3
Statistical theory

3.1 General formula

The analysis methods for distance sampling described here model
measured or estimated distances from a line or point so that density of
objects in a study area may be estimated. Conceptually, object density
varies spatially, and lines or points are placed at random or systematic-
ally in the study area to allow mean density to be estimated.

Suppose in a given survey that objects do not occur in clusters and
that distances are only recorded out to a distance w from the line or
point, or equivalently that recorded distances are truncated at distance
w. Suppose further that the true density is D objects per unit area. Let
the area covered by the survey within distance w of the line or point
be a, and let the probability of detection for an object within this area,
unconditional on its actual position, be P, Then the expected number
of objects detected within distance w, E(n), is equal to the expected
number of animals in the surveyed area, D - a, multiplied by the prob-
ability of detection, P,, so that

_ Em
D_a-Pa

If objects occur in clusters, so that E(n) is the expected number of
clusters, then the above equation should be multiplied by E(s), the
expectation of cluster size for the population:

_E@) - E(s)

b a- P,

Although the result is then perfectly general, it is convenient to modify
the definitions of a and P, to show explicitly two components of the
general formula that are implicit in the above form of the equation.
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First, if a is defined to be 2wL for a line transect survey, where L is
the total transect length, or a = knw?, where k is the number of circular
plots in a point transect survey, then the area surveyed within a distance
w of the line or point can be expressed as ¢ - a. Usually ¢ = 1.0, but if
for example only one side of a line transect is counted, then ¢ =0.5.
Similarly, if only an angle of ¢ radians (¢ < 2m) is counted in a point
transect survey, then ¢ = ¢/2n. This factor is required for example in
the cue counting method (Section 6.10), in which the sector counted is
of angle ¢.

Second, a basic assumption of the standard line and point transect
methods is that the probability of detection at zero distance g(0) is unity.
In surveys of inconspicuous objects or, for example, of whales, this
assumption may be unreasonable. It may be possible to estimate g(0),
in which case it is convenient to rescale the detection function g(y) such
that g(0) = 1.0, and to define the probability of detection on the line or
at the point to be go. The unconditional probability of detection of an
object (or cluster) in the surveyed area can then be factorized into
go - P,. This yields the general equation

E(n) - E(s)
= a P, g (3.1)
Estimation of g, is generally problematic, so that if at all possible,
surveys should be designed such that all or almost all objects on or
close to the line or point are detected. Further discussion of this issue
is reserved for Chapter 6.

Replacing parameters in Equation 3.1 by their estimators gives

p=—"-EW (3.2)
c-a-P, g

The variance of D may be approximated using the delta method (Seber
1982: 7-9). Assuming correlations between the four estimation compo-
nents are zero, the variance estimate is then:

Gat(n) _ VatlE()] | Vara - Po) , Vailg]

Vat(D) = D*- - - -
” [EOF (@ Py 1&F

3.3)

The assumption of no correlation is a mild one in the sense that
estimation is usually done in a way that ensures it holds. Because P, is
estimated conditional on n, no correlation term exists between n and
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P, if we can assume that E(P,|n) = E(P,), independent of n. This assump-
tion holds if (Paln) is unbiased for P,:

cov{n,(Pa|n)] = E[n - Pa|n] — E(n) - E(P,|n)
= E[E[{n - (P,|n)} |nl} - E(n) - P,
= Ealn - E(P,|n)] - E(n) - P,
=Emn)- P,— E(n) - P,
=0

When sample size is adequate, (ﬁa]n) is approximately unbiased.

Similarly, E(s) may be estimated conditional on n and the detection
distances, rendering E(s) uncorrelated with » or P Estimation of g, if
required, is usually based on additional, independent data.

Although area a—o as w—eo, the product @ - P, remains finite, so
that all three equations hold when there is no truncation. To estimate
a - P,;, a form must be specified, explicitly or implicitly, for the detection
function g(y), which represents the probability of detection of an object
or object cluster at a distance y from the line or point. The simplest
form is that of the Kelker strip: the truncation point w is selected such
that it is reasonable to assume that g(y)=1.0 for 0 < y < w. More
generally it seems desirable that the detection function has a ‘shoulder’;
that is, g’(0) should be zero, so that the detection function is flat at
zero. This is the shape criterion defined by Burnham ez al. (1980). The
detection function should also be non-increasing, and have a tail that
goes asymptotically to zero.

The relationship between the detection function and the probability
density function of distances, f(y), is different for line and for point
transects. We use the notation y to represent either x, the perpendicular
distance of an object from the centreline in line transect sampling, or r,
the distance of an object from the observer in point transect sampling.

For line transect sampling, the relationship between g(x) and f(x) is
particularly simple. Intuitively, because the area of a strip of incremental
width dx at distance x from the line is independent of x, it seems
reasonable that the density function should be identical in shape to the
detection function, but rescaled so that it integrates to unity. This result
may be proven as follows. Suppose for the moment that w is finite.

J(x)dx = pr{object is in (x, x + dx) | object detected}
|

_ pr{object is in (x, x + dx) and object is detected}
B pr{object is detected}
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_ pr{object is detected|object is in (x, x + dx)} - pr{objectis in (x, x + dx)}

P,
dx- L
9T
-—F5
Thus f(x) = (x)

a

It is convenient to define u=w - P,, so that

JS(x) m

Because Jowf(x)dx =1, it follows that u = Iowg(x)dx. Figure 3.1 illustrates
the result that P,, the probability of detecting an object given that it is
within w of the centreline, is p = ,&(x¥)dx (the area under the curve)
divided by 1.0w (the area of the rectangle); that is. w - P, = n, which is
well-defined even when w is infinite.

g(0) =1
Total area
=1.0w

=
S
&
% Area under curve
c w
2 =] g(x) dx=p
S 0
°
QO
°
a

0

Perpendicular distance x

Fig. 3.1. The unconditional probability that an animal within distance w of the
line is detected is the area under the detection function p divided by the area
of the rectangle 1.0 w.
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The parameter W is often termed the effective strip width (or more strictly,
the effective strip half-width); if all objects were detected out to a distance
W on either side of the transect, and none beyond, then the expected number
of objects detected would be the same as for the actual survey.

Let the total length of transect be L. Then the area surveyed is
a=2wL,and a- P, =2puL. Since p = g(x)/f(x) and g(0) = 1.0 after rescal-
ing, if necessary, by the factor g,, then p=1/f(0), and so for line
transects, Equation 3.1 becomes:

_EMm - f(0) - Es)
D= et 9
The parameter f(0) is statistically well-defined and is estimable from the
perpendicular distances x;, .. ., x, in a variety of ways.

The derivation for point transects is similar, but the relationship
between g(r) and f(r) is less simple. The area of a ring of incremental
width dr at distance r from the observer is proportional to r. Thus we
might expect that f(r) is proportional to r - g(r); using th ponstraint
that f(r) integrates to unity, f(r) = 2nrg(r)/v, where v = 21t1rg(r)dr. A
more rigorous proof follows.

S(r)dr = pr{object is in the annulus(r, r + dr) | object detected}

_ pr{object is in (r, r + dr) and object is detected}
B pr{object is detected}

_ pr{objectis detected|objectisin (r, r + dr)} - priobjectisin (r, r + dr)}

P,
2mrdr
_ g "
= P,
2ner - g(r)
that =— ==
so tha £ . P,

To be a valid density function, jowf(r)dr =1, so that

2nr - g(r)
v

fn= , With v = ZnI rg(rydr = w* - P,
0

This result also holds for infinite w. Analogous to p, v is sometimes
called the effective area of detection.

56



GENERAL FORMULA

Let there be k points, so that the surveyed area is a = knw?’. The
probability of detection of an object, given that it is within a distance
w of the observer, is now P, = v/(nw?), so that a - P, becomes kv: again
this holds as w—>eo. Since v = 2ntrg(r)/f(r) and g(0) = 1.0 (after rescaling
if necessary), then for point transects Equation 3.1 becomes:

_E(m) - hO) - Es)

b 2nckg,

3.5)

where A(0) = lin(}f(r)/r =2n/v

Note that A(0) is merely the derivative of the probability density
S(r) evaluated at r = 0; alternative notation would be f/(0). It is thus
estimable from the detection distances ry, .. ., r,, Whereas f(x) and g(x)
have identical shapes in line transect sampling, for point transects, g(r)
is proportional to f(r)/r. The constant of proportionality is 1/A(0).

Results equivalent to Equations 3.2 and 3.3 follow in the obvious way.
Note that for both line and point transects, behaviour of the probability
density function at zero distance is critical to object density estimation.

Burnham ez al. (1980: 195) recommended that distances in point
transect sampling should be transformed to ‘areas’ before analysis. Thus,
the i/th recorded area would be w;=nr?,i=1,..., n If JSu(1) denotes
the probability density function of areas u;, it may be shown that
Ju() = f(r)/(2nr) = g(r)/v. The advantage of this transformation should
now be apparent; the new density is identical in form to that for
perpendicular distances in line transect sampling (where f(x) = g(x)/p),
so line transect software may be used to analyse the data. Further, if r
is allowed to tend to zero, then f,(0) = £(0)/(2x), and the development
based on areas is therefore equivalent to that based on distances. This
seems to suggest that modelling of areas rather than distances is prefer-
able. However, as noted by Buckland (1987a), the transformation to
area appreciably alters the shape of the detection function, and it is no
longer clear that a model for area should satisfy the shape criterion.
For example the half-normal model for distances, which satisfies the
shape criterion, transforms to the negative exponential model for areas,
which does not satisfy the shape criterion, whereas the hazard-rate
model of Hayes and Buckland (1983) retains both its parametric form
and a shoulder under the transformation, although the shoulder becomes
narrower. We now recommend modelling the untransformed distance
data, because line transect detection functions may then be more safely
carried across to point transects, thus allowing the focus of analysis to
be the detection function in both cases.
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3.2 Hazard-rate modelling of the detection process

There are many possible models for the detection function that may fit
any given data set well. If all give similar estimates, then model selection
may not be critical. However, when the observed data exhibit little or
no ‘shoulder’, it is not uncommon that one model yields an estimated
density around double that for another model. Although the develop-
ment of robust, flexible models allows workers to obtain good fits to
most of their data sets, it does not guarantee that the resulting density
estimators have low bias. There is some value therefore in attempting
to model the detection process, to provide both some insight to the
likely form of the detection function and a parametric model that might
be expected to fit real data well. Hazard-rate methods have proved
particularly useful for this purpose, and have been developed by
Schweder (1977), Butterworth (1982a), Hayes and Buckland (1983) and
Buckland (1985) for line transect sampling, and by Ramsey et al. (1979)
and Buckland (1987a) for point transect sampling. We consider only
continuous hazard-rate models at this stage; discrete hazard-rate models
are described in Chapter 6.

