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Line transects

4.1 Introduction

The purpose of this chapter is to illustrate the application of the theory
of Chapter 3 to line transect data, and to present the strategies for
analysis outlined in Section 2.5. In general, the principal parameter of
a line transect analysis does not have a closed form estimator. Instead,
numerical methods are required; it is generally not possible to substitute
statistics computed from the data into formulae to estimate object
density. Using pen and paper and a pocket calculator, a fairly simple
analysis might take months. Instead, we rely on specialized computer
software to analyse distance sampling data.

This chapter uses a series of examples in which complexities are
progressively introduced. The examples come from simulated data for
which the parameters are known; this makes comparisons between
estimates and true parameters possible. However, in every other respect,
the data are treated as any real data set undergoing analysis, where the
parameters of interest are unknown. A simple data set, where each object
represents an individual animal, plant, nest, etc., is first introduced.
Truncation of the distance data, modelling the spatial variation of
objects to estimate var(n), grouping of data, and model selection phil-
osophy and methods are then addressed. Once an adequate model has
been selected, we focus on statistical inference given that model, to
illustrate estimation of density and measures of precision. Finally, the
objects are allowed to be clusters (coveys, schools, flocks). Cluster size
is first assumed to be independent of distance and then allowed to
depend on distance.

The example data are chosen to be ‘realistic’ from a biological stand-
point. The data (sample size, distances and cluster sizes) are generated
stochastically and simulate the case where the assumptions of line transect
sampling are true. Thus, no objects went undetected on the line
(g(0) = 1), no movement occurred prior to detection, and data were free
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EXAMPLE DATA

of measurement error (e.g. heaping at zero distance). In addition; the
sample size n was adequate. The assumptions and survey design to ensure
they are met are discussed in Chapter 7. Examples illustrating analysis
of real data where some of these assumptions fail are provided in Chapter
8. The example data of this chapter are analysed using various options
of program DISTANCE. In the penultimate section, some comparative
analyses using program SIZETRAN (Drummer 1991) are carried out.

4.2 Example data

The example comprises an area of size 4, whose boundary is well
defined, and sampled by 12 parallel line transects (/}, b, .. ., /js). The
area is irregularly shaped, so that the lines running from boundary to
boundary are of unequal length. We assume that no stratification is
required and that the population was sampled once by a single observer
to exacting standards; hence the key assumptions have been met. The
distance data, recorded in metres, were taken without a fixed transect
width (i.e. w = o), and ungrouped, to allow analysis of either grouped
or ungrouped data. The detection function g(x) was a simple half-
normal with 6 =10m, giving f(0) = V{2/(rc’)} = 0.079788 m™'. The n
were drawn from a negative binomial distribution such that the spatial
distribution of objects was somewhat clumped (i.e. var(n) > n). Specific-
ally, var(n;|l;) = 2E(n;|1).

The total length (L =2X1/) of the 12 transects was 48 000 m and
n = 105 objects were detected. Their distances from the transect lines
were measured carefully in metres. E(n) = 96, thus somewhat more were
observed than expected (105 vs. 96). The true density is

_N_E®-f0)
T4 2L

D
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objects/m?

where all measurements are in metres. To convert density from numbers
per m’ into numbers per km’, multiply by 1000 000. The true density
is known in this simulated example to be approximately 80 objects per
km’; the actual value is 79.788/km”’.

The first step is to examine the distance data by plotting histograms
using various distance categories. It is often informative to plot a
histogram with many fine intervals (Fig. 4.1). Here one can see the
presence of a broad shoulder, no evidence of heaping, and no indication
of evasive movement prior to detection; the data appear to be ‘good’,
which we happen to know to be true here.
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Fig. 4.1. Histogram of the example data using 20 distance categories. A fitted
hazard-rate key with one cosine adjustment term is shown as a candidate model

for the detection function, g(x).

4.3 Truncation

Inspection of the histogram in Fig. 4.1 shows the existence of an extreme
observation or ‘outlier’ at 35.82 m. A useful rule of thumb is to truncate

at least 5% of the data; here the six most
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TRUNCATION

19.42, 19.44, 19.46, 21.21 and 35.82 m. Thus, w could initially be set for
purposes of analysis at 19 m. An alternative is to fit a reasonable
preliminary model to the data, compute g(x) to find the value of x such
that g(x) =0.15, and use this value of x as the truncation point for
further analysis.

As an illustration, the half-normal key function was fitted to the
ungrouped, untruncated data and found to fit well. This approach
suggested a truncation point of 19 m for the half-normal model, based
on the criterion that g(x) = 0.15 (actually g(19) = 0.13). The deletion of
outliers is useful because these extreme observations provide little infor-
mation for estimating f(0), the density function at x =0, but can be
difficult to model. The series expansions require additional adjustment
terms to fit the few data in the tail of the distance distribution, which
may unnecessarily increase the sampling variance of the density estimate.
In this example, both truncation rules suggest w = 19, leaving n=99
observations. For the rest of this chapter we will emphasize the results
with w = 19 m, but estimates corresponding to no truncation will also
be given and compared. The choice of truncation point is not a critical
decision for these example data where all the assumptions are met and
the true detection function is simple.

For the true model, the quantity E(n) - f(0) remains unchanged as
the truncation point is varied. Consequently, for good data (i.e. data
satisfying the assumptions) and a reasonable model for g(x), the product
n- f (0) is quite stable over a range of truncation points. With increased
truncation, n decreases, but f (0) increases to compensate. The estimate
n- f (0) under the half-normal model is 8.477 if data are truncated at
19 m, and 8.417 without truncation.

Truncation of the data at w = 19 m removed only six detections. If a
series expansion model is used, up to three fewer parameters are required
to model the truncated data than the untruncated data (Table 4.1). (Note
that the truncation distance w supplied to DISTANCE must be finite;
by ‘untruncated data’, we mean that w was at least as large as the largest
recorded distance.) Outliers in the right tail of the distance distribution
required additional adjustment parameters and the inclusion of such
terms increased the sampling variance of f(0) and hence D when a robust
but incorrect model was used (Table 4.2). If the correct model could
somehow be known and used, then truncation is unimportant if the
measurements are exact and no evasive movement prior to detection is
present.

