tion sampled. The existing theory covers a very broad application area
and makes it difficult to present a simple list of all the assumptions that
are generally true for all applications. Three primary assumptions are
emphasized, but first two initial conditions are mentioned.

First, it is assumed that a population comprises objects of interest that
are distributed in the area to be sampled according to some stochastic
process with rate parameter D (= expected number per unit area). In
particular, it is not necessary (in any practically significant way) that
the objects be randomly (i.e. Poisson) distributed, although this is
mistakenly given in several places in the literature. Rather, it is critical
that the lines or points be placed randomly with respect to the distribution
of objects. Random line or point placement justifies the extrapolation of
the sample statistics to the population of interest. The area to be
sampled must be defined, but its size need not be measured if only object
density (rather than abundance) is to be estimated. Further, the observer
must be able to recognize and correctly identify the objects of interest.
This requirement seems almost trite, but in rich avian communities,
the problem can be substantial. The distances from the line or point to the
identified objects must be measured without bias.

Second, the design and conduct of the survey must pay due regard to
good survey practice, as outlined in Chapter 7. If the survey is poorly
designed or executed, the estimates may be of little value. Sound theory
and analysis procedures cannot change this.
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Three assumptions are critical to achieving reliable estimates of density
from line or point transect sampling. These assumptions are given
roughly in order of importance from most to least critical. The effects
of partial failure of these assumptions and corresponding theoretical
extensions are covered at length in later sections. All three assumptions
can be relaxed under certain circumstances.

2.1.1 Assumption 1: objects on the line or point are detected with
certainty

It is assumed that all objects at zero distance are detected, that is
g(0) = 1. In practice, detection on or near the line or point should be
nearly certain. Design of surveys must fully consider ways to assure that
this assumption is met; its importance cannot be overemphasized.

It is sometimes possible to obtain an independent estimate of the
probability of detection on the centreline in a line transect survey, for
example by assigning two (or more) independent observers to each leg
of search effort. Chapter 6 summarizes methods which have been
developed for estimating g(0), and Chapter 3 shows how the estimate
can be incorporated in the estimation of density. It is important to note
that g(0) cannot be estimated from the distances y; alone, and attempts
to estimate g(0) with low bias or adequate precision when it is known
to be less than unity have seldom been successful. This issue should be
addressed during the design of surveys, so that observation protocol will
assure that g(0) = 1 or that a procedure for estimating g(0) is incorpor-
ated into the design.

In fact, the theory can be generalized such that density can be computed
if the value of g(y) is known for some value of y. However, this result is
of little practical significance in biological sampling unless an assumption
that g(y) = 1 for some y > 0 is made (Quang and Lanctot 1991).

If objects on or near the line or point are missed, the estimate will
be biased low (i.e. E(D) < D). The bias is a simple function of g(0):
E(D)- D =-[1-g(0)] - D, which is zero (unbiased) when g(0)=1.
Many things can be done in the field to help ensure that g(0) = 1. For
example, video cameras have been used in aerial and underwater surveys
to allow a check of objects on or very near the line; the video can
be monitored after completion of the field survey. Trained dogs have
been used in ground surveys to aid in detection of grouse close to
the line.

Although we stress that every effort should be made to ensure
g(0) = 1, the practice of ‘guarding the centreline’ during shipboard or
aerial line transect surveys can be counterproductive. For example,
suppose that most search effort is carried out using 20 x or 25 x tripod-
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-

Detection function g(x)

0 Perpendicular distance x

Fig. 2.1. Hypothetical detection function illustrating the danger of assigning an
observer to ‘guard the centreline’. This problem is most common in shipboard
and aircraft surveys involving more than one observer.

mounted binoculars on a ship, but an observer is assigned to search
with the naked eye, to ensure animals very close to the ship are not
missed. If g(0) in the absence of this observer is appreciably below 1,
then the detection function may be as illustrated in Fig. 2.1. This
function violates the shape criterion described later, and no line transect
model can reliably estimate density in this case. The problem may be
exacerbated if animals are attracted to the ship; the observer guarding
the centreline may only detect animals as they move in toward the bow.
Polacheck and Smith (unpublished) argued that if effort is concentrated
close to the centreline, large bias can arise. Thus, field procedures should
ensure both that g(0) = 1 and that the detection function does not fall
steeply with distance from the line or point.