3.2.1 Line transect sampling

At any one point in time, there is a ‘hazard’ that an object will be
detected by the observer, which is a function of the distance  separating
the object and observer. If the object is on the line, the observer will
be moving directly towards it, so that r decreases quite quickly. The
farther the object is from the line, the slower the rate of decrease in
distance r, so that the observer has more time to detect the object at
larger distances. Hazard-rate analysis models this effect, and also allows
the hazard to depend on the angle of the object from the observer’s
direction of travel.

Suppose an object is at perpendicular distance x from the transect
line, and let the length of transect line between the observer and the
point of closest approach to the object be z, so that r, the distance between
the observer and the object, satisfies r* = x* + z* (Fig. 1.5). Suppose also
that the observer approaches from a remote point on the transect so
that z may be considered to decrease from o to 0, and assume for
simplicity that the object cannot be detected once the observer has
passed his/her point of closest approach. Let

h(z, x)dz = pr{object sighted while observer is in (z, z — dz)|not
sighted while observer is between o and z}

58



HAZARD-RATE MODELLING OF THE DETECTION PROCESS

and

p(z, x) = pr{object not sighted while observer is between « and z}

where both probabilities are conditional on the perpendicular distance
x. Solving the forwards equations

p(z - dz, x) = p(z, x){1 - h(z, x)dz}
for p(z, x), and setting p(e, x) = 1, yields

p(z, X) = exp [— j ) h(v, x)dv]

so that

g(X) =1 —P(O, x)

=1—-exp{—j h(z, x)dz], 0<x<o
0

Changing the variable of integration from z to r gives

gx)=1- exp[ j \/( k(r x)dr]

where k(r, x) = h {\/(r2 - x%), x}

Time could be incorporated in the model, but for a continuous
hazard-rate process, there is little value in doing so provided that the
speed of the observer is not highly variable. Otherwise the development
has been general up to this point. To progress further, it is necessary
to restrict the form of the hazard. A plausible hazard should satisfy the
following conditions:

1. (0, 0) = os;
2. k(, x)=0;
3. k(r, x) is non-increasing in r for any fixed x.

For example suppose that the hazard belongs to the family defined
by:

J \/( k(r x)dr = (x/6)"?  for some & and b 3.6)
r
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Hayes and Buckland (1983) give two hazards from this family. In the
first, the hazard of detection is a function of r alone:

d

k(ro,x)=crr=x

— 1/d-1
so that b=d—1 and 6 = {cr[(d 1)/2]r(o.5)}

2T°(d/2)

The second hazard function allows the hazard of detection to be greater
for objects directly ahead of the observer than for objects to the side.
In practice this may arise if an object at distance r is more likely to
flush when the observer moves towards it, or if the observer concentrates
search effort in the forward direction. The functional form of the second
hazard is:

k(r,x)=c-r 4cos 0, where sin 6 = x/r

c 1/d-1
so that b=d -1 ando={z_—1}

The family of hazards defined by Equation 3.6, to which the above
two belong, yields the detection function

g(x) =1 - exp[- (x/0)" %] (3.7)

This is the hazard-rate model derived by Hayes and Buckland (1983)
and investigated by Buckland (1985), although the above parameteriza-
tion is slightly different from theirs, and has better convergence proper-
ties. The parameter b is a shape parameter, whereas ¢ is a scale
parameter. The model should provide a good representation of the ‘true’
detection function when the hazard process is continuous, sighting (or
auditory) conditions are homogeneous, and visibility (or sound) falls off
with distance according to a power function, although it appears to be
robust when these conditions are violated. It may be shown that
g’(0) =0 for b > 0, which covers all parameter values for which the
detection function is a decreasing function. Hence the above two hazards
which are sharply ‘spiked’ (the derivative of the hazard with respect to
r, evaluated at r =0, is infinite) give rise to a detection function that
always satisfies the shape criterion of Burnham er al. (1980). For
untruncated data the detection function integrates to a finite value only
if 5> 1. For truncated data, the model has a long tail and a narrow
shoulder if b < 1, and convergence problems may be encountered for
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extreme data sets. These problems may be avoided and analyses are
more robust when the constraint » = | is imposed (Buckland 1987b).
Equation 3.7 is plotted for a range of values for the shape parameter
likely to be encountered in real data sets in Fig. 2.5b.

Although in this book we describe the model of Equation 3.7 as ‘the’
hazard-rate model, any detection function may be described as a hazard-
rate model in the sense that a (possibly implausible) hazard exists from
which the detection function could be derived. Equation 3.7 is sometimes
referred to as the complementary log-log model, a label which is both
more accurate and more cumbersome.

3.2.2 Point transect sampling

For point transect sampling, the hazard-rate formulation is simpler,
since there is only one distance, the sighting distance r, to model. The
probability of detection is no longer a function of distance moved along
the transect, but of time spent at the point. Define the hazard function
k(r, 1) to be such that

k(r, f)dt = pr{an object at distance r is detected during (7 + dp)|it is
not detected during (0, )}

Then the detection function becomes:
T
gry=1-exp|- fo k(r, Hdt

where T is the recording time at each point. If the observer is assumed
to search with constant effort during the recording period, then
k(r, ) = k(r), independent of ¢, so that

g(r)=1-exp[- k(r)T] (3.8)
If the hazard is assumed to be of the form k(r) = cr % then
g =1-exp[- (r/0)™ ]

where b=d and 6 = (¢T)"°. The effect of increasing the time spent at
cach point is therefore to increase the scale parameter. This widens the
shoulder on the detection function, making it easier to fit. Scott and
Ramsey (1981) plotted the changing shape of a detection function as
time spent at the point increases from four to 32 minutes. The dis-
advantages of choosing T large are that assumptions are more likely to
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be violated (Section 5.9), and after a few minutes, the number of new
detections per minute will become small.

The parametric form of the above detection function is identical to
that derived for line transects (Equation 3.7). Moreover, if sightings are
squared prior to analysis, the parametric form remains unaltered, so
that maximum likelihood estimation is invariant to the transformation
to squared distances. This property is not shared by other widely used
models for the detection function. Burnham et al. (1980: 195) suggested
squaring distances, to allow standard line transect software to be used
for analysing point transect data, but we now advise against this strategy
(Buckland 1987a).

3.3 The key function formulation for distance data

Most formulations proposed for the probability density of distance
data from line or point transects may be categorized into one of two
groups. If there are theoretical reasons for supposing that the density
has a given parametric form, then parametric modelling may be carried
out. Otherwise, robust or non-parametric procedures such as Fourier
series, splines, kernel methods or polynomials might be preferred. In
practice it may be reasonable to assume that the true density function
is close to a known parametric form, yet systematic departures can occur
in some data sets. In this instance, a parametric procedure may not
always give an adequate fit, yet a non-parametric method may be too
flexible, perhaps giving very different fits to two related data sets from
a single study, due to small random fluctuations in the data. An example
of the latter occurs when a one term Fourier series model is selected
for one data set and a two term model for a second. The second data
set might be slightly larger, or show a slightly smaller shoulder; both
increase the likelihood of rejecting the one term fit. Bias in estimation
of f(0) can be a strong function of the number of Fourier series terms
selected (Buckland 1985), so that comparisons across data sets may be
misleading. The technique described by Buckland (1992a, b) and sum-
marized below incorporates knowledge of the likely shape of the density
function, whether theoretical or from past experience, and allows poly-
nomial or Fourier series adjustments to be made, to ensure a good fit
to the data.

Simple polynomials have been used for fitting line transect data by
Anderson and Pospahala (1970). However, low order simple polynomials
may have unsuitable shapes. By taking the best available parametric
form for the density, o(y), and multiplying it by a simple polynomial,
this shortcoming is removed. We call a(y) the key function. If it is a
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good fit, it needs no adjustment; the worse the fit, the greater the
adjustments required.

When the key function is the untruncated normal (or half-normal)
density, Hermite polynomials (Stuart and Ord 1987: 220-7) are ortho-
gonal with respect to the key, and may therefore be preferred to simple
polynomials. Hermite polynomials are usually fitted by the method of
moments, leading to unstable behaviour when the number of observa-
tions is not large or when high order terms are included. Buckland
(1985) overcame these difficulties by using numerical techniques to
obtain maximum likelihood estimates of the polynomial coefficients.
These procedures have the further advantage that the Gram-Charlier
type A and the Edgeworth formulations yield identical curves; for the
method of moments, they do not (Stuart and Ord 1987: 222-5).

Let the density function be expressed as

Sy = % : [1 +a- Pj(ys):l
j=1

where a(y) is a parametric key, containing k parameters (usually 0, 1
or 2);

yiif a simple polynomial is desired, or
Pi(ys) =1 Hj(ys), the jth Hermite polynomial, j=1,... m, or
cos(jmyy), if a Fourier series is desired;

s 1s a standardized y value (see below);

a»{ =0if term j of py(ys) is not used in the model, or
is estimated by maximum likelihood;

B is a normalizing function of the parameters {(key parameters and
series coefficients) alone.