Truncation of the distance data for analysis deletes outliers and
facilitates modelling of the data. However, as some data are discarded,
one might ask if the uncertainty in D increases. First, this issue is
examined when the true model is known and used (i.e. the half-normal
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in this case). The coefficient of variation increased about 1% when the
data were truncated at 19 m relative to untruncated (Table 4.2). Thus,
little precision was lost due to truncation if the data were analysed under
the true model. Of course, one never knows the true detection function
except for computer simulation examples.

Table 4.1 Summary of AIC values at two truncation values w for the example
data analysed as ungrouped and at three different groupings (five groups of
equal width, 20 groups of equal width, and five unequal groups such that the
number detected was equal in each group). The models with minimum AIC
values are indicated by an asterisk

w=19m w = largest observation

Data Model (key + No. of parameters No. of parameters
type adjustment) Key Adjust. AIC Key Adjust. AIC
Ungrouped  Uniform + cosine 0 1 562.98 0 2 636.48*
Uniform + polynomial 0 1 563.28 0 4 638.18
Half-normal + Hermite 1 0 562.60* 1 0 636.98
Hazard-rate + cosine 2 0 565.22 2 0 639.16
Grouped Uniform + cosine 0 1 30091 0 3 224.77
(5 equal) Uniform + polynomial 0 1 301.09 0 4 226.75
Half-normal + Hermite 1 0 300.63* 1 0 222.13*
Hazard-rate + cosine 2 0 303.18 2 0 224.21
Grouped Uniform + cosine 0 1 563.58 0 2 520.88
(20 equal) Uniform + polynomial 0 1 563.40 0 3 524.78
Half-normal + Hermite 1 0 563.03* 1 0 520.31*
Hazard-rate + cosine 2 0 565.80 2 1 523.53
Grouped Uniform + cosine 0 1 323.05* 0 2 345.13
(5 unequal) Uniform + polynomial 0 1 324.45 0 4 348.56
Half-normal + Hermite 1 0 323.35 1 0 342.54*
Hazard-rate + cosine 2 0 324.32 2 0 34495

When series expansion models are used for the analysis of the example
data, the uniform key function with either cosine or polynomial adjust-
ments gives a smaller coefficient of variation when the data are truncated
(Table 4.2). This small increase in precision is because only one par-
ameter was required for a good model fit when w = 19 m, whereas two
to four parameters were required to fit the untruncated data (Table 4.2).
Precision was better for the untruncated data for the hazard-rate model.

The effect of truncation on the point estimates was relatively small,
and estimates were not consistently smaller or larger than when data
were untruncated (Table 4.2). The various density estimates ranged from
72.75 to 94.09, and their coefficients of variation ranged from 14.8% to
20.3%. The true parameter value was D = 80 objects/km”.

In general, some truncation is recommended, especially for obvious
outliers. Although some precision might be lost due to truncation. it is
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usually slight. Often, precision is increased because fewer parameters are
required to model the detection function. Most importantly, truncation
will often reduce bias in D or improve precision, or both, by making
the data easier to model. Extreme observations in the right tail of the
distribution may arise from a different detection process (e.g. a deer
seen at some distance from the observer along a forest trail, or a whale
breaching near the horizon), and are generally not informative, in
addition to being difficult to model. Truncation is an important tool in
the analysis of distance sampling data.

Table 4.2 Summary of estimated density D and coefficient of variation cv for
two truncation values w for the example data. Estimates are derived for four
robust models of the detection function. The data analysis was based on
ungrouped data and three different groupings (five groups of equal width, 20
groups of equal width, and five unequal groups such that the number detected
was nearly equal in each group)

Truncation
Data Model (key + w=19m w = largest obsn
type adjustment) b cv(%) D cv(%)
Ungrouped Uniform + cosine 90.38 159 80.52 16.8
Uniform + polynomial 78.95 14.8 84.53 200
Half-normal + Hermite 88.31 16.7 87.68 15.3
Hazard-rate + cosine 84.23 184 72.75 15.6
Grouped Uniform + cosine 88.69 159 94.09 16.7
(5 equal) Uniform + polynomial 79.37 152 88.39 19.1
Half-normal + Hermite 86.94 168 92.16 15.8
Hazard-rate + cosine 84.49 19.6 80.80 16.7
Grouped Uniform + cosine 89.95 158 80.06 15.1
(20 equal) Uniform + polynomial 79.10 149 74.43 15.3
Half-normal + Hermite 87.98 16.6 86.87 15.7
Hazard-rate + cosine 85.81 19.2 84.06 18.1
Grouped Uniform + cosine 86.14 16.3 81.40 19.0
(5 unequal) Uniform + polynomial 78.60 15.8 86.91 17.8
Half-normal + Hermite 85.12 17.0 88.84 16.3
Hazard-rate + cosine 86.83  20.3 82.54 17.7

4.4 Estimating the variance in sample size

Before the precision of an estimate of density can be assessed, attention
must be given to the spatial distribution of the objects of interest. If
the n detected objects came from a sample of objects that were randomly
(i.e. Poisson) distributed in space, then var(n) = E(n) and var(n) = n.
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Because most biological populations exhibit some degree of clumping,
one expects var(n) > E(n). Thus, empirical estimation of the sampling
variance of n is recommended. This makes it nearly imperative to sample
using several lines, /;, such as the 12 used in the example. Variation in
the number of detections found on each of the lines, #n;, provides a valid
estimate of var(n) without having to resort to the Poisson assumption
and risk what may be a substantial underestimate of the sampling
variance of the estimator of density.