2.1.2 Assumption 2: objects are detected at their initial location

In studies of mobile animals, it is possible that an animal moves from
its original location for some distance prior to being detected. The
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measured distance is then from the random line or point to the location
of the detection, not the animal’s original location. If such undetected
movements prior to detection were random (see Yapp 1956), no serious
problem would result, provided that the animal’s movement is slow
relative to the speed of the observer. If movement is not slow, its effect
must be modelled (Schweder 1977), or field procedures must be modified
(Section 7.6). However, movement may be in response to the observer.
If the movement is away from the transect line being traversed by the
observer, the density estimator is biased low, whereas if the movement
is toward the observer (e.g. some songbirds and marine mammals), the
estimator of density will be biased high. Substantial movement away
from the observer can often be detected in a histogram of the distance
data (Fig. 2.2). However, if some animals move a considerable perpen-
dicular distance and others remain in their original location, then the
effect may not be detectable from the data. Ideally, the observer on a
line transect survey would try to minimize such movement by looking
well ahead as the area is searched. Field procedures should try to ensure
that most detections occur beyond the likely range of the effect of the
observer on the animals. In point transect surveys, one must be careful
not to disturb animals as the sample point is approached, or perhaps
wait a while upon reaching the point.

The theory of distance sampling and analysis is idealized in terms
of dimensionless points or ‘objects of interest’. Surveys of dead deer,
plants or duck nests are easily handled in this framework. More gener-
ally, movement independent of the observer causes no problems, unless
the object is counted more than once on the same unit of transect
sampling effort (usually the line or point) or if it is moving at roughly
half the speed of the observer or faster. Animals such as jackrabbits or
pheasants will flush suddenly as an observer approaches. The measure-
ment must be taken to the animal’s original location. In these cases, the
flush is often the cue that leads to detection. Animal movement after
detection is not a problem, as long as the original location can be
established accurately and the appropriate distance measured. Similarly,
it is of no concern if an animal is detected more than once on different
occasions of sampling the same transect. Animals that move to the
vicinity of the next transect in response to disturbance by the observer
are problematic. If the observer unknowingly records the same animal
several times while traversing a transect, due to undetected movement
ahead of him, bias can be large.

The assumption of no movement before detection is not met when
animals take evasive movement prior to detection. A jackrabbit might
hop several metres away from the observer into heavy cover and wait.
As the observer moves closer. the rabbit might eventually flush. If the
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Fig. 2.2. Three histograms of perpendicular distance data, for equally spaced
cutpoints, illustrating the effect of evasive movement prior to detection. Expected
values are shown for the case where relatively little movement away from the
observer was experienced prior to detection (a), while (b) and (c) illustrate cases
where movement prior to detection was more pronounced. Data taken from
Laake (1978).
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new location is thought to be the original location and this distance is
measured and recorded, then the assumption is violated. If this condition
happens in only, say, 5% of the observations, then the bias is likely to
be trivial. If a substantial portion of the population moves further from
the line prior to detection, this movement will often be apparent from
examination of the histogram of the distance data. If evasive movement
occurs prior to detection, the estimator will be biased low (E(ﬁ) < D)
(Fig. 2.2b or c). Less frequently, members of a species will be attracted
to the observer (Bollinger er al. 1988; Buckland and Turnock in press).
If animals move toward the observer prior to being detected, a positive
bias in estimated density can be expected (E(D) > D). However, in this
case, the movement is unlikely to be detected in the histogram, even if
it is severe. It seems unlikely that methods will be developed for the
reliable estimation of density for cases where a high proportion of the
objects moves in response to the observer prior to detection without
making some very critical and untestable assumptions (e.g. Smith 1979),
unless relevant and reliable ancillary data can be gathered (Turnock and
Quinn 1991; Buckland and Turnock in press).

2.1.3 Assumption 3: measurements are exact

Ideally, recorded distances (and angles, where relevant) are exact, with-
out measurement errors, recording errors or heaping. For grouped data,
detected objects are assumed to be correctly assigned to distance categories.
Reliable estimates of density may be possible even if the assumption is
violated. Although the effect of inaccurate measurements of distances
or angles can often be reduced by careful analysis (e.g. grouping), it is
better to gather good data in the field, rather than to rely on analytical
methods. It is important that measurements near the line or point are
made accurately. Rounding errors in measuring angles near zero are
problematic, especially in the analysis of ungrouped data, and for
shipboard surveys. If errors in distance measurements are random and
not too large, then reliable density estimates are still likely, especially
if the sample size is large (Gates er al. 1985). Biased measurements pose
a larger problem (e.g. a strong tendency to overestimate the distances
using ocular judgements), and field methods should be considered to
minimize this bias.