It is necessary to scale the observed distances. For the simple poly-
nomial formulation, estimation is invariant to choice of scale, but the
operation is still necessary to avoid numeric problems when fitting the
model. If the key function is parameterized such that a single key
parameter, G say, is a scale parameter, y; may be found as y/c for each
observation. If the parameters of the key function are fully integrated
into the estimation routine, 6 can be estimated by maximum likelihood
(see below). Otherwise the key function may be fitted by maximum
likelihood in the absence of polynomial adjustments, and subsequent
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fitting of polynomial terms can be carried out conditional on those key
parameter estimates. For the Fourier series formulation, analyses are
conditional on w, the truncation point, and y; = y/w. In practice, it is
simpler to use this standardization for all models, a strategy used in
DISTANCE.

For line transect sampling, the standard form of the Fourier series
model is obtained by setting the key function equal to the uniform
distribution, so that a(y) = 1/w. Used in conjunction with simple poly-
nomials, this key gives the method of Anderson and Pospahala (1970).
The standard form of the Hermite polynomial model arises when the
key function is the half-normal. Point transect keys are found by
multiplying their line transect counterparts by y (or, equivalently, 2my).
The key need not be a valid density function. For the half-normal line
transect key, define o(y) = exp[- (»/6)*/2], and absorb the denominator
of the half-normal density, V(no?/2), into B. In general, absorb any part
of the key that is a function of the parameters alone into .

For line transect sampling, the detection function is generally assumed
to be symmetric about the line. Similarly for point transect sampling,
detection probability is assumed to be independent of angle. The detection
function may be envisaged as a continuous function on (— w, + w); for
line transects, negative distances would correspond say to sightings to
the left of the line and positive to the right, and for point transects,
this function can be thought of as a section through the detection
‘dome’, passing through the centre or point. The function is assumed to
be symmetric about zero (although analyses are robust to this assump-
tion). Hence only cosine terms are used for the Fourier series model,
and only polynomials of even order for polynomial models, so that the
detection function is an even function. In the case of the Hermite
polynomial model, the parameter of the half-normal key corresponds to
the second moment term, so that the first polynomial to be tested is of
order four if terms are tested for inclusion in a sequential manner. The
first adjustment to the half-normal fit therefore adjusts for kurtosis. It
may be that kurtosis for the true detection function is close to that for
the normal distribution, but a higher order moment may be very
different. In this case it may be more profitable to test for inclusion of
terms in a stepwise manner: select all terms of even order up to an
arbitrary order, say 10, and include at the first step that term which
gives the greatest increase in the value of the likelihood. Next include
the term that gives the greatest improvement when fitted simultaneously
with the first term selected. Continue until a likelihood ratio test
indicates that no significant improvement in the fit has been achieved.

When the key function is not normal and testing is sequential, it is
less clear which polynomial term should be tested first. Any key
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will contain a parameter, or a function of parameters, that corresponds
to scale, so a possible rule is to start with the term of order four,
whatever the key. An alternative rule is to start with the term of order
2 - (k + 1), where k is the number of key parameters. We advise against
the use of keys with more than two parameters. For stepwise testing,
all even terms down to order two and up to an arbitrary limit can be
included.

3.4 Maximum likelihood methods

We concentrate here on the likelihood function for the detection distan-
ces, yyi=1,..., n conditional on n. If the full data set was to be
modelled in a comprehensive way, then the probability of realizing the
data {n, yi, ..., yn, 51, . . ., sn} might be expressed as

Pr(n, yi, .. ., Yy S0y o o, Sn) = Pr(n) - Pr(y,, ..., Yny Sty . .y Sp|n)
=Pr(n) - Pr(y, ..., Yn|n) - Pr(sy, . . ., Snlf, Y1y o .y Yn)

Thus, inference on the distances yi can be made conditional on n, and
inference on the cluster sizes §; can be conditional on # and the yi. This
provides the justification for treating estimation of D (with g, = l)asa
series of three univariate problems.

Rao (1973) and Burnham et al. (1980) present maximum likelihood
estimation methods for both grouped and ungrouped distance data.
Applying those techniques to the key formulation of Section 3.3 yields
the following useful results.

3.4.1 Ungrouped data

Define £(9) = ﬁf(}’i)
i=1

where yi is the ith recorded distance, i = lI,..,n
01, ..., B¢ are the parameters of the key function
O.j=a,j=1,..., m, are the parameters (coefficients) of the

adjustment terms.

Then  loge[£(8)] = /= ¥ log.[ f()] = X loge[ f(3) - B] ~ n - log.B
i=1 i=1
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Hence ol _ i dlog.[f(y)]

00; < 06
Caf 1 Sy -BIl _a OB . _
_El{f(yi)-ﬁ 06; } B a6’ Lo
where

A { Sar Q%y;-_;)] ' % * [1 +3a 'Pj'()’is)} : a(;g,-)’
ol -Bl _ J=1 Yis J J= ]

29; lsj<k (39

a(y) - pi-i(yip), for all j> k for which ag;_x is non-zero

apj'(yis) j'pj—l(yis)’ with PO(Yis) = ls
= for simple and Hermite polynomials

9yis — jm - sin(jmys), for the Fourier series model
0y
When & =1 and y;s = yi/6i, % =— /01, when k=1 and yi = yi/w,
1
a is
Wi _
00,

The equations 9//98;=0,j=1, ..., k +m, may be solved using for
example Newton-Raphson or a simplex procedure. To change between
simple and Hermite polynomials, it is merely necessary to redefine p;(ys),
j=1,...,m; to change between polynomial and Fourier series adjust-
ments, the derivative of p,(y;) with respect to y,; must also be redefined.
If a different key o(y) is required, the only additional algebra needed
to implement the method is to find do(y)/96; and 0ys/06;, 1 <j < k;
B and 0B/06; are evaluated by numerical integration.

The Fisher information matrix per observation may be estimated by
the Hessian matrix H(0), with jAth element

. dlog.lf)] aloge{f(yi)]}

21
Hp(8) =1
W= [m 26, 36,

This may be formed from quantities already calculated. If a function of
the parameters, g(8), is to be estimated by g(8), then
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a1 [98(8) 9g(9)
va 0)}=— H(®

1{g(0)} n[a_}[()][ag}

3.4.2 Grouped data

Suppose the observations y are grouped, the ith group spanning the
interval (¢, ¢p), i=1, ,» u. In general, the data may be truncated at
either or both ends. For line and point transects, it is usual that
¢it = 0 (no left truncation) and ¢;; =c¢;,; 1, i=1, ..., u~ 1. The likelihood
function is now multinomial. Let the group frequenc1es be n. ..., n,
with cell probabilities

= L fy) dy
Then

$(Q)=—Lﬂn,,wnh n—Zn,

m!. .. ontic) P!

u
log.[£(8)]=/=Y n;- log, (n;) + a constant

i=1

o g % =1 k+m
08, “~m oo, ‘T v

Define P;=m; - B, so that

Then if P, and 0Pi/08;, j=1,.. ,k+m,i=1,... u can be found,

=2P,' and a—ej=2‘?j

i=1

Given parameter estimates, the P; may be evaluated by numerically
integrating the numerator, f(y) - B, of the density function:
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=m>B=L S») - Bdy
Similarly,

AP _ [ otf) B}
8 Ja 98 dy

and may be found using numerical integration on

mo opr(y)| 9ys
) [jg,]aj ‘ ays :| ' aej
a[f(y) ’ B] _ ! m
06, +[1 +Y ar 'Pj’()’s)} agéy) 1<j<k (3.10)
J=1 j

o(y) - pj-k(ys), for all j >k for which a;_ is non-zero

The implications of changing between simple and Hermite polynomials
or between polynomial and Fourier series adjustments, and of changing
the key function, are identical to the case of ungrouped data.

Again, a robust iterative procedure is required to maximize the likeli-
hood. Variances follow as for ungrouped data, except that the informa-
tion matrix per observation, /(8), now has jith element

L1 om oW .
In@) =3 L. 9% M oy ke
[in(0) E,l o TFT'N J m

All of these quantities are now available, and so a function of the
parameters g(0) is estimated by g(8) with variance

g(8) . [2s(®
A==
o wor 2

If data are analysed both grouped and ungrouped, and the respective
maxima of the likelihood functions are compared, the constant combin-
atorial term in the likelihood for grouped data should be omitted. As
the number of groups tends to infinity and interval width tends to zero,

ar{g(8)} =

X |-
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the likelihood for grouped data tends to that for ungrouped data,
provided the constant is ignored.

3.4.3 Special cases

Suppose no polynomial or Fourier series adjustments are required. The
method then reduces to a straightforward fit of a parametric density.
The above results hold, except the range of j is now from 1 to k, and
for ungrouped data Equation 3.9 reduces to

/) Bl _d0) .,
0, a8 ST

For grouped data, Equation 3.10 reduces to the above, with the suffix
i deleted from y.

For the Hermite polynomial model, it is sometimes convenient to fit
the half-normal model as described in the previous paragraph, and then
to condition on that fit when making polynomial adjustments. For the
standard Fourier series model, the key is a uniform distribution on (0, w),
where w is the truncation point, specified before analysis. In each of
these cases, the adjustment terms are estimated conditional on the
parameters of the key. Thus Equation 3.9 reduces to

Q[ﬂ%ﬂ =a(y) - pj-k(yis), for non-zero a;_x and k <j<k+m
Equation 3.10 reduces similarly, but with suffix i deleted; otherwise
results follow through exactly as before, but with j restricted to the
range k + 1 to k + m. This procedure is necessary whenever the uniform
key is selected. For keys that have at least one parameter estimated
from the data, the conditional maximization is useful only if simultan-
eous maximization across all parameters fails to converge.

A third option that is sometimes useful is to refit the key, conditional
on polynomial or Fourier series adjustments. Equation 3.9 then becomes

LA Bl _ o | & . 9| Oy
————aej =o(yy) |:j'§1aj s 36,
id ou(y; )
+{1+2af~pf<y,-s)]-—°‘a§,—y_),1s1sk
J=1 J
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and similarly for Equation 3.10, but minus the suffix i throughout. The
range of j is from 1 to k; otherwise results follow exactly as before.

3.4.4 The half-normal detection function

If the detection function is assumed to be half-normal, and the data are
both ungrouped and untruncated, the above approach leads to closed
form estimators and a particularly simple analysis for both line and
point transect sampling. Suppose the detection function is given by
g(y) = exp(- y*/269), 0 < y < oo. We consider the derivation for line tran-
sects (v = x) and point transects (y = r) separately.