After truncating at 19 m, the line lengths in km and numbers of
detections (/;, n;) for the k = 12 lines were: (5, 14), (2, 2), (6, 8), (4, 8),
3, 3), (1, 4), (4, 10), (4, 8), (5, 17), (7, 20), (3, 0), and (4, 5). The
estimator for the empirical variance of n is (from Section 3.7.2)

-~ X ni n ¥
Vatmy=L Y li|7-—| /tk=1
s\ L

= 195.8

This estimate is based on k — 1 = 11 degrees of freedom. The ratio of the
empirical variance to the estimated Poisson variance is 195.8/99 = 1.98,
indicating some spatial aggregation of objects. Equivalently, one can
estimate the sampling variance of the encounter rate (n/L),

kl[nin2
EL&‘ﬂ

=0.0850

Var(n/L) =

§&(n/L) = VVar(n/L)
=0.292

Then §&(n) = L - §&(n/L) and var(n) = [s¢(m)]>. In most subsequent ana-
lyses of these data, we use the empirical estimate, Var(n) = 195.8.

4.5 Analysis of grouped or ungrouped data

Analysis of the ungrouped data is recommended for the example because
it is known that the assumptions of line transect sampling hold. General
statistical theory and our experience indicate that little efficiency is
lost by grouping data, even with as few as five or six well-chosen
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intervals. Grouping of the data can be used to improve robustness in
the estimator of density in cases of heaping and movement prior to
detection (Chapter 7).

For the example, changes in the estimates of density under a given
model were in most cases slight (much smaller than the standard error)
whether the analysis was based on the ungrouped data or one of the
three sets of grouped data. This is a general result if the assumptions
of distance sampling are met. If heaping, errors in measurement, or
evasive movement prior to detection are present, then appropriate
grouping will often lead to improved estimates of density and better
model fit. Grouping the data is a tool for the analysis of real data to
gain estimator robustness. When heaping occurs, cutpoints should be
selected to avoid favoured rounding distances as far as possible. Thus,
if values tend to be recorded to the nearest 10 m, cutpoints might be
defined at Sm, 15m, 25m, .... The first cutpoint is the most critical.
If assumptions hold, the first interval should be relatively narrow, so
that the first cutpoint is on the shoulder of the detection function.
However, it is not unusual for 10% or more of detections to be recorded
as on the centreline, especially when perpendicular distances are calcu-
lated from sighting distances and angles. In this circumstance, the width
of the first interval should be chosen so that few detections are erro-
neously allocated to the first interval through measurement error, and
in particular, through rounding a small sighting angle to zero.

4.6 Model selection
4.6.1 The models

Results for fitting the detection function are illustrated using the uniform,
half-normal and hazard-rate models as key functions. Cosine and simple
polynomial expansions are used with the uniform key, Hermite polyno-
mials are used with the half-normal key, and a cosine expansion is used
with the hazard-rate key. Thus, four models for g(x) are considered for
the analysis of these data. Modelling in this example can be expected to
be relatively easy as the data are well behaved, exhibit a shoulder, and
the sample size is relatively large (n = 105 before truncation). With such
ideal data, the choice of model is unlikely to affect the abundance
estimate much, whereas if survey design or data collection is poor,
different models might yield substantially different estimates.

From an inspection of the data in Fig. 4.1, it is clear that the uniform
key function will require at least one cosine or polynomial adjustment
term. The data here were generated under a half-normal detection
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function so we might expect the half-normal key to be sufficient without
any adjustment terms. However, the data were stochastically generated;
the addition of a Hermite polynomial term is quite possible, although
it would just fit ‘noise’. The hazard-rate key has two parameters and
seldom requires adjustment terms when data are good. In general, a
histogram of the untruncated data using 15-20 intervals will reveal the
characteristics of the data. Such a histogram will help identify outliers,
heaping, measurement errors, and evasive movement prior to detection.

4.6.2 Likelihood ratio tests

The addition of adjustment terms to a given key function can be judged
using likelihood ratio tests (LRTs). This procedure is illustrated using
the example data, with w =19, and ungrouped data. Assume the key
function is the l-parameter half-normal. This model is fitted to the
distance data to provide the MLE of the parameter 6. Does an adjust-
ment term significantly improve the fit of the model of g(x) to the data?
Let &, be the value of the likelihood for the 1-parameter half-normal
model and &, be its value for the 2-parameter model (half-normal model
plus one Hermite polynomial adjustment term). Then, the test statistic
for this likelihood ratio test is

Xz =~ 2log. ($o/<£)

and is distributed asymptotically as x* with 1 df if the 1-parameter model
(£o) is the true model. In general, the degrees of freedom are calculated
as the difference in the number of parameters between the two models
being tested. This is a test of the null hypothesis that the 1-parameter
model is the true model against the alternative hypothesis that the
2-parameter model is the true model. If the additional term makes a
significant improvement in the fit, then the test statistic will be ‘large’.
For the example, log.($£) = — 280.3000 and log.(¥,) = — 280.2999. These
are values of the log-likelihood function computed at the MLE values
of the parameters. Then, the test statistic is

x> == 2 log.(Lo/%)
=~ 2[log.(£o) — loge(£1)]
= — 2[- 280.3000 — (- 280.2999)]
= 0.0002

This test statistic has 1 df, so that p = 0.988, and there is no reason to
add a Hermite polynomial adjustment term. This does not necessarily
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mean that the 1-parameter half-normal model is an adequate fit to the
example data; it only informs us that the 2-parameter model is not a
significant improvement over the 1-parameter model. If goodness of fit
for example indicates that both models are poor, it is worth investigating
whether a 3-parameter model is significantly better than the 1-parameter
model. This may be done by setting the LOOKAHEAD option in
DISTANCE to 2. Another solution is to try a different model.