For duck nests and other stationary objects, distances can be measured
with a steel tape or similar device, but distances are often merely paced or
estimated, taken with a rangefinder or estimated using binocular reticles.
These approximate methods compromise the quality of the data, but are
often forced by practical considerations. A useful alternative is to take
grouped data in, say, 5-7 distance categories, such that the width of the
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categories increases toward w (i.e.[c,—0]<[m-c]<s[a-c]<...).
Thus, careful measurement is required only near the cutpoints c;.

(a) Heaping Often, when distances are estimated (e.g. ocular estimates,
‘eyeballing’), the observer may ‘round’ to convenient values (e.g. 5, 10,
50 or 100) when recording the result. Thus, a review of the » distance
values will frequently result in many ‘heaped’ values and relatively few
numbers such as 3, 4, 7, 8 or 11. Heaping is common in sighting angles,
which are often strongly heaped at 0, 15, 30, 45, 60 and 90 degrees.
A histogram of the data will often reveal evidence of heaping. Often
some judicious grouping of the data will allow better estimates of
density, i.e. the analysis can often be improved by proper grouping
of the distance data. Cutpoints for grouping distances from the line or
point should be selected so that large ‘heaps’ fall approximately at the
midpoints of the groups. For line transects, sighting distances and angles
should not be grouped prior to conversion into perpendicular distances.
Heaping can be avoided in the field by measuring distances, rather than
merely estimating them. The effects of heaping can be reduced during
the analysis by smearing (Butterworth 1982b). Heaping at perpendicular
distance zero can result in serious overestimation of density. This
problem is sometimes reduced if a model is used that always satisfies
the shape criterion (Section 2.3.2), although accurate measurement is the
most effective solution.

(b) Systematic bias When distances are estimated, it is possible that
the errors are systematic rather than random. For example, there is
sometimes a strong tendency to underestimate distances at sea. Each
distance may tend to be over- or underestimated. In surveys where only
grouped data are taken, the counts may be in error because the cutpoints
¢; are in effect ¢; + 8, where §; is some systematic increment. Thus, #, is
not the count of objects detected between perpendicular distances 0 and
c1, it is the count of objects detected between 0 and ¢, + §,. Little can
be done to reduce the effect of these biased measurements in the analysis
of the data unless experiments are carried out to estimate the bias; a
calibration equation then allows the biased measurements to be cor-
rected. Again, careful measurements are preferable to rough estimates
of distances.

(¢) Outliers 1If data are collected with no fixed width w, it is possible
that a few extreme outliers will be recorded. A histogram of the data
will reveal outliers. These data values contain little information about
the density and will frequently be difficult to fit (Fig. 1.9). Generally,
such extreme values will not be useful in the final analysis of density,
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and should be truncated. It is often recommended that the 5-10% of
the largest observations be routinely truncated prior to analysis.

2.1.4 Other assumptions

Other aspects of the theory can be considered as assumptions. The
assumption that detections are (statistically) independent events is often
mentioned. If detections are somewhat dependent (e.g. ‘string’ flushes
of quail), then the theoretical variances will be underestimated. How-
ever, we recommend that empirically based estimates of sampling vari-
ances be made, thus alleviating the need for this assumption. That is,
if var(n) is estimated from independent replicate lines or points, then
the assumption of within line or (point) independence is not proble-
matic, provided the dependence is over short distances relative to the
distance between replicate lines or points. Independence of detection of
individual animals is clearly violated in clustered populations. This is
handled by defining the cluster as the object of interest and measuring
the ancillary variable, cluster size. This solution can be unsatisfactory
for objects that occur in loose, poorly defined clusters, so that the
location and size of the cluster may be difficult to determine or estimate
without bias. The assumption of independence is a minor one in a
properly designed survey, unless the clusters are poorly defined.