(a) Line transects With no truncation, the density function of detection
distances is f(x) = g(x)/y, where

0o oo 2
M= L g(x)dx = L exp(— x*/26%)dx = V-’%

Given 7 detections, the likelihood function is
n n
£ =11 {g(x)/n} = { I exp(- x}/26%) ¢ /p"*
i=1 i=1
n
so that /=log.(¥£) =- ¥ {x}/26°} -~ n - log. {N(nc%/2)}
i=1

Differentiating / with respect to o* (i.e. k=1, 6, =06 and m = 0 in terms
of the general notation) and setting the result equal to zero gives:

% =¥ X/26" - n/26* = 0
G =

n
so that & = Y x/n

i=1
Then £(0) = 1/fi = V{2/(n6?)}

By evaluating the Fisher information matrix, we get

4
var(6’) = 20°
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from which

1 _{fO)Y

nn 2n

var{ f(0)} =

Equation 3.4, with each of E(s), ¢ and go set equal to one, yields

_EMm - f(0)
b= 2L

from which

A -0.5
A_n-f0) _ 2% 2,3
D= 5T —[ZnL Elx,/n]

The methods of Section 3.7 yield an estimated variance for D.
Quinn (1977) investigated the half-normal model, and derived an
unbiased estimator for f(0).

(b) Point transects The density function of detection distances is given
by f(r) = 2nr - g(r)/v. For the half-normal detection function,

w

w
v=2n JO r-g(rydr=2mn f r - exp(— r*/20%)dr
0

= [- 21G” - exp(- r*/26%)]? = 2n6* {1 — exp(- w'/207)}

Because there is no truncation, w = e, so that v = 2no’. Note that if we
substitute w = ¢ into this equation, then the expected proportion of
sightings within ¢ of the point transect is 2n6* {1 — exp(- 0.5)}/v=39%.
This compares with 68% for line transects; thus for the half-normal
model, nearly 70% of detections occur within one standard deviation of
the observer for line transects, whereas less than 40% occur within this
distance for point transects. This highlights the fact that expected
detection distance is greater for point transects than for line transects,
a difference which is even more marked if the detection function is
long-tailed.
If n detections are made, the likelihood function is given by
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£ =TI {2nr; - g(r)/v} ={ ITr; - exp(~ r?/ZGZ)}/(GZ")
i=1 i=1

so that /= loge(£) = 3, {log.(r) - r/26%} — n - log.(c?)

i=1

This is maximized by differentiating with respect to ¢” and setting equal
to zero:

ri126* = nic® =0

dl _ <
d02 i=

n
so that 6° = Y rf/2n

i=1

It follows that 4(0) = 2m/V = 1/6° . Equation 3.5, with each of E(s), ¢
and gy set equal to one, gives

_E(n) - h(0)
b= 2nk

so that

The maximum likelihood method yields var[fz(O)]. The half-normal
detection function has just one parameter (6°), so that the information
matrix is a scalar. It yields

4

var(é?) = 29
n
and
- 2
var{h(0)} = % _ 2{h0)}"
hGo n

Estimation of var(n) and var(D) is covered in Section 3.7.
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3.4.5 Constrained maximum likelihood estimation

The maximization routine used by DISTANCE allows constraints to be
placed on the fitted detection function. In all analyses, the constraint
g(y) = 0 is imposed. In addition, g(y) is evaluated at ten y values, y,
to yi, and the non-linear constraint g(3;) = g(yi+1), i=1,...,9, is en-
forced. The user may override this constraint, or replace it by the weaker
constraint that g(0) = g(yy), i =1, .. ., 10. If the same data set is analysed
by DISTANCE and by TRANSECT (Laake er al. 1979), different estimates
may be obtained; TRANSECT does not impose constraints, and in addi-
tion does not fit the Fourier series model by maximum likelihood.

DISTANCE warns the user when a constraint has caused estimates
to be modified. In these instances, the analytic variance of f(0) or
h(0) may be unreliable, and we recommend that the bootstrap option
for variance estimation is selected.

3.5 Choice of model

The key + adjustment formulation for line and point transect models
outlined above has been implemented in DISTANCE, so that a large
number of models are available to the user. Although this gives great
flexibility, it also creates a problem of how to choose an appropriate
model. We consider here criteria that models for the detection function
should satisfy, and methods that allow selection between contending
models.

3.5.1 Criteria for robust estimation

Burnham er al. (1979, 1980: 44) identified four criteria that relate to
properties of the assumed model for the detection function. In order of
importance, they were model robustness, pooling robustness, the shape
criterion and estimator efficiency.

(a) Model robustness Given that the true form of the detection function
is not known except in the case of computer simulations, models are
required that are sufficiently flexible to fit a wide variety of shapes for
the detection function. An estimator based on such a model is termed
model robust. The adoption of the key + series expansion formulation
means that any parametric model can yield model robust estimation, by
allowing its fit to be adjusted when the data dictate. A model of this
type is sometimes called ‘semiparametric’.
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(b) Pooling robustness Probability of detection is a function of many
factors other than distance from the observer or line. Weather, time of
day, observer, habitat, behaviour of the object, its size and many other
factors influence the probability that the observer will detect it. Condi-
tions will vary during the course of a survey, and different objects
will have different intrinsic detectabilities. Thus the recorded data are
realizations from a heterogeneous assortment of detection functions.
A model is pooling robust if it is robust to variation in detection
probability for any given distance y. A fuller definition of this concept
is given by Burnham et al. (1980: 45).

(c) Shape criterion The shape criterion can be stated mathematically
as g'(0) = 0. In words, it states that a model for the detection function
should have a shoulder. The restriction is reasonable given the
nature of the sighting process. Note that the hazard-rate derivations of
Section 3.2 gave rise to detection functions which possess a shoulder
for all parameter values, even though sharply spiked hazards with
infinite slope at zero distance were assumed. If the shape criterion
is violated, robust estimation of object density is problematic if not
impossible.

(d) Estimator efficiency Estimators that have poor statistical efficiency
(i.e. that have large variances) should be ruled out. However, an esti-
mator that is highly efficient should be considered only if it satisfies the
first three criteria. High estimator efficiency is easy to achieve at the
expense of bias, and the analyst should be satisfied that an estimator is
unbiased, or at least that there is no reason to suppose it might be more
biased than other robust estimators, before selecting on the basis of
efficiency.

3.5.2 The likelihood ratio test

The requirement for adjustment terms to a given key function can be
judged using likelihood ratio tests. Suppose that a fitted model has m
adjustment terms (Model 1). A likelihood ratio test allows an assessment
of whether the addition of another m, term improves the adequacy of
a model significantly. The null hypothesis is that Model 1, with m
adjustment terms, is the true model, whereas the alternative hypothesis
is that Model 2 with all m, + m, adjustment terms is the true model.
The test statistic is

X == 2log.(£1/L5)
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= — 2{loge(£)) — loge(£2)]

where £, and £, are the maximum values of the likelihood functions
for Models 1 and 2 respectively. If Model 1 is the true model, the test
statistic follows a 7 distribution with m, degrees of freedom.

The usual way to use likelihood ratio tests for line and point transect
series expansion models is to fit the key function, and then fit a low
order adjustment term. The adjustment would normally be a polynomial
of order four or the first term in a cosine series. If it provides no
significant improvement as judged by the above test, the fit of the key
alone is taken. If the adjustment term does improve the fit, the next
term is added (usually the polynomial of order six, or the second term
of a cosine series), and a likelihood ratio test is again carried out. The
process is repeated until the test is not significant, or until a maximum
number of terms has been attained. This method is therefore sequential,
and is the default method used by DISTANCE. The conventional
significance level is 5% (o = 0.05), so that the most recently added term
is retained if the likelihood ratio statistic exceeds xﬁ_osz 1.96° = 3.84.
Unless sample sizes are large, the test has rather low power, and the
sequential method risks biased estimation of density and underestima-
tion of variance. We suggest that o =0.15 be adopted, in which case
the value 3.84 is replaced by X(?j“ =2.07.

Terms may be added in a stepwise manner, as in regression. For
forward stepping, that term not yet in the model for which the y” statistic
from the likelihood ratio test is largest is included next, provided its
test statistic is significant at the selected level. For backward stepping,
the term already in the model with the smallest test statistic is dropped,
unless it is significant at the a% level.

The likelihood ratio test requires that Model 1 is a special case of
Model 2. The models are said to be nested or hierarchical. The following
procedure is similar in character, but allows the user to select between
non-hierarchical models.

3.5.3 Akaike’s Information Criterion

Akaike’s Information Criterion (AIC) provides a quantitative method
for model selection, whether or not models are hierarchical (Akaike
1973). It treats model selection within an optimization rather than a
hypothesis testing framework. Burnham and Anderson (1992) illustrated
the application of AIC, and Akaike (1985) presented the theory underly-
ing the method. AIC is defined as

AIC =-2-log.(£) + 2¢q
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where log,(¥£) is the log-likelihood function evaluated at the maximum
likelihood estimates of the model parameters and q is the number of
parameters in the model. The first term, — 2 - log, (¥£), is a measure of
how well the model fits the data, while the second term is a penalty for
the addition of parameters (i.e. model complexity). For a given data set,
AIC is computed for each candidate model and the model with the
lowest AIC is selected. Thus, AIC attempts to identify a model that fits
the data well and does not have too many parameters (the principle of
parsimony). For the special case of nested models and m; = 1, model
selection based on AIC is exactly equivalent to a likelihood ratio test
with xé = 2.0, which corresponds to o = 0.157, close to the value of 0.15
recommended above for the likelihood ratio test.

For analyses of grouped data, DISTANCE omits the constant term
from the multinomial likelihood when it calculates the AIC. This ensures
that the AIC tends to the value obtained from analysis of ungrouped
data as the number of groups tends to infinity, where each interval
length tends to zero.