A second example is that shown in Fig. 4.1, the untruncated example
data modelled by a hazard-rate key and cosine adjustment terms. Let
£, be the likelihood under the 2-parameter hazard-rate model and &,
be the likelihood under this same model with one cosine adjustment term.
MLEs of the parameters are found under both models with the resulting
log-likelihood values: log.(¥£y) = ~259.898 and log.($£,) = —258.763. Which
is the better model of the data? Should the cosine term be retained?
These questions are answered by the LRT statistic,

X’ = -2 [loge(£o) — loge(£))]
=—2[-259.898 — (- 258.763)]
=227

Because &£, has two parameters and ¥, has three parameters, the LRT
has 1 df. Here, x*=2.27, 1 df, p =0.132. As noted in Section 3.5.2, use
of a = 0.15 instead of the conventional o = 0.05 might be found useful
as a rejection criterion. Thus, the 2-parameter model is rejected in favour
of a 3-parameter model, with a single cosine adjustment to the hazard-
rate key. The procedure is repeated to examine the adequacy of the
3-parameter model against a 4-parameter model with two cosine terms.
Note that this illustration used the untruncated data; additional terms
are frequently needed to model the right tail of the distance data if
proper truncation has not been done.

If the LRT indicates that a further term is not required but goodness
of fit (below) indicates that the fit is poor, the addition of two terms
(using DISTANCE option LOOKAHEAD = 2) may provide a signific-
antly better fit. If it is important to obtain the best possible fit,
options SELECT = forward and SELECT = all of DISTANCE may
prove useful.

4.6.3 Akaike’s Information Criterion

The use of the Akaike’s Information Criterion (AIC) provides an
objective, quantitative method for model selection (see Burnham and
Anderson (1992) for application of AIC and Akaike (1985) for theoretical
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synthesis). It is similar in character to a likelihood ratio test for
hierarchical models, but is equally applicable to selection between non-
hierarchical models. The criterion is

AIC=-2 - [log.(¥) - q]

where log.(¥) is the value of the log-likelihood function evaluated
at the maximum likelihood estimates of the model parameters and g is
the number of parameters in the model (Section 3.5.3). AIC is computed
for each candidate model, and that with the lowest AIC is selected
for analysis and inference. Having selected a model, one should
check that it fits as judged by the usual ¥ goodness of fit statistics.
Visual inspection of the estimated detection function plotted on the
histogram is also informative because one can better judge the model
fit near the line, and perhaps discount some lack of fit in the right tail
of the data.

AIC was computed for the four models noted above for both grouped
and ungrouped data with and without truncation (Table 4.1). For
computational reasons, w was set equal to the largest observation in the
case of no truncation. Three sets of cutpoints were considered for each
model for illustration. Set 1 had five groups of equal width, set 2 had
20 groups of equal width, and set 3 had five groups whose width
increased with distance, such that the number detected in each distance
category was nearly equal. Note that AIC cannot be used to select
between models if the truncation distances w differ, or, in the case of
an analysis of grouped data, if the cutpoints differ.

AIC values in Table 4.1 indicate that the half-normal model is the
best of the four models considered. Here, we happen to know that this
is the true model. All four models have generally similar AIC values
within any set of analyses of Table 4.1. Still, AIC selects the half-normal
model in three of the four instances, both with truncation and without.
Thus, the main analysis will focus on the ungrouped data, truncated at
w=19m, under the assumption that g(x) is well modelled by the
half-normal key function with no adjustment parameters. The fit of this
model is shown in Fig. 4.2. One might suspect that all four models
would provide valid inference because of the similarity of the AIC
values. Often, the AIC will identify a subset of models that are clearly
inferior and these should be discarded from further consideration.

4.6.4 Goodness of fit

Goodness of fit is described briefly in Section 3.5.4, and is the last of
the model selection criteria we consider here. Although it is the fit of
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Fig. 4.2. Histogram of the example data using five distance categories. A
half-normal detection function, fitted to the ungrouped data with w= 19 m, is
shown and was used as a basis for final inference from these data.

the model near zero distance that is most critical, none of the model
selection criteria of goodness of fit statistics, AIC and likelihood ratio
tests give special emphasis to this region.

Some goodness of fit statistics for the example with w = 19 m and 20
groups are given in Table 4.3. These data were taken when all the
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assumptions were met; all four models fit the data well and yield similar
estimates of density.

Table 4.3 Goodness of fit statistics for models fitted
to the example data with w = 19 m and 20 groups

Model X df P

Uniform + cos 14.58 17 0.62
Uniform + poly 13.11 17 0.73
Half-normal + Hermite 13.63 17 0.69
Hazard-rate + cos 14.91 16 0.53

Real data are often heaped, so that no parsimonious model seems to
fit the data well, as judged by the y’ test. Grouping can be carried out
to smooth the distance data and, thus, obtain an improved fit. While
grouping usually results in little change in D, it provides a more
acceptable assessment of the fit of the model to the data. If possible,
groups should be selected so that there is one favoured rounding
distance per interval, and it should occur at the midpoint of the interval.
The grouped nature of the (rounded) data is then correctly recognized
in the analysis. If cutpoints are badly chosen, heaping will generate
spurious significant x° values.

4.7 Estimation of density and measures of precision
4.7.1 The standard analysis

Preliminary analysis leads us to conclude that the half-normal model is
an adequate model of the detection function, with truncation of the
distance data at w =19 m, fitted to ungrouped data, and using the
empirical variance of n.

Replacing the parameters of Equation 3.4 by their estimators and
simplifying under the assumptions that objects on the line are detected
with certainty, detected objects are recorded irrespective of which side
of the line they occur, and objects do not occur in clusters, estimated
density becomes

-~ n-f(0)
D= 2L

where n is the number of objects detected, L is the total length of
transect line, and f(0) is the estimated probability density evaluated at
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zero perpendicular distance. For the example data, and adopting the
preferred analysis, program DISTANCE yields f(O) 0.08563 with
se{ f(O)} 0.007601. The units of measure for f(0) are 1/metres. Often,
estimates of the effective strip width, p = 1/f(0), are given in preference
to f(O), since it has an intuitive interpretation. It is the perpendicular
distance from the line for which the number of objects closer to the line
that are missed is equal to the number of objects farther from the line
(but within the truncation distance w) that are detected.