Statistical inference methods used here (e.g. maximum likelihood
estimators of parameters, theoretical sampling variance estimators, and
goodness of fit tests) assume independence among detections. Failure of
the assumption of independence has little effect on the point estimators,
but causes a bias (underestimation) in theoretical variance estimates
(Cox and Snell 1989). The assumption of independence can fail because
objects do not have a random (Poisson) distribution in space and this
pattern could result in a dependency in the detections. Non-random
distribution, by itself, is not necessarily a cause of lack of independence.
If the transects are placed at random and a robust estimator of the
sampling variance is used, then the assumption of independence can be
ignored. At least in practice, it is not at all important that the objects
be randomly distributed on the study area. Similarly, it is of little
concern if detection on either side of the line or around the point is not
symmetric, provided that the asymmetry is not extreme, such that
modelling g(y) is difficult.

A more practically important consideration relates to the shape of the
detection function near zero distance. This shape can often be judged by
examining histograms of the distance data using different groupings.
Distance sampling theory performs well when a ‘shoulder’ in detectability
exists near the line or around the point. That is, detectability is certain
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near the line or point and stays certain or nearly certain for some distance.
This will be defined as the ‘shape criterion’ in Section 2.3. If detectability
falls sharply just off the line or point, then estimation tends to be poor,
even if the true model for the data is known. Thus if data are to be analysed
reliably, the detection function from which they come should possess a
shoulder; to this extent, the shape criterion is an assumption.

Some papers imply that an object should not be counted on more
than one line or point. This, by itself, is not true as no such assumption
is required. In surveys with w = e, an object of interest (e.g. a dead elk)
can be detected from two different lines without violating any assump-
tions. As noted above, if in line transect sampling an animal moves
ahead of the observer and is counted repeatedly, abundance will be
overestimated. This is undetected movement in response to the observer;
double counting, by itself, is not a cause of bias if such counts corres-
pond to different units of counting effort. Bias is likely to be small
unless repeated counting is common during a survey. Detections made
behind the observer in line transect sampling may be utilized, unless the
object is located before the start of a transect leg, in which case it is
outside the rectangular strip being surveyed.

These assumptions, their importance, models robust to partial viola-
tions of assumptions, and field methods to meet assumptions adequately
will be addressed in the material that follows.

2.2 Fundamental models

This section provides a glimpse of the theory underlying line and point
transect sampling. This material is an extension of Section 1.6.

2.2.1 Line transects

In strip transect sampling, if strips of width 2w and total length L are
surveyed, an area of size a = 2wL is censused. All n objects within the
strips are enumerated, and estimated density is the expected number of
objects per unit area:

D =n/2wL

In line transect sampling, only a proportion of the objects in the area
a surveyed is detected. Let this unknown proportion be P,. If P, can
be estimated from the distance data, the estimate of density could be
written as
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D =n/2wLP, 2.1
Now, some formalism is needed for the estimation of P, from the

distances. The unconditional probability of detecting an object in the
strip (of area a =2wl) is

j ' g(x)dx
JO

w

P, = (2.2)

In the duck nest example of Chapter 1, g(x) was found by dividing the
estimated quadratic equation by the intercept (77.05), to give

g2(x) = 1 - 0.0052x*

Note that g(8) = 0.66, indicating that approximately one-third of the
nests near the edges of the transect were never detected. Then

P,

8
f (1 = 0.0052x%)dx
0
- 8
=(.888

Substituting the estimator of P, from Equation 2.2 into D from Equation
2.1 gives
D= (2.3)
2L L g(x)dx

because the w and 1/w cancel out. Then the integral _[Owg(x)dx becomes
the critical quantity and is denoted as u for simplicity. Thus,

D=n/2L)

There is a very convenient way to estimate the quantity 1/u. The
derivation begins by noting that the probability density function (pdf)
of the perpendicular distance data, conditional on the object being
detected, is merely
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fo =8 (2.4)

g(x)dx

This result follows because the expected number of objects (including
those that are not detected) at distance x from the line is independent
of x. This implies that the density function is identical in shape to the
detection function; it can thus be obtained by rescaling, so that the
function integrates to unity.

By assumption, g(0) =1, so that the pdf, evaluated at zero distance,
is
£y =—1

0 g(x)dx

=1/u

The parameter p = J. g(x)dx is a function of the measured distances.
Therefore, we will often write the general estimator of density for line
transect sampling simply as

n - £(0)

D=—7

2.5)

n

=2L;1

This estimator can be further generalized, but the conceptual approach
remains the same. D is valid whether w is bounded or unbounded
(infinite) and when the data are grouped or ungrouped. Note that
either form of Equation 2.5 is equivalent to D =n/2wLP, (Equation
2.1).