3.5.4 Goodness of fit

Goodness of fit can be a useful tool for model selection. Suppose the
n distance data from line or point transects are split into u groups, with
sample sizes ny, n,, . . ., n, Let the cutpoints between groups be defined
by co, ¢1, .., cu=w (co> 0 corresponds to left truncation of the data).
Suppose a model with ¢ parameters is fitted to the data, so that the
area under the estimated density function between cutpoints ¢;_, and
¢i is ;. Then

u ~ N2
2 (ni—n-my
X=X

i=1 n-m;

has a y’ distribution with u — q — 1 degrees of freedom if the fitted model
is the true model.

Although a significantly poor fit need not be of great concern, it
provides a warning of a problem in the data or the selected detection
model structure, which should be investigated through closer examina-
tion of the data or by exploring other models and fitting options. Note
that it is the fit of the model near zero distance that is most critical;
none of the model selection criteria of goodness of fit statistics, AIC
and likelihood ratio tests give special emphasis to this region. A possible
criterion for selecting between models is to calculate the x> goodness of
fit statistic divided by its degrees of freedom for each model, and to
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select the model which gives the smallest value. A disadvantage of this
approach is that the value of the x’ statistic depends on arbitrary
decisions about the number of groups into which the data are divided
and on where to place the cutpoints between groups. For several
reasons, we prefer the use of AIC. However, a significant goodness of
fit statistic is a useful warning that the model might be poor, or that
an assumption might be seriously violated.

3.6 Estimation for clustered populations

Although the general formula of Section 3.1 incorporates the case in
which the detections are clusters of objects, estimation of the expected
cluster size E(s) is often problematic. The obvious estimator, the average
size of detected clusters, may be subject to size bias; if large clusters are
detectable at greater distances than small clusters, mean size of detected
clusters will be biased upwards.

3.6.1 Truncation

The simplest solution is to truncate clusters that are detected far from the
line. The truncation distance need not be the same as that used if the
detection function is fitted to truncated perpendicular distance data; if size
bias is potentially severe, truncation should be greater. To be certain of
eliminating the effects of size bias, the truncation distance should corre-
spond roughly to the width of the shoulder of the detection function. Then
E(s) is estimated by 5, the mean size of the n clusters detected within the
truncation distance. Generally, a truncation distance v corresponding to
an estimated probability of detection g(v) in the range 0.6 to 0.8 ensures
that bias in this estimate is small. Variance of 5 is estimated by:

(si=5 )

M=

_ i=1
Var(s) =

nin-1)

]

where s; denotes the size of cluster i. This estimator remains unbiased
when the individual s; have different variances.

3.6.2 Weighted average of cluster sizes and stratification

Truncation may prove unsatisfactory if sample size is small. Quinn
(1979) considered both post-stratifying detections by cluster size and
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pooling across cluster size in line transect sampling. He showed that
estimation of the detection function, and hence of abundance of clusters,
is not compromised by pooling the data. He noted the size bias in
detected clusters, and proposed the estimator

Envsva(0|s=sv)
E@s)=——
znva(0|s=5v)

v

where summation is over the recorded cluster sizes. Thus there are n,
detections of clusters of size s,, and the effective strip width for these
clusters is 1/f,(0|s = s,). The estimate is therefore the average size of
detected clusters, weighted by the inverse of the effective strip width at
each cluster size. For point transect sampling, hy (01s = sy) would replace
ﬁ,(Ols = 5y). As Quinn noted, if data are pooled with respect to cluster
size, the f,(0]s = s,) are not individually estimated. He suggested that
the effective strip width might be assumed to be proportional to the
logarithm of cluster size, so that

2 nySy/10ge(5y)

E) = Z ny/log.(sy)

This method is used in the procedures developed by Holt and Powers
(1982) for estimating dolphin abundance in the eastern tropical Pacific.
If it is adopted, the recommendation of Quinn (1985) should be im-
plemented: plot mean perpendicular distance as a function of cluster
size to assess the functional relationship between cluster size and effect-
ive strip width. The method should not be used in conjunction with
truncation of clusters at larger distances, because cluster size is then
underestimated. The purpose of truncation is to restrict the mean cluster
size calculation to those clusters that are relatively unaffected by size
bias, so effective strip width of the retained clusters cannot be assumed
proportional to the logarithm of cluster size. Clusters beyond the
truncation distance are larger than average when size bias is present, so
that the above weighted mean, if applied after truncating distant clus-
ters, corrects for the effects of size bias twice.

Quinn (1985) examined further the method of post-stratifying by
cluster size. He showed that the method necessarily yields a higher
coefficient of variation for abundance of clusters than the above method
in which data are pooled across cluster size, but found that the result
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does not extend to estimates of object abundance. For his example, he
concludes that the method of pooling is superior for estimating cluster
abundance, and the method of post-stratification for estimating object
abundance. This conclusion is likely to be true more generally. To apply
the method of post-stratification, cluster size intervals should be defined
so that sample size is adequate to allow estimation of f(0) in each
stratum. Stratification strategies relevant to this issue are discussed in
more detail in Section 3.8.

3.6.3 Regression estimators

The solution of plotting mean distance y against cluster sizes was
proposed by Best and Butterworth (1980), who predicted mean cluster
size at zero distance, using a weighted linear regression of cluster size
on distance. This suffers from the difficulty that, if the detection
function has a shoulder, mean cluster size is not a function of distance
until distance exceeds the width of the shoulder. Sample size is seldom
sufficient to determine that a straight line fit is inadequate, so that
estimated mean cluster size at zero distance is biased downwards.
Because this is assumed to be an unbiased estimate of mean size of
all clusters in the population, population abundance is underestimated.
A solution to this problem is to replace detection distance yi for the
ith detection by g(y;) in the regression, where g(y) is the detection
function estimated from the fit of the selected model to the pooled data,
and to predict mean cluster size when detection is certain (g(») = 1.0).
Thus if there are n detections, at distances y; and of sizes si, 1If Eg(s|y)
denotes the expected size of detected clusters at distance y, and E(s) de-
notes the expected size of all clusters, whether detected or not (assumed
independent of y), we have:

Eq(s|y)=a+b-$(y)

where a and b are the intercept and slope respectively of the regression
of s on g(y). Then

l:?(s)=l:fd(s|y=0)=a+b
—=\2
and  Vai[E(s)] = % + n(l;g) . 6°
& -g’

with 6 = residual mean square
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Zg(}"i)
i=1

n

and g=

A further problem of the regression method occurs when cluster size
is highly variable, so that one or two large clusters might have large
influence on the fit of the regression line. Their influence may be reduced
by transformation, for example to z; = log.(s;). Suppose a regression of
z; on g(y;) yields the equation z =a + b - g(y). Thus at g(y) = 1.0, mean
log cluster size is estimated by a + b and E(s) is estimated by

E(s) = exp(a + b + Var(2)/2)

A 1 - 9)? R
where @'(z): ]+_1_+n(4g) ‘0.2

PRECOEN Y

6° is the residual mean square, and g is as above.
Further,

Var{E(s)} = exp{2(a + b) + Var(?)} - {1 + Var (3)/2} - Var(3)/n
3.6.4 Use of covariates

The pooling method, with calculation of a weighted average cluster size,
may be improved upon theoretically by incorporating cluster size as a
covariate in the model for the detection function. Drummer and McDonald
(1987) considered replacing detection distance y in a parametric model
for the detection function by y/s?, where s is size of the cluster recorded
at distance y and Yy is a parameter to be estimated. Although their
method was developed for line transect sampling, it can also be im-
plemented for point transects. Ramsey et al. (1987) included covariates
for point transect sampling by relating the logarithm of effective area
searched to a linear function of covariates, one of which could be cluster
size; this is in the spirit of general linear models. The same approach
might be applied to effective strip width in line transect sampling,
although the logarithmic link function might no longer be appropriate.
These methods are discussed further in Section 3.8. Quang (1991)
developed a method of modelling the bivariate detection function
g(y,s) using Fourier series.
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3.6.5 Replacing clusters by individual objects

The problems of estimating mean cluster size can sometimes be avoided
by taking the sampling unit to be the object, not the cluster. Even when
detected clusters show extreme selection for large clusters, this approach
can yield an unbiased estimate of object abundance, provided all clusters
on or near the line are detected. The assumption of independence
between sampling units is clearly violated, so robust methods of variance
estimation that are insensitive to failures of this assumption should be
adopted. Use of resampling methods allows the line, line segment or
point to be the sampling unit instead of the object, so that valid variance
estimation is possible. Under this approach, results from goodness of
fit tests, likelihood ratio tests and AIC should not be used for model
selection, since they will yield many spurious significant results. One
solution is to select a model based on an analysis of clusters, then to
refit the model, with the same number of adjustment terms, to the data
recorded by object. If the number of clusters detected is small, if cluster
size is highly variable, or if mean cluster size is large, the method may
perform poorly.

3.6.6 Some basic theory for size-biased detection of objects

We present here some basic theoretical results when detection of clusters
is size-biased. In this circumstance it is necessary to distinguish between
the probability distribution of cluster sizes in the population from which
the sample is taken from the distribution of s in the sample. Some of
these results are in the literature (e.g. Quinn 1979; Burnham et al. 1980;
Drummer and McDonald 1987; Drummer 1990; Quang 1991).

Let the probability distribution of cluster sizes in the region sampled
be n(s), s=1,2,3,.... This distribution applies to all the clusters, not
to the detected sample. If there is size bias, then the sample of detected
clusters has a different probability distribution, say m'(s), s=1,2,3,....
Consider first line transect sampling. Let the conditional detection
function be g(x|s) = probability of detection at perpendicular distance
x given that the cluster is of size s, and let the detection function
unconditional on cluster size be g(x). Denote the corresponding probability
density functions (pdf) by f(x|s) and f(x) respectively. The conditional
pdf at x=0is

D —

) g(x|s)dx
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where w need not be finite. Note also the results

_fxl9
O T

S
10

which are useful in derivations of results below.
For any fixed s, cluster density is given by the result for object density
in the case without clusters:

E[n(s)] - fO]5)
D(s) = ¥
where n(s) is the number of detections of clusters of size s and D(s) is
the true density of clusters of size s. We need not assume that ¢ and
go from Equation 3.1 equal one; however, the complication of g, varying
by s is not considered here.