For the half-normal model, if data are neither grouped nor truncated,
a closed form expression for f(O) exists (Chapter 3):

SO =V{2/(n6%)}
where  6°=Y xi/n
Similarly, closed form expressions exist for the Fourier series estimator
(uniform key + cosine adjustment terms) of f(0) (Burnham er al. 1980:
56-61). However, generally the MLE of f(0) must be computed numeri-
cally because no closed form equation exists.

The estimate of density for the example data truncated at 19 m, and
using f(0) from DISTANCE, is

D=n-f(0)/2L
= (99 x 0.08563)/(2 x 48)
=0.0883

Since the units of f(O) are m and those for L are km, multiplying by
1000 gives

D=188.3 objects/km?
The estimator of the sampling variance of this estimate is
W@HD) = D (vl + [ev{ O}
where
[ev(m)] = Var(n)/n* = 195.8/99* = 0.01998

and

117



LINE TRANSECTS

[ev{ f(O)}] = Vat{ £(0)}/{ £(0)}* = 0.0076012/0.08563 = 0.007879

where Var{ f(O)} is based on approximately n = 99 degrees of freedom.
Then

Var(D) = (88.3)* [0.01998 + 0.007879]
=217.2

and

s8(D) = VVar(D)
=14.74

The coefficient of variation of estimated density is cv(D)=
s&(D)/D =0.167, or 16. 7%, which might be adequate for many purposes.
An approximate 95% confidence interval could be set in the usual way
as D+1.96- (D), resulting in the interval [59.4, 117.2]. Log-based
confidence intervals (Burnham et al. 1987: 211-3) offer improved cover-
age by allowing for the asymmetric shape of the sampling distribution
of D for small n. The procedure allows lower and upper 95% bounds
to be computed as

bL=b/C

and

A

bU=D'C

where

C=exp {1.96 - Vlog.(1 + [cv(D)J*)}

This method gives the interval [63.8, 122.2], which is wider than the
symmetric_interval, but is a better measure of the precision of the
estimate D = 88.3. The imprecision in D is primarily due to the va-
riance component associated w1th n; approx1mately 72% (i.e.
0.01998/(0.01998 + 0.007879)) of var(D) is due here to var(n)

The use of 1.96 in constructing the above confidence intervals is only
justified if the degrees of freedom of all variance components in
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\73}(5) are large, say greater than 30. In this example, the degrees
of freedom for the component Vvar(n) are only 11. If there were
only one variance component, it would be standard procedure to use
the t-distribution on the relevant degrees of freedom, rather than the
standard normal distribution, as the basis for a confidence interval.
When the relevant variance estimator is a linear combination of varian-
ces, there is a procedure using an approximating ¢-distribution as the
basis for the confidence interval. This more complicated procedure is
explained in Section 4.7.4 below, and is used automatically by program
DISTANCE. X

The effective strip width is estimated by L= 1/f(0)=11.68 m. The
unconditional probability of detecting an object in the surveyed area,
a=2wL, is P,=/w=0.61, which is simply the ratio of the effective
strip width to the truncation distance, w =19 m. These estimates are
MLE as they are one-to-one transformations of the MLE of £(0).

In summary, we obtain D = 88.3, §(D) = 14.7, cv = 16.7%, with a 95%
confidence interval of [63.8, 122.2]. Recalling that the true parameter
D =80, this particular estimate is a little high, largely because the
sample size (n = 105, untruncated) happened to be above that expected
(E(n) = 96). This is not unusual, given the large variability in » due to
spatial aggregation of the objects, and the confidence interval easily
covers the parameter. Some alternative analyses and issues and their
consequences will now be explored.

4.7.2 Ignoring information from replicate lines

If the Poisson assumption (Vat(n) = n) had been used with w = 19 m and
L =48 km, then the estimate of density would not change, but §&¢(D)
would be underestimated at 11.84, with 95% confidence interval of
[67.98, 114.70]. While this interval happens to cover D, the method
underestimates the uncertainty of the estimator D; if many data sets
were generated, the true coverage of the interval would be well below
95%. This procedure cannot be recommended; one should estimate the
variance associated with sample size empirically from the counts on the
individual replicate lines, including those lines with zero counts. For
example, line 11 had no observations (n;; = 0), which must be included
in the analysis as a zero count.

4.7.3 Bootstrap variances and confidence intervals

The selected model for g(x) for the example data was the half-normal,
with w = 19 m, fitted to ungrouped distance data. The MLE of f(0) was
0.08563 with s€ = 0.007601. The bootstrap procedure (Section 3.7.4) can
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be used to obtain a more robust estimate of this standard error. The
required number of series expansion terms can be estimated in each
resample, and variance due to this estimation, ignored in the analytical
method, is then a component of the bootstrap variance. As an illustra-
tion, 1000 bootstrap replications were performed, yielding an average
J(0) = 0.08587 with §€& = 0.00748. In this simple example where the true
model is the fitted model without any adjustment terms, the two
procedures yield nearly identical results.

A superior use of the bootstrap in line transect sampling is to sample
with replacement from the replicate lines, until either the number of
lines in the resample equals the number in the original data set, or the
total effort in the resample approximately equals the total effort in
the real data set. If the model selection procedure is automated, it can
be applied to each resample, so that model misspecification bias can be
incorporated in the variance estimate. Further, the density D may
be estimated for each resample, so that robust standard errors and
confidence intervals may be set that automatically incorporate variance
in sample size (or equivalently, encounter rate) and cluster size if
relevant, as well as in the estimate of f(0). The method is described in
Section 3.7.4, and an example of its application to point transect data
is given in Section 5.7.2.

A possible analysis strategy is to carry out model selection and
choice of truncation distance first, and then to evaluate bootstrap stand-
ard errors only after a particular model has been identified. Although
model misspecification bias is then ignored, the bootstrap is computa-
tionally intensive, and its use at every step in the analysis will be
prohibitive.