For the example, an estimate of Gates’ (1979) effective strip width is
iL=wP,=8(0.888) = 7.10 ft, and D = 534/(2 x 1600 x 7.10) nests/mile/ft

= 124 nests/square mile.

The density estimator expressed in terms of an estimated pdf, evalu-
ated at zero, is convenient, as a large statistical literature exists on the
subject of estimating a pdf. Thus, a large body of general knowledge
can be brought to bear on this specific problem.
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2.2.2 Point transects

In traditional circular plot sampling, k& areas each of size mw’ are
censused and all n objects within the k plots are enumerated. By
definition, density is the number per unit area, thus

="

knw?

In point transect sampling, only a proportion of the objects in each
sampled area is detected. Again, let this proportion be P,. Then the
estimator of density is

n

h=—"1_
knw’P,

(2.6)

The unconditional probability of detecting an object that is in one of
the & circular plots is

P, = Lw 2nrg(rydr 2.7

w’

2 w
= ! L rg(rydr

Substituting Equation 2.7 into Equation 2.6 and cancelling the w’ terms,
the estimator of density is

p-—-" (2.8)
2k1tj rg(r)dr
0
Defining v = 2nJ.0wrg(r)dr
then
D =n/kv

Clearly, v is the critical quantity to be estimated from the distance data
for a point transect survey.
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2.2.3 Summary

The statistical problem in the estimation of density of objects is the
estimation of pu or v. Then the estimator of density for line transect
sampling is

D=nl2L}
where n= fo g(x)dx

The estimator of density for point transect surveys can be given in a
similar form:

D = nlkv

where V= 2nf rg(r)dr
0

This, then, entails careful modelling and estimation of g(y). Good
statistical theory now exists for these general problems. Finally, we note
that the estimator of density from strip transect sampling is also similar:

A

D =n/2wL

where P, = 1 and, by assumption, » is the count from a complete census
of each strip.

2.3 Philosophy and strategy

The true detection function g(y) is not known. Furthermore, it
varies due to numerous factors (Section 1.7). Therefore, it is important
that strong assumptions about the shape of the detection function
are avoided. In particular, a flexible or ‘robust’ model for g(y) is
essential.

The strategy used here is to select a few models for g(y) that have
desirable properties. These models are selected a priori, and without
particular reference to the given data set. This class of models excludes
those that are not robust, have restricted shapes, or have inefficient
estimators. Because the estimator of density is closely linked to g(y), it
is of critical importance to select models for the detection function
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carefully. Three properties desired for a model for g(y) are, in order of
importance, model robustness, a shape criterion, and efficiency.

2.3.1 Model robustness

The most important property of a model for the detection function is
model robustness. This means that the model is a general, flexible
function that can take the variety of shapes that are likely for the true
detection function. In general, this property excludes single parameter
models; experience has shown that models with two or three parameters
are frequently required. Most of the models recommended have a
variable number of parameters, depending on how many are required
to fit the specific data set. These are sometimes called semiparametric
models.

The concept of pooling robustness (Burnham er al. 1980) is included
here under model robustness. Models of g(y) are pooling robust if the
data can be pooled over many factors that affect detection probability
(Section 1.7) and still yield a rellable estimate of density. Consnder two
approaches: stratified estimation D, and pooled estimation D In the
first case, the data could be stratified by factors affecting detectability
(e.g. three observers and four habitat types) and an estimate of density
made for each stratum. These separate estimates could be combined into
an estimate of average density D. In the second case, all data could
be pooled, regardless of any stratification (e.g. the data for the three
observers and four habltat types would be pooled) and a smgle estimate
of density computed, D A model is pooling robust if Dy = D Poolmg
robustness is a des1rable property. Only models that are Imear in the
parameters satisfy the condition with strict equality, although general
models that are model robust, such as those recommended in this book,
approximately satisfy the pooling robust property.