The key to deriving results is to realize that

and
E
T(s) = ;S))]
where

D= i D(s) and n= in(s)
s=1 s=1

By substituting the results for D and D(s) into the first equation and
using the result of the second, we derive

L)
) = [ﬂom} )

Note that well-defined marginal probabilities and distributions exist;
for example,

gx) = i g(x|s) - m(s)

s=1
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from which

O =—1 and p-E0).1O

g(x)dx
0

Given the above it is just a matter of using algebra to derive results
of interest. Some key results are:

[ jw g(xls)dx:| - 1(s) ()

() = 2 _ wf(Olf))
2:[ J; g(x|s)dX']- n(S) E: fYOlS)
s=1

s=1

By definition, E(s) = Y. s - n(s), so that

s=1
TS0 -5 6)  3SO15)- s En)]
s=1

E(9) =" ==
Y f(0]3) - 7' (s) 2 fQ]s) - Eln(s)]
§=1 s=1

The validity of Quinn’s (1979) estimator, given in Section 3.6.2, is now
apparent. The marginal pdf satisfies

f0) =X f0]s) - w(5) = ——
s=1 2 1'C(S)
s:lfzols)

These results are consistent with the formulae for density of individ-
uals either as

_E®) - f0) - E)

b 2L

or as
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oo

E[n(s)] - f(O]s) - 5
=1
2L

S

D=

A bivariate approach involves modelling the bivariate detection function
g(x, s), perhaps using generalized linear or non-linear regression. Adopt-
ing a univariate approach, we can estimate E(s) in a linear regression
framework. The key quantity needed here for theoretical work is the
conditional probability distribution of detected cluster size given that
detection was at perpendicular distance x, symbolized n*(s|x). Alterna-
tive representations are

g(x|s) - m(s) _ &x|s) - T(s)
B {6))

(s x) =

; g(x|s) - m(s)
or

fxls) - 77(s) _ flx]s) - W(s)

3 felgowe 7

' (s|x) =

If T(s) represents any transformation of s, then we can compute condi-
tional (on x) properties of 7(s), for example

Z] T(s) - g(x|s) - m(s)y
E[T(s)|x] = "—— =Y T(s) - w*(s|x)
Y gxls)-ns) 7
s=1

Y T() - flxls) - 7" (s)
s=1

; flxls) - ()

In particular, to evaluate the reasonableness of the regression estimator
of loge(s) on g(x), we can plot E[log.(s)|x] against g(x) or otherwise
explore this relationship, including computing var[log(s)|x].
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Similar formulae exist for point transect sampling; in fact, many are
the same. The relationship between the conditional detection function
g(r|s) and the corresponding pdf of distances to detected clusters is now

firjs) = — 809
Ow r - g(r|s)dr
and
h©)s) = lim 219 = !
r-o r w
Jo r - g(r|s)dr
from which

Eln(s)] - h(0}s)

Dis) = 21k

Univariate results are

g(r) =Y g(r|s) - n(s)
s=1

fir=—"80

w

. r-g(rydr

h(0) = I

fow r-g(rydr

and

_Em) - h()

D 2nk
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Using these formulae we can establish that

e O
n(s)—h(0|s) nt(s)

This is obtained from

DGs) _ Eln)] - h(0]5)

D En) - h(0)

The conditional and unconditional A(-) functions are related by

h(0) = ih(om m(s) ==
s=1 2
- h(OIS)

Also, analogous to the line transect case with A(:) in place of f(), we
have

4 7(s)
r-g(rls)dr|- n(s)
T = [fo ] _ h(0]s)

3

oo

n(s)

2[]0 r- g(rls)dr} n(s) 2 " h(0]s)

s=1

and

i hO]s) - s- () Y hO|s) - s - E[n(s)]

E(s) == =
Y h(0]s) - T(s) > h(0|s) - E[n(s)]

In general, all the results for point transects can be obtained from the
analogous results for line transects by making the following replace-
ments: r - g(r) for g(x), and r - g(r|s) for g(x|s). In particular, note what
happens to n*(s|r) in point transect sampling:
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r-g(rls) - m(s) Er'g(rls)-n(s)

Yo g(rls) - m0s) re8i)

w(s|r) =

grls) - m(s) _ gCrls) - m(s)
- R

Yol ms) o

s=1

This has exactly the same form as for line transects. An alternative
expression is

. _ SUls) - w(s) _ flr]s) - n'(s)
T (slr) = = f(r)
2. f(r]s) - = (s)
s=1

(defined to give continuity at r = 0), which looks structurally like the
result for line transects. However, here the probability density function
necessarily differs in shape from that for line transects, whereas the
detection function of the previous expression might plausibly apply to
both point and line transects.

3.7 Density, variance and interval estimation
3.7.1 Basic formulae

Substituting estimates into Equation 3.4, the general formula for estim-
ating object density from line transect data is

n-f(0) - E@s)

D= -
2c¢Lg,

From Equation 3.3, the variance of D is approximately

Gy = B | | A0 | GHEO] | Tat{z)

n fOF  [Eef (&l
Equivalent expressions for point transect sampling are
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n - h(0) - E(s)
Zané'o

D=
and

P N il 0 N E, AN rA
varz(n) + var[#(0)] + var[E(s)] N var([go]

Var(D) = D* - - i s
n [Z200) S () R P

If go = 1 (detection on the line or at the point is certain) or E(s) =1 (no
clusters), the terms involving estimates of these parameters are elimi-
nated from the above equations. Generally, the constant ¢ = 1, further
simplifying the equations for D.

To estimate the precision of D, the precision of each component in
the estimation equation must be estimated. Alternatively, resampling or
empirical methods can be used to estimate var(ﬁ) directly; some options
are described in later sections. If precision is estimated component by
component, then methods should be adopted for estimating mean cluster
size and probability of detection on the line that provide variance
estimates, var[E (s)] and Var[g]. Estimates of f(0) or A(0) and correspond-
ing variance estimates are obtained from DISTANCE or similar soft-
ware, using maximum likelihood theory. If objects are distributed
randomly, then sample size » has a Poisson distribution, and
Var(n) = n. Generally, biological populations show some degree of ag-
gregation, and Burnham ez al. (1980: 55) suggested multiplication of the
Poisson variance by two if no other approach for estimating var(n) was
available. If data are recorded by replicate lines or points, then a better
method is to estimate var(n) from the observed variation between lines
and points. This method is described in the next section.

Having obtained D and Var(D), an approximate 100(1 — 2a)% con-
fidence interval is given by

D # zo - Y {Var(D)}
where zq is the upper a% point of the N(0,1) distribution. However, the
distribution of D is positively skewed, and an interval with better
coverage is obtained by assuming that D is log-normally distributed.

Following the derivation of Burnham ez al. (1987: 212), a 100(1 — 20)%
confidence interval is given by

(D/IC, D - C)
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where

c= explzq - V{Var(log,D)}]

and

P
\7a\r(logeﬁ) = log, l:l + L(ZD)}
D

This is the method used by DISTANCE, except z, is replaced by a
slightly better constant that reflects the actual finite and differing

degrees of freedom of the variance estimates.

The use of the normal distribution to approximate the sampling
dlstrxbutlon of loge(D) is generally good when each component of
var(D) (e.g. Var(n) and var[ f(O)]) is based on sufficient degrees of
freedom (say 30 or more). However, sometimes the empirical estimate
of var(n) in particular is based on less than 10 replicate lines, and hence
on few degrees of freedom. When component degrees of freedom are
small, it is better to replace z, by a constant based on a ¢-distribution
approximation. In this case we recommend an approach adapted from
Satterthwaite (1946); see also Milliken and Johnson (1984) for a more
accessible reference.

Adapting the method of Satterthwaite (1946) to this distance sampling
context, zq in the above log-based confidence interval is replaced by the
two-sided alpha-level -distribution percentile t4r (@) where df is computed
as below. The coefficients of variation cv(D) cv(n), cv|[ f(O)] or
cv[h(O)], and, where relevant, cv[E(s)] and cv(g,) are required, together
with the associated degrees of freedom. In general, if there are ¢
estimated components in D, then the computed degrees of freedom are

_fevidrt _Lia
& fevi) [eviT*
2oy B

This value may be rounded to the nearest integer to allow use of tables
of the ¢-statistic.

For the common case of line transect sampling of single objects using
k replicate lines, the above formula for df becomes approximately
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PP 100)

Clvel* | tevi/o’
k-1 n

(The actual degrees of freedom for var| f(O)] are n minus the number of
parameters estimated in f(x).) This Satterthwaite procedure is used by
program DISTANCE, rather than just the first order zo approximation.
It makes a noticeable difference in confidence intervals for small k,
especially if the ratio cv(n)/cv[f(0)] is greater than one; in practice, it
is often as high as two or three.

3.7.2 Replicate lines or points

Replicate lines or points may be used to estimate the contribution to
overall variance of the observed sample size. In line transects, the
replicate lines may be defined by the design of the survey; for example
if the lines are parallel and either systematically or randomly spaced,
then each line is a replicate. Surveys of large areas by ship or air
frequently do not utilize such a design for practical reasons. In this case,
a ‘leg’ might be defined as a period of search without change of bearing,
or all effort for a given day or watch period. The leg will then be treated
as a replicate line. When data are collected on an opportunistic basis
from, for example, fisheries vessels, an entire fishing trip might be
considered to be the sampling unit.

Suppose the number of detections from line or point i is n;
i=1,...,k so that n=3 n;. Then for point transects (or for line
transects when the replicate lines are all the same length), the empirical
estimate of var(n) is

k 2
@'(n)=k2(n,~—%] /(k - 1)
i=1
For line transects, if line i is of length /; and total line length =

k
L=3 1, then
i=1

vat(n) Lil o)

Encounter rate n/L is often a more useful form of the parameter than n
alone; the variance of encounter rate is @(n)/ L*. There is a similarity here
to ratio estimation in finite population sampling, except that we take all
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line lengths /;, and hence L, to be fixed (as distinct from random) values.
Consequently, the variance of a ratio estimator does not apply here, and
our Var(n/L) is a little different from classical finite sampling theory.