4.7.4 Satterthwaite degrees of freedom for confidence intervals

For the log-based confidence interval approach, there is a method to
allow for the finite degrees of freedom of each estimated variance
component in @(ﬁ). This procedure dates from Satterthwaite (1946);
a more accessible reference is Milliken and Johnson (1984). Assuming
the log-based approach, [log.(D) — log.(D))/ev(D) is well approximated
by a t-distribution with degrees of freedom computed in the case of two
variance components by the formula

of [ev(D)]

Clevel' | fev( /O
k-1 n
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where
vl =D ey Do - /o)
" { fo)}

Given the computed degrees of freedom, one finds the two-sided
100(1 - 20) percentile of the r-distribution with these degrees of free-
dom; df is in general non-integer, but may be rounded to the nearest
integer. Usually o = 0.025, giving a 95% confidence interval., Then one
uses the value of 14,(0.025) in place of 1.96 in the confidence interval
calculations, so that

13L=ﬁ/C
and Dy=D-C

where

C = exp {14r(0.025) - Vlog,(1 + [cv(D)P)}

This lengthens the confidence interval noticeably when the number of
replicate lines is small.

We illustrate this procedure with the current example for which
[ev(m] =0.01998 on 11 degrees of freedom, and [ev{ f(0)}]* = 0.007879
on 99 degrees of freedom. Thus [cv(lﬂ))]2 = 0.027859. The above formula
for df gives

df = 0.0007761
0.0003992 0.00006208
11 99

=21.02

which we round to 21 for looking up £,(0.025) = 2.08 in tables. Using
2.08 rather than 1.96, we find that C=1.4117, and the improved 95%
confidence interval is [62.6, 124.7], compared with [63.8, 122.2] using
z=1.96. The Satterthwaite procedure is implemented in DISTANCE,
so that it produces the improved interval.

This procedure for computing the degrees of freedom for an approx-
imating ¢-distribution generalizes to the case of more than two compo-
nents, for example when there are three parameter estimates, », f(0) and
E(s). Section 3.7.1 gives the general formula.
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4.8 Estimation when the objects are in clusters

Often the objects are detected in clusters (flocks, coveys, schools) and
further considerations are necessary in this case. The density of clusters
(Dy), the density of individual objects (D), and average cluster size E(s)
are the biological parameters of interest in surveys of clustered popula-
tions, and several intermediate parameters are of statistical interest
(e.g. f(0)). Here, we will assume that the clusters are reasonably well
defined; populations that form loose aggregations of objects are more
problematic.

It is assumed that the distance measurement is taken from the line to
the geometric centre of the cluster. If a truncation distance w is adopted
in the field (as distinct from in the analysis), then a cluster is recorded
if its centre lies within distance w and a count made of all individuals
within the cluster, including those individuals that are at distances
greater than w. If the geometric centre of the cluster lies at a distance
greater than w, then no measurement should be recorded, even if some
individuals in the cluster are within distance w of the line. The sample
size of detected objects n is the number of clusters, not the total number
of individuals detected.

4.8.1 Observed cluster size independent of distance

If the size of detected clusters is independent of distance from the line
(i.e. g(x) does not depend on s), then estimation of Dy, D and E(s) is
relatively simple. The sample mean 5 is taken as an unbiased estimator
of the average cluster size. Then E(s) =5 =X 5;/n, where s; is the size of
the ith cluster. In general the density of clusters D; and measures of
precision are estimated exactly as given in Sections 4.3-4.7. Then,
D =Dy 5; the estimator of the density of individuals is merely the
product of the density of clusters times the average cluster size. Alter-
natively, the expression can be written

A_n.f(o).g
b= 2L

The example data set used throughout this chapter is now reconsidered
in view of the (now revealed) clustered nature of the population. The
distribution of true cluster size in the population was simulated from a
Poisson distribution and the size of detected clusters was independent
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of distance from the line. The value of s was simulated as 1 + a Poisson
variable with a mean of two or, equivalently, (s — 1) ~ Poisson (2), so
that E(s) = 3. Theoretically, var(s) =var(s - 1) = E(s— 1) = E(s) -1 = 2.
Under the independence assumption, the sample mean 5 is an un-
biased estimate of E(s). The true density of individuals was 240.
Estimates of Ds (called D in previous sections), f(0), effective strip width
and the various measures of precision are exactly those derived in
Section 4.7.

The estimated average cluster size, 5, for the example data with
w=19m i1s 2.859 (5= 283/99) and the empirical sampling variance on
n — 1 =98 degrees of freedom is

Y (si-5)
fai(s) = ——
- nn-1)
=0.02062

so that

§6(5) = V¥0.02062
=0.1436

These empirical estimates compare quite well with the true parameters;
var(s) = 2/n = 2/99 = 0.0202, 5¢(5) = 0.142. If one uses the knowledge
that cluster sizes were based on a Poisson process, one could estimate
this true standard error as \/{(E— 1)/n} =~(1.859/99) = 0.137, which is
also close to the true value. The point here is that the empirical estimate
is quite good and can be computed when the Poisson assumption is
false.

A plot of cluster size s; vs. distance x; (Fig. 4.3) provides only weak
evidence of dependence (r=0.16,p=0.10). In this case, we take
E(s) =5, the sample mean. Thus, the density of individuals is estimated
as

= 88.3 x 2.859
= 252.4 individuals/km’

Then, for large samples,
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Var(D) = D* - {[evm)]* + [ev{ f0)}]* + [ev(5)]*}
=252.4*. [0.01998 + 0.007879 + 0.002523]
= 1936

so that

se(D)=V1936 = 44.0

This gives D = 252.4 individuals/km’ with cv = 17.4%. The log-based 95%
confidence interval, using the convenient multiplier z = 1.96, is [179.8,
354.3]. This mterval 18 somewhat w1de due prlmarlly to the spatial
variation in »; var (1) makes up 66% of Var (D), while Vat ( f (0)) contributes
26% and var(s) contributes only 8% (e.g. 66% = {0.01998/(0.01998 +
0.007879 + 0.002523)} x 100).