2.3.2 Shape criterion

Theoretical considerations and the examination of empirical data suggest
that the detection function should have a ‘shoulder’ near the line or
point. That is, detection remains nearly certain at small distances from
the line or point. Mathematically, the derivative g’(0) should be zero.
This shape criterion excludes functions that are spiked near zero dis-
tance. Frequently, a histogram of the distance data will not reveal the
presence of a shoulder, particularly if the histogram classes are large
(Fig 2.3), or if the data include several large values (a long tail).
Generally, good models for g(y) will satisfy the shape criterion near zero
distance. The shape criterion is especially important in the analysis of
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Fig. 2.3. Data (n = 100) from the half-normal model with ¢ = 33.3 and w =100
shown with three different sets of group interval. As the group interval increases,
the data appear to become more spiked. Adapted from Burnham et al. (1980).

data where some heaping at zero distance is suspected. This occurs most
frequently when small sighting angles are rounded to zero, and gives
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rise to histograms that show no evidence of a shoulder, even when the
true detection function has a substantial shoulder.

2.3.3 Efficiency

Other things being equal, it is desirable to select a model that provides
estimates that are relatively precise (i.e. have small variance). We re-
commend maximum likelihood methods, which have many good statis-
tical properties, including that of asymptotic minimum variance.
Efficient estimation is of benefit only for models that are model robust
and have a shoulder near zero distance; otherwise, estimation might be
precise but biased.

2.3.4 Model fit

Ideally, there would be powerful statistical tests of the fit of the model
for g( y) to the distance data. The only simple omnibus test available is
the x* goodness of fit test based on grouping the data. This test compares
the observed frequencies n; (based on the grouping selected) with the
estimated expected frequencies under the model, E(n;), in the usual way:

£ [ni— B
1:21 (n,)

is approximately x° with u —m — 1 degrees of freedom, where u is the
number of groups and m is the number of parameters estimated. In
isolation, this approach has severe limitations for choosing a model for
g(y), given a single data set (Fig. 2.4).

Generally, as the number of parameters in a model increases, the bias
decreases but the sampling variance increases. A proper model should
be supported by the particular data set and thus have enough parameters
to avoid large bias but not so many that precision is lost (the Principle
of Parsimony). Likelihood ratio tests (Lehmann 1959; Hogg and Craig
1970) are used in selecting the number of model parameters that are
appropriate in modelling f(»). The relative fit of alternative models may
be evaluated using Akaike’s Information Criterion (Akaike 1973; Saka-
moto e al. 1986; Burnham and Anderson 1992). These technical subjects
are presented in the following chapters.

2.3.5 Test power

The power of the goodness of fit test is quite low and, therefore, of
little use in selecting a good model of g(y) for the analysis of a particular
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Fig. 2.4. The distance data are often of little help in testing the relative fit among
models. Here, fits of the negative exponential model and the hazard-rate model to a
line transect data set are shown. Both models provide an excellent fit ()(2 =0.49,
3df, p=0.92 and xz =0.33,2 df, p = 0.85, respectively), even though the esti-
mates of f(0) are quite different ( £(0) = 0.589 and 0.450, respectively).

data set. In particular, this test is incapable of discriminating between
quite different models near the line or point, the most critical region
(Fig. 2.4). In addition, grouping data into fewer groups frequently
diminishes the power of the test still further and may give the visual
impression that the data arise from a spiked distribution such as the
negative exponential, when the true detection function has a shoulder
(Fig. 2.3).

While goodness of fit test results should be considered in the analysis
of distance data, they will be of limited value in selecting a model. Thus,
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a class of reliable models is recommended here, based on the three
properties: model robustness, the shape criterion and estimator efficiency.

2.4 Robust models

Several models of g(y) are recommended for the analysis of line or point
transect data. These models, as implemented in program DISTANCE,
have the three desired properties of model robustness, shape criterion and
estimator efficiency. Following Buckland (1992a), the modelling process
can be conceptualized in two steps. First, a ‘key function’ is selected as
a starting point, possibly based on visual inspection of the histogram
of distances, after truncation of obvious outliers. Often, a simple key
function is adequate as a model for g(y), especially if the data have
been properly truncated. Two key functions should probably receive
initial consideration: the uniform and the half-normal (Fig. 2.5a). The
uniform key function has no parameters, whereas the half-normal key
has one unknown parameter to be estimated from the distance data. In
some cases, the hazard-rate model (Fig. 2.5b) could be considered as a
key function, although it requires that two key parameters be estimated.