If the same line or point is covered more than once, and an analysis
of the pooled data is required, then the sampling unit should still be
the line or point. That is, the distance data from repeat surveys over a
short time period of a given line or point should be pooled prior to
analysis. Consider point transects, in which point i is covered ¢; times,
and in total, n; objects are detected. Then

Var(n) = Tzz [;——] Itk - 1)
where
k
=z li
i=1

The formula for line transects becomes

S k n n 2
=17 2 il = _ -1
var(n) Lizlt ) i li 3 /(k )

where

Generally, ¢; will be the same for every point or line, in which case the
above formulae simplify. The calculations may be carried out in DIS-
TANCE by setting SAMPLE equal to ¢, for point i (point transects) or
t; - I; for line i (line transects).

The above provides empirical variance estimates for just one compo-
nent of Equation 3.2, which may then be substituted in Equation 3.3.
A more direct approach is to estimate object density for each replicate
line or point. Define

A ni - Eis)

D;= - ,i=1,...,k
at‘Pa,»'gOi
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Then for point transects (and line transects when all lines are the same
length),

Ak (3.11)

and

k
Vat(D)=1{ ¥ (D; - DY’ }/{k(k - 1)} (3.12)
i=1

For line transects with replicate line i of length /;

A k ~
D={SLDi}/L (3.13)
i=1

and

k
vat(D) = 3 {Ii(Di - DY}/ {L(k - 1)} (3.14)

i=1

In practice, sample size is seldom sufficient to allow this approach,
so that resampling methods such as the bootstrap and the jackknife are
required.

3.7.3 The jackknife

Resampling methods start from the observed data and sample repeatedly
from them to make inferences. The jackknife (Gray and Schucany 1972;
Miller 1974) is carried out by removing each observation in turn from
the data, and analysing the remaining data. It could be implemented
for line and point transects by dropping each individual sighting from
the data in turn, but it is more useful to define replicate points or lines,
as above. The following development is for point transects, or line
transects when the replicate lines are all of the same length.

First, delete all data from the first replicate point or line, so that
sample size becomes n — n; and the number of points or lines becomes
k — 1. Estimate object density using the reduced data set, and denote
the estimate by Dy, . Repeat this step, reinstating the dropped point or
line and removing the next, to give estimates Dy, i=1, ..., k. Now
calculate the pseudovalues:
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DP=k-D—tk-1)-Dy.i=1,... k (3.15)
These pseudovalues are treated as k replicate estimators of density, and

Equations 3.11 and 3.12 yield a jackknife estimate of density and
variance:

Y

A

Dj=

15""] /k

i=1

and

k
vat, (D) ={ 3 (D - D’/ {k(k - 1))
i=1

For line transects in general, Equation 3.15 is replaced by
DY={L-D-(L-1) Dpylyi=1,... k

and the jackknife estimate and variance are found by substitution into
Equations 3.13 and 3.14:

and
- k ~ . A~
Vat, (D)) = 3, {1(D¥ - D)*} /{L(k - 1)}
i=1

An approximate 100(1 -~ 20)% confidence interval for density D is
given by
Dit 4 (o) - V{vat,(D)}
where #_i(o) is from Student’s s-distribution with & — 1 degrees of
freedom.

This interval may have poor coverage when the number of replicate
lines is small; Buckland (1982) found better coverage using

D+ 4 _ (o) - V{@'J(b)}
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where D is the estimated density from the full data set and
P ~ k A . ~
Vat,(D) = ¥ {1(DV - DY’} /{Lk - 1)}
i=1

The jackknife provides a strictly balanced resampling procedure. How-
ever there seems little justification for assuming that the pseudovalues
are normally distributed, and the above confidence intervals may be poor
when the number of replicate lines or points is small. Further there is
little or no control over the number of resamples taken; under the above
procedure, it is necessarily equal to the number of replicate lines or points
k, and performance may be poor when k is small. Thirdly a resample
can never be larger than the original sample, and will always be smaller
unless there are no sightings on at least one of the replicate lines or
points. The bootstrap therefore offers greater flexibility and robustness.

3.7.4 The bootstrap

The bootstrap (Efron 1979) provides a powerful yet simple method for
variance and interval estimation. Consider first the non-parametric
bootstrap, applied in the most obvious way to a line transect sample.
Suppose the data set comprises n observations, y, ..., Vs, and the
probability density evaluated at zero, f(0), is to be estimated. Then a
bootstrap sample may be generated by selecting a sample of size n with
replacement from the observed sample. An estimate of f(0) is found from
the bootstrap sample using the same model as for the observed sample.
A second bootstrap sample is then taken, and the process repeated.
Suppose in total B samples are taken. Then the variance of f(0) is
estimated by the sample variance of bootstrap estimates of f(0),
fi0),i=1,..., B (Efron 1979). The percentiles of the distribution of
bootstrap estimates give approximate confidence limits for f(0) (Buckland
1980; Efron 1981). An approximate 100(1 — 2)% central confidence
interval is given by [f»(0), fx(0)], where j=(B+ 1o and
k=(B+ 1)(1 - a) and f;,(0) denotes the ith smallest bootstrap estimate
(Buckland 1984). To yield reliable confidence intervals, the number of
bootstrap samples B should be at least 200, and preferably in the range
400-1000, although around 100 are adequate for estimating standard
errors. The value of B may be chosen so that j and k are integer, or j
and k may be rounded to the nearest integer values, or interpolation
may be used between the ordered values that bracket the required
percentile. Various modifications to the percentile method have
been proposed, but the simple method is sufficient for our purposes.
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The parametric bootstrap is applied in exactly the same manner, except
that the bootstrap samples are generated | by taking a random sample of size
n from the fitted probability density, f(y)

If no polynomial or Fourier series adjustments are made to the fit of
a parametric probability density, the above implementation of the boot-
strap (whether parametric or non-parametric) yields variance estimates
for f(0) close to those obtained using the information matrix. Since the
bootstrap consumes considerably more computer time (up to B times
that required by an analytical method), it would not normally be used
in this case. When adjustments are made, precision as measured by the
information matrix is conditional on the number of polynomial or
Fourier series terms selected by the stopping rule (e.g. a likelihood ratio
test). The Fourier series model in particular gives analytical standard
errors that are strongly correlated with the number of terms selected
(Buckland 1985). The above implementation of the bootstrap avoids this
problem by applying the stopping rule independently to each bootstrap
data set so that variation arising from estimating the number of terms
required is accounted for (Buckland 1982).

In practice the bootstrap is usually more useful when the sampling
unit is a replicate line or point, as for the jackknife method. The simplest
procedure is to sample with replacement from the replicate lines or
points using the non-parametric bootstrap. Unlike the jackknife, the
sample need not be balanced, but a degree of balance may be forced
by ensuring that each replicate line or point is used exactly B times in
the B bootstrap samples (Davison ef al. 1986). Density D is estimated
from each bootstrap sample, and the estimates are ordered, to give
Du,i=1,..., B. Then

DB={ ib(i)}/B
i=1
and
o~ n B n N .
Vatg(Dy) = { Y (D - DB)Z} /(B-1)
i=1

while a 100(1 - 2a)% confidence interval for D is given by [ﬁu), ﬁ(k)],
with j=(B+ ). and k = (B + 1)(1 — o) as above. (Note that the esti-
mates do not need to be ordered if a confidence interval is not required.)
The estimate based on the original data set, D, is usually used in
preference to the bootstrap estimate Dy, with var(D) estimated by
Vatg(Dy).
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If an automated model selection procedure is implemented, for
example using AIC, the bootstrap allows model selection to take place
in each individual replicate. Thus the variability between bootstrap
estimates of density reflects uncertainty due to having to estimate which
model is appropriate. In other words, the bootstrap variance incorpor-
ates a component for model misspecification bias. By applying the full
estimation procedure to each replicate, components of the variance for
estimating the number of adjustment terms and for estimating E(n),
E(s) and gy (where relevant) are all automatically incorporated. An
example of such an analysis is given in Chapter 5.

A common misconception is that no model assumptions are made
when using the non-parametric bootstrap. However, the sampling units
from which resamples are drawn are assumed to be independently and
identically distributed. If the sampling units are legs of effort, then each
leg should be randomly located and independent of any other leg. In
practice, this is seldom the case, but legs should be defined that do not
seriously violate the assumption. For example, in marine line transect
surveys, the sampling effort might be defined as all effort carried out
in a single day. The overnight break in effort will reduce the dependence
in the data between one sampling unit and the next, and the total
number of sampling units should provide adequate replication except
for surveys of short duration. It is wrong to break effort into small
units and to bootstrap on those units. This is because the assumption
of independence can be seriously violated, leading to bias in the variance
estimate. If transect lines are designed to be perpendicular to object
density contours, each line should be a sampling unit; subdivision of
the lines may lead to overestimation of variance. In the case of point
transects, if points are positioned along lines, then each line of points
should be considered a sampling unit. If points are randomly distributed
or evenly distributed throughout the study area, then individual points
may be taken as sampling units. If a single line or point is covered more
than once, and an analysis of the pooled data is required, the sampling
unit should still be the line or point; it is incorrect to analyse the data
as if different lines or points had been covered on each occasion.
Analysis of such data is addressed in Section 3.7.2.

3.7.5 A finite population correction factor

We denote the size of the surveyed area, within distance w of the line
or point, by a. If the size of the study area is 4, a known proportion
alA is sampled. Moreover, a finite population of objects, N, exists in
the area. Thus the question arises of whether a finite population cor-
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rection (fpc) adjustment should be made to sampling variances. We give
here a few thoughts on this matter.

Assume that there is no stratification (or that we are interested
in results for a single stratum). Then for strip transect or plot sampling,
fpc =1 — a/A. The adjusted variance of N is

var(N) - (1 —ald)

where var(N) is computed from infinite population theory. In distance
sampling, not all the objects are detected in the sampled area a, so that
the fpc differs from 1-a/A. Also, no adjustment is warranted to
var(I;a) because this estimator is based on the detection distances, which
conceptually arise from an infinite population of possible distances,
given random placement of lines or points, or different choices of sample
period.