8t X X
7 X
6} X
5t X x X
4 XX X0 XX X 2 X X X
[
@
N
g 30K XOKX XK XX X X X X X
@
2
(6]
2 R0 2K 20K W K X X XX
10X XXX X XK X XX X X
00 5 10 15 20 25 30 35

Perpendicular distance x

Fig. 4.3. Scatterplot of the relationship between the size of a detected cluster
and the distance from the line to the geometric centre of the cluster for the
example in which size and detection distance are independent. The correlation
coefficient is 0.16.
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A theoretically better confidence interval is one based not on the
standard normal distribution (i.e. on z = 1.96) but rather on a r-distribu-
tion with degrees of freedom computed here as

[ev(D)}*
df = -
[ev(m)* s [ev{ fORT . v
k-1 n n-1
0.0009235

=24.97

~ 0.0003992 + 0.00006208 + 0.000006366
11 99 98

which we round to 25. Given this computed value for the degrees of
freedom, one finds the two-sided 100(1 - 2c) percentile t4r (o) of the
t-distribution. In this example, we find £5(0.025) = 2.06. Using 2.06
rather than 1.96 in the log-based confidence interval procedure,
C = 1.4282, giving an improved 95% confidence interval of [176.8, 360.5].
It is this latter interval which DISTANCE computes, applying the
procedure of Satterthwaite (1946) to loge(ﬁ).

Plots and correlations should always be examined prior to proceeding
as if cluster size and detection distance were independent. In particular,
some truncation of the data will often have the added benefit of
weakening the dependence between s; and x;. If truncation is appropri-
ate, then E(s) should be based on only those clusters within (0, w). Our
experience suggests that data from surveys of many clustered popula-
tions can be treated under the assumption that s; and x; are independent.
For small clusters (e.g. coveys of quail of 5-12 or family groups of
antelope of 2-4), the independence assumption is likely to be reasonable.
This allows the analysis of f(0), Dy, and measures of their precision to
be separated from the analysis of the data on cluster size and its
variability. Then, estimation of the density of individuals is fairly simple.

4.8.2 Observed cluster size dependent on distance

The analysis of survey data where the cluster size is dependent on the
detection distance is more complicated because of difficulties in obtain-
ing an unbiased estimate of E(s) (Drummer and McDonald 1987;
Drummer er al. 1990; Otto and Pollock 1990). The dependence arises
because large clusters might be seen at some distance from the line (near
w), while small clusters might remain undetected. This phenomenon
causes an overestimation of E(s) because too few small clusters are
detected (i.e. they are underrepresented in the sample). Thus,
D=D,-5 is also an overestimate. Another complication is that large
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clusters might be more easily detected near w than small clusters, but
their size might be underestimated due to reduced detectability of
individuals at long distances. This phenomenon has a counter-balancing
effect on the estimates of E(s) and D. The dependence of x; on s;1s a
case of size-biased sampling (Cox 1969; Patil and Ord 1976; Patil and
Rao 1978; Rao and Portier 1985).

The analysis of sample data from clustered populations where a
dependence exists between the distances x; and the cluster sizes s; can
take several avenues. Some of these require that the detection function
g(x) is fitted unconditional on cluster size, using the robust models and
model selection tools already discussed. The simplest method exploits
the fact that size bias in detected clusters does not occur at distances
from the line for which detection is certain. Hence, E(s) may be
estimated by the mean size of clusters detected within distance v, where
g(v) is reasonably close to one, say 0.6 or 0.8. In the second method,
a cluster of size s; at distance x; from the line is replaced by s; objects,
each at distance x;. Thus, the sampling unit is assumed to be the
individual object rather than the cluster, and the issue of estimating true
mean cluster size is side-stepped. For the third method, data are strati-
fied by cluster size (Quinn 1979, 1985). The selected model is then fitted
independently to the data in each stratum. If size bias is large or cluster
size very variable, smaller truncation distances are likely to be required
for strata corresponding to small clusters. The fourth method estimates
cluster density D, conventionally, as does the first. Then, given the x;
E(s) is estimated by some form of regression of s; on the x; (i.e. an
appropriate model is identified for E(s|x)). This sequential procedure
seems to have a great deal of flexibility. In the final approach considered
here, a bivariate model of g(x, s) is fitted to the data to obtain the
estimates of D, Dy and E(s) simultaneously. The first four approaches
are illustrated in this section using program DISTANCE, and the fifth
using program SIZETRAN (Drummer 1991).

The data used in this section are sampled from the same population
as in earlier sections of this chapter (i.e. L =48, D;=80 f(0)=0.079,
E(s) =3 and E(n) = 96, so that D =240 =3 x 80). The half-normal de-
tection function was used, as before, but ¢ was allowed to be a function
of cluster size:

- S EE
o(s)—co(l+b E(s)]

where b =1 and E(s) = 3 in the population. Selecting b = 1 represents a
strong size bias and corresponds to Drummer and McDonald’s (1987)

form with a = 1. Cluster size in the entire population (detected or not)
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was distributed as s ~ (1 + Poisson). Given a cluster size s, the detection
distance was generated from the half-normal detection function g(x;|sy).
Because of the dependence between cluster size and detection distance,
the distance data differ from those in the earlier parts of this chapter.
In particular, some large clusters were detected at greater distances (e.g.
one detection of 5 objects at 50.9 m). Because of the dependence on
cluster size, the bivariate detection function g(x, s) 1s not half-normal.
This detection function is monotone non-increasing in x and monotone
non-decreasing in s. In addition, the detected cluster sizes do not represent
a random sample from the population of cluster sizes, as small clusters
tend to remain undetected except at short distances. Thus, the size of
detected clusters is not any simple function of a Poisson variate. Gener-
ation of these data is a technical matter and is treated in Section 6.7.2.