Second, a flexible form, called a ‘series expansion’, is used to adjust
the key function, using perhaps one or two more parameters, to improve
the fit of the model to the distance data. Conceptually, the detection
function is modelled in the following general form:

g(y) = key(y) [1 + series (y)]

The key function alone may be adequate for modelling g(y), especially
if sample size is small or the distance data are easily described by a
simple model. Theoretical considerations often suggest a series expansion
appropriate for a given key. Three series expansions are considered here:
(1) the cosine series, (2) simple polynomials, and (3) Hermite polynomials
(Stuart and Ord 1987: 220-7). All three expansions are linear in their
parameters. Thus, some generally useful models of g(y) are:

Key function Series expansion
. . e L
Uniform, 1/w Cosine, Y ajcos [L‘;X]
j=1
m y 2j
Uniform, 1/w Simple polynomial, Y g; [;]
j=1
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Fig. 2.5. Key functions useful in modelling distance data: (a) uniform, half-
normal and negative exponential, and (b) hazard-rate model for four different
values of the shape parameter b.
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m
Half-normal, exp (- y*/267) Cosine, Y ajcos []—yJ
j=2
m
Half-normal, exp (- y*/26%) Hermite polynomial, Y a;H,; (s)
where ys = y/oc j=2

Hazard-rate, 1 — exp(—(y/c)’b) Cosine, Zaj cos (J y]
j=2

m 2j
Hazard-rate, 1 — exp(- (y/6)" b) Simple polynomial, Y g; [%J
Jj=2

The uniform + cosine expression is the Fourier series model of Crain
et al. (1979) and Burnham et al. (1980). This is an excellent omnibus
model and has been shown to perform well in a variety of situations.
The uniform + simple polynomial model includes the models of Ander-
son and Pospahala (1970), Anderson et al. (1980), and Gates and Smith
(1980).

It may be desirable to use the half-normal key function with either a
cosine expansion or Hermite polynomials. Because histograms of dis-
tance data often decline markedly with distance from the line, the
half-normal may often represent a good choice as a key function.
Similarly, the uniform key and one cosine term will often provide a
good standard for possible further fitting with series adjustment terms.
Theoretical reasons suggest the use of the Hermite polynomial in con-
junction with the half-normal key, especially for the untruncated case.
This is a minor point, and the reader should think of this as only an
alternative form of a polynomial.

The final two models listed above use Buckland’s (1985) hazard-rate
as a two parameter key function and use cosine and simple polynomial
expansions for additional fitting, if required. The hazard-rate model is
a derived model in contrast to the others, which are proposed shapes.
That is, the shape of this family of models is the result of a priori
assumptions about the detection process. The hazard-rate model has
been shown to possess good properties, especially for data that are
genuinely spiked (as distinct from spuriously spiked, as a result of
rounding). In addition, this model can have a marked shoulder that can
be nearly flat for some distance from the line or point. Even for data
appearing to be spiked, this model can fit a flat shoulder, yet provide
a good fit.

These series-expansion models are non-parametric in the sense that
the number of parameters used is data-dependent. The estimation theory
for these models, including rules to select the number of parameters to
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use, is given in the following chapter. Typically, given suitable distance
truncation, an adequate model for g(y) will include only one or two
parameters, sometimes three. Sometimes the key function by itself will
be adequate, with no terms in the series expansion. We emphasize that
truncation will often be required as part of the modelling, especially if
the data are ungrouped. Outlier observations provide relatively little
information about density, but are often difficult to model, so that
proper truncation should always be considered in modelling g(y). Pro-
gram DISTANCE allows the combination of any of the key functions
with any of the series expansions as a model for f(y). Some models
have appeared in the literature that assume g(y) = 1 for some consider-
able distance from the line or point; the models suggested above do not
impose this assumption. v

Only these general models are emphasized as state-of-the-art, general
approaches at this time. Program DISTANCE allows any key function
to be used with any series expansion; however, the combinations listed
above should be satisfactory for general use. Further effort directed at
model evaluation and development might now be better directed at
survey design and data collection techniques to meet critical assump-
tions.

The exponential + simple polynomial is available for the salvage
analysis of poorly collected data where there is strong reason to believe
that the distance data are truly spiked. It has the form:

exp(= y/A) - [1 + 3 4 (y/H¥ )

Jj=1

Use of this approach should be accompanied by adequate Jjustification
and we recommend its use only in unusual circumstances. Every con-
sideration should be given to the use of the hazard-rate model for
distance data that appear spiked because this model enforces the shape
criterion, offers greater flexibility in fitting a spike, and gives a more
realistic (larger) variance when the data are inadequate for reliable
modelling.