Consider first the case where objects do not occur in clusters, and the
following simple formula applies:

for which
[ev(NF = [ev(m)} + [ev(Po)]

The fpc is the same whether it is applied to coefficients of variation or
variances. Heuristic arguments suggest that the fpc might be estimated
by 1 -n/N or by 1 — (a- P,)/A. These are clearly identical. In the case
of a census of sample plots (or strips), P, =1 and the correct fpc is
obtained. For the above simple case of distance sampling, cv(N) cor-
rected for finite population sampling is

V(WP = [ev(m)P - [1 - 3—}] + [ev(BP

This fpc is seldom large enough to make any difference. When it is,
then the assumptions on which it is based are likely to be violated. For
the correction 1-(a- P;)/A to be valid, the surveyed areas within
distance w of each line or point must be non-overlapping. Further, it
must be assumed that an object cannot be detected from more than one
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line or point; if objects are mobile, the fpc 1 — n/N is arguably inappro-
priate.

If objects occur in clusters, correction is more complicated. First
consider when there is no size bias in the detection probability. The
above result still applies to ]\AG, the estimated number of clusters.
However, the number of individuals is estimated as

Inference about N is limited to the time when the survey is done, hence
to the actual individuals then present. If all individuals were counted
(P.=1), var(N) should be zero; hence a fpc should be applied to 5 and
conceptually, it should be 1 - (n- 5)/N=1- (a- Pa)/A Thus for this
case we have

a- P

} + [ev(P)T

[ev(W)F = [[cv(n)]2 + [cv(g)]z] . [1 _

Considerations are different for inference about E(s). Usually one
wants the inference to apply to the population in the (recent) past,
present and (near) future, and possibly to populations in other areas as
well. If this is the case, var(s) should not be corrected using the fpc.

Consider now the case of clusters with size-biased detection. The fpc
applied to the number of clusters is as above. For inference about N,
the fpc applied to the variance of E(s) is still 1 — (n - §)/N, which is now
equal to

~

-2 .4 ta
Es) A4

Thus the adjusted coefficient of variation of N is given by

a

[CV(N)]Z = [CV(I'I)]2 . l:l - —A—Ijg:l + [CV(Pa)]Z + [CV{E(S)}]Z . [1 _ ,\E La- Isa:l

Es) 4

in the case of size-biased detection of clusters.
We reiterate that these finite population corrections will rarely, if ever,
be worth making.
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3.8 Stratification and covariates

Two methods of handling heterogeneity in data, and of improving
precision and reducing bias of estimates, are stratification and inclusion
of covariates in the analysis. Stratification might be carried out by
geographic region, environmental conditions, cluster size, time, animal
behaviour, detection cue, observer, or many other factors. Different
stratifications may be selected for different components of the estimation
equation. For example, reliable estimation of f(0) or A(0) (or equival-
ently, effective strip width or effective area), and of g, where relevant,
requires that sample size is quite large. Fortunately, it is often reason-
able to assume that these parameters are constant across geographic
strata. By contrast, encounter rate or cluster size may vary appreciably
across strata, but can be estimated with low bias from small samples.
In this case, reliable estimates can be obtained for each geographic
stratum by estimating f(0) or 4(0) from data pooled across strata and
other parameters individually by stratum, although it may prove necessary
to stratify by, say, cluster size or environmental conditions when estimat-
ing f(0) or 2(0). In general, different stratifications may be needed for
each component of Equation 3.2.

Post-stratification refers to stratification of the data after the data
have been collected and examined. This practice is generally acceptable,
but care must be taken. For example, if geographic strata are defined
to separate areas for which encounter rate was high from those for
which it was low, and estimates are given separately for these strata,
there will be a tendency to overestimate density in the high encounter
rate stratum, and underestimate density in the low encounter rate
stratum. Variance will be underestimated in both strata. If prior to the
survey, there is knowledge of relative density, geographic strata should
be defined when the survey is designed, so that density is relatively
homogeneous within each stratum. Survey effort should then be greater
in strata for which density is higher (Section 7.2.3).

Variables such as environmental conditions, time of day, date or
cluster size might enter the analysis as covariates rather than stratifica-
tion factors. If the number of potential covariates is large, they might
be reduced in some way, for example through stepwise regression or
principal components regression. To carry out a covariate analysis, an
appropriate model must be defined. For example, the scale parameter
of a model for the detection function might be replaced by a lnear
function of parameters:

Bo+Bi- Xii+Bo- Xoit- -
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where X|; might be sea state (Beaufort) at the time of detection i, X5
might be cluster size for the detection, and so on.

3.8.1 Stratification

The simplest form of a stratified analysis is to estimate abundance
independently within each stratum. A more parsimonious approach is
to assume that at least one parameter is common across strata, or a
subset of strata, an assumption that can be tested. Consider a point
transect survey for which points were located in V geographic strata of
areas A,, v =1,..., V. Suppose we assume there is no size bias in
detected clusters, and abundance estimates are required by stratum.
Suppose further that data are sparse, so that #(0) is estimated by pooling
detection distances across strata. From Equation 3.2 with ¢ =1, gy =1
and a - P, =2nk/h(0), we obtain

~ my - h(0)-5, k() - M, . ms,
D, = ik, = o where M, = k,

for stratum v. Mean density D is then the average of the individual
estimates, weighted by the respective stratum areas A,:

~

S 4,D,
with 4 =Y 4,
v

The variance of any D, may be found from Equation 3.3. However, to
estimate var(D), care must be taken, since one component of the
estimation equation is common to all strata in a given year. The correct
equation is:

D) = D - @(M) N var[h(0)]

M [A(O)F
Y A, M,
~ v
where M= a1
Y Ay - Var (M)
and v/a\r(M) =

AZ
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- [v’\ar(no , G ]

with Var(M,) = M} - 3

-2
ny Sv

Thus the estimation equation has been separated into two compo-
nents, one of which (Mv) is estimated independently in each stratum,
and the other of which is common across strata. Population abundance
is estimated by N=4- D=7 A, D, , with Vat(N) = 4* - Var(D). Further
layers of strata might be superimposed on a design of this type. In the
above example, each stratum might be covered by more than one
observer, or several forests might be surveyed, and a set of geographic
strata defined in each. Provided the principle of including each inde-
pendent component of the estimation equation just once in the variance
expression is adhered to, the above approach is easily generalized.

The areas A, are weights in the above expressions. For many purposes,
it may be appropriate to weight by effort rather than area. For example,
suppose two observers independently survey the same area in a line
transect study. Then density within the study area may be estimated
separately from the data of each observer (perhaps with at least one
parameter assumed to be common between the observers), and averaged
by weighting the respective estimates by length of transect covered by
the respective observers. Note that in this case, an average of the two
abundance estimates from each stratum is required, rather than a total.
If stratification is by factors such as geographic region, cluster size,
animal behaviour or detection cue, then the strata correspond to mu-
tually exclusive components of the population and the estimates should
be summed, whereas if stratification is by factors such as environmental
conditions, observer, time or date (assuming no migration), then each
stratum provides an estimate of the whole population, so that an average
is appropriate.

Note that the stratification factors for each component of estimation
may be completely different provided the components are combined with
care. As a general guide, stratification prior to estimation of f(0) or
h(0) should only be carried out if there is evidence that the parameter
varies between strata, and some assessment should be made of whether
the number of strata can be reduced. This policy is recommended since
estimation of the parameter is unreliable if sample size is not large.
Encounter rate and mean cluster size on the other hand may be reliably
estimated from small samples, so if there is doubt, stratification should
be carried out. Further, if abundance estimates are required by stratum,
then both encounter rate and mean cluster size should normally be
estimated by stratum. If all parameters can be assumed common across
strata, such as observers of equal ability covering a single study area at
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roughly the same time, stratification is of no benefit. Also, in the special
case that strata correspond to different geographic regions, effort per unit
area is the same in each region, the parameter f(0) or 4(0) can be assumed
constant across regions, and estimates are not required by region, stratifi-
cation is unnecessary. Proration of a total abundance estimate by the area
of each region is seldom satisfactory. An example for which stratification
was used in a relatively complex way to improve abundance estimation of
North Atlantic fin whales is given in Section 8.5.

Further parsimony may be introduced by noting that var(n,) is a
parameter to be estimated, and b, = var(n,)/n, is often quite stable over
strata. Especially if the n, are small, it is useful to assess the assumption
that b, =b for all v. If it is reasonable, the number of parameters is
reduced. The parameter b can be estimated by

Z @'(nv)

r v
b= ——-—
n

and var(ny) is then more efficiently estimated as \7a\rp(nu) = l;/nv. This
approach is described further in Section 6.3, and illustrated in Section
8.4. The same method might also be applied to improve the efficiency
of Var(s,).

3.8.2 Covariates

Several possibilities exist for incorporating covariates. Ramsey er al.
(1987) used the effective area, v, as a scale parameter in point transect
surveys, and related it to covariates using a log link function:

loge(v) = Bo + Z B X;
j

where Xj is the jth covariate. Computer programs for implementing this
approach for the case of an exponential power series detection function
are available from the authors.

Drummer and McDonald (1987) considered a single covariate X, taken
to be cluster size in their example, and incorporated it into detection
functions by replacing y by y/ X", where yis a parameter to be estimated.
Thus the univariate half-normal detection function

2

g(y) =exp {— 2%2]
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becomes the ‘bivariate’ detection function:

2
Cexnl Y
g X exp[ e X,)z]

The interpretation is now that g(y|X) is the detection probability of a
cluster at distance y, given that its size is X. Drummer and McDonald
proposed the following detection functions as candidates for this ap-
proach: negative exponential, half-normal, generalized exponential, ex-
ponential power series and reversed logistic. They implemented the
method for the first three, although their procedure failed to converge
to plausible parameter values for the generalized exponential model for
the data set they present. Their software (SIZETRAN) is available
(Drummer 1991).
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