2.5 Some analysis guidelines

Distance sampling represents a broad area and includes many types of
application and degree of complexity of design and data. Thus, specific
‘cookbook’ procedures for data analysis cannot be given safely. Instead,
we will suggest a useful strategy that could be considered when planning
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the analysis of a data set. In this section we will consider only a simple
survey and will not address stratification and other complications given
in later chapters.

2.5.1 Exploratory phase

The exploratory phase of the analysis involves the preparation of
histograms of the distance data under several groupings. Sometimes it
is effective to partition the data into 10-20 groups to get a fine-grained
picture of the distance data. Examination of such histograms can pro-
vide insight into the presence of heaping, evasive movement, outliers
and the occasional gross error. Prominent heaps can be mitigated by
judicious grouping or splitting prior to further analysis. Evasive move-
ment is problematic, but it is important to know that movement is
present (movement toward the line or point generally cannot be detected
from the distance data alone). Some truncation of the distance data is
nearly always suggested, even if no obvious outlier is noticed. We
frequently recommend that 5-10% of the largest observations be trun-
cated. A more refined rule of thumb is to truncate the data when
g(x) = 0.15 for line transects or 0.10 for point transects. If the data were
taken as grouped data in the field, then options for further truncation
are more limited. Some liberal truncation is generally recommended.
Empirical estimates of var(n) can be computed and compared with the
variance under the Poisson assumption (i.e. Var(n) = n). One can examine
the stability of the ratio Var(n)/n over various design features. If the
data are from a clustered population, plots of s or log.(s) vs x or r
should be made and examined. Of course, data entry errors and other
anomalies should be screened and corrected. This analysis phase is
open-ended but the analyst is encouraged to begin to understand the
data and possible violations of the assumptions. Chatfield (1988, 1991)
offered some general practical advice relevant here. Program DIS-
TANCE allows substantial exploratory options.

2.5.2 Model selection

Model selection cannot proceed until proper truncation and, where
relevant, grouping have been tentatively addressed. Thus, this phase
begins once a data set has been properly prepared. Several robust models
should be considered (e.g. those in Section 2.4). The following chapters
will introduce and demonstrate the use of likelihood ratio tests, goodness
of fit tests and Akaike’s Information Criterion (AIC; Akaike 1973) as
aids in objective model selection. Here it might be appropriate to remind
the analyst that it is the fit of the model to the distance data near the
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line or point that is most important (unless there is thought to be
heaping at zero distance). Usually analysis will suggest additional ex-
ploratory work, so that the process is iterative. For example, it may
become apparent that the fit of one or more models could be improved
by selecting a different truncation point w, or by grouping ungrouped
data, or by changing the choice of group intervals for grouped data.
Further, if data are available over several years, taken in the same
habitat type by the same observer, then it might be prudent to pool the
data for the estimation of f(0) or /£(0), but to use the year-specific sample
sizes n;, where i is year, to estimate annual abundance. The validity of
this approach must then be assessed, for example using a likelihood
ratio test to determine whether a common value for f(0) or 4(0) can be
assumed.

2.5.3 Final analysis and inference

At some point the analyst selects a model believed to be the best for
the data set under consideration. In some cases, there may be several
competing models that seem equally good. In most cases, there will be
a subset of models that can be excluded from final consideration because
they perform poorly relative to other models. Often, if two or three
models seem to fit equally well to a data set, estimation of density D
and mean cluster size E(s) under these models will be quite similar (see
examples in Chapter 8). ,

Once a single model has been selected, the analyst can address further
issues. Thus, one might consider bootstrapping to obtain improved
estimates of precision, or carry out a Monte Carlo study to understand
further the effect of some assumption failure (e.g. overestimation of a
significant proportion of detection distances in an aerial survey, due to
the aircraft flying too low at times). Finally, estimates of density or
abundance and their precision are made, and qualifying statements
presented, such as discussion of the effects of failures of assumptions.

The above guidelines give a broad indication of how the analyst might
proceed. They will be developed in the following chapters, both to give
substance to the theory required at each step, and to show how the
philosophy for analysis is implemented in real examples.
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