A histogram of the distance data indicates little heaping and a
somewhat long right tail (Fig. 4.4). Truncation at 20 m seemed reason-
able and eliminated only 16 observations, leaving n = 89 (15% trunca-
tion). Truncation makes modelling of the detection function easier and
always reduces, at least theoretically, the correlation between detection
distance and cluster size. Three robust models were chosen as candidates
for modelling g(x): uniform + cosine, half-normal + Hermite, and hazard-
rate + cosine. All three models fit the truncated data well. AIC suggested
the use of the uniform + cosine model by a small margin (506.26 vs.
506.96 for the half-normal), and both models gave very similar estimates
of density. The hazard-rate model (AIC = 509.209) provided rather high
estimates of density with less precision, although confidence intervals
easily covered the true parameter. The uniform + cosine model and the
half-normal model both required only a single parameter to be estimated
from the data, while the hazard-rate has two parameters. This may
account for some of the increased standard error of the hazard-rate
model, but the main reason for the high estimate and standard error is
that the hazard-rate model attempts to fit the spike in the histogram of
Fig. 4.4 in the first distance category. Because we know the true model
in this case, we know the spike is spurious, and arises because for this
data set, more simulated values occurred within 2.5 m than would be
expected. Generally, if such a spike is real, the hazard-rate model yields
lower bias (but also higher variance) than most series expansion models,
whereas its performance is poor if the spike is spurious. Since AIC
selected the uniform + cosine model, we use it below to illustrate meth-
ods of analysis of the example data.

The uniform + cosine model for the untruncated data required five
cosine terms to fit the right tail of the data adequately (Fig. 4.4). Failure
to truncate the data here would have resulted in lower precision,
the model would have required five cosine terms instead of just one
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Fig. 4.4. Histogram of the example data using 20 distance categories for the
case where cluster size and detection distance are dependent. The fit of a
uniform + 5-term cosine model is shown.

(Fig. 4.5), and the mean cluster size would have been less reliably
estimated (below).

The uniform key function and a 1-term cosine model fit the truncated
data well (Fig. 4.5, 0.38 < p < 0.71, depending on the grouping used
for the %’ test). The estimated density of clusters was 81.56 (5¢ =12.43),
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Fig. 4.5. Histogram of the example data using five distance categories and
truncation at w = 20 m for the case where cluster size and detection distance are
dependent. The fit of a uniform + 1-term cosine model is shown.

quite close to the true value (80). The mean cluster size from the sample
data was 3.258 (S€ =0.134) which is surely too high in view of the
size-biased sampling caused by the correlation between cluster size and
detection distance. However, truncation at w = 20 reduced this correla-
tion from 0.485 to 0.224 so this uncorrected estimate of E(s) may not
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be heavily biased. Multiplying the density of clusters by the uncorrected
estimate of mean cluster size (3.258), the density of individuals is
estimated as 265.7 (8¢ = 41.9; 95% CI = [195.4, 361.4]), which is a little
high, but still a quite acceptable estimate for these data, for which actual
density was 240 individuals/km’.

(a) Truncation Observed mean cluster sizes and standard errors for
various truncation distances are shown in Table 4.4. The detection
function g(x) was estimated using truncation distance w and mean
cluster size was estimated after truncating data at distance v, v < w.
The gain in precision by reducing the truncation distance from 51 m to
20 m arises because predominantly large clusters are truncated, and
variability in the size of remaining clusters is reduced. It is clear from
Table 4.4 that 20 m is too large a truncation distance for unbiased
estimation of mean cluster size, since mean cluster size continues to fall
when the truncation distance is reduced further. The choice of truncation
distance is a compromise between reducing bias and retaining adequate
precision. Here, mean cluster size appears to stabilize at a truncation
distance of 10.5 m, for which g(10.5) = 0.5. Thus, mean cluster size is
estimated to be 3.116 with §€=0.152. Replacing the estimates
5=3.258 and s€ =0.134 by these values, density is estimated as 254.1
individuals/km’, with §¢ = 40.7 and approximate 95% confidence interval
[186.1, 347.0] (based on z = 1.96 rather than Satterthwaite’s correction).
This estimate is closer to the true value of 240 individuals/km? and
precision is almost unaffected, because the contribution to the overall
variance due to variation in cluster size is slight.

Table 4.4 Observed mean cluster sizes and standard errors for
various truncation distances v. Probability of detection g(v) at
the truncation distance v for cluster size estimation was
estimated from a uniform + 1-term cosine model with w =20 m
(Fig. 4.5) for v <20 m, and from a uniform + 5-term cosine
model with w=51m for v=51m

Truncation

distance v(m) n s $6(5) g)
51.0 105 3.581 0.150 0.02
20.0 89 3.258 0.134 0.14
13.6 80 3.188 0.144 0.30

10.5 69 3.116 0.152 0.50

9.1 61 3.098 0.166 0.60

7.6 49 3.061 0.192 0.70

6.0 44 3.114 0.206 0.80

4.1 37 3.081 0.214 0.90
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Hence if sample size is large, one may select a truncation point for
the estimation of E(s) that is smaller than the truncation point for the
estimation of f(0) to reduce the size bias in E‘(s). For example, E(s)
might be estimated by the mean size of clusters detected within a
distance x of the line, where g(x) = 0.6. Often bias reduction is more
important than precision in estimating mean cluster size because its
relative contribution to var(D) may be small, as in this example.

(b) Replacement of clusters by individuals If a cluster of size s; is
replaced by s; objects at the same distance, the assumption that detec-
tions are independent is violated. This compromises analytic variance
estimates and model selection procedures. The first difficulty may be
overcome by using robust methods for variance estimation, but model
selection is more problematic. If likelihood ratio tests are used to
determine the number of terms, too many terms are fitted on average,
since heaping in the data at distances where large clusters were recorded
yield significant departures from a smooth detection function when
observations are assumed to be independent. The effect may be reduced
by imposing a monotonicity constraint (Section 3.4.5). Another option
is to select a model taking clusters as the sampling unit, then refit the
model (with the same series terms, if any) to the data with object as the
sampling unit. Neither of these is entirely satisfactory. If both strategies
are adopted in the same analysis, so that a uniform + l-term cosine
model is fitted to the distance data truncated at 20 m, the following
estimates are obtained. Number of objects detected, n = 290. Estimated
density, D =255.6 objects/km’, with analytic $é =38.3 and 95% con-
fidence interval [184.7, 353.8]. These estimates are very close to those
obtained assuming cluster size is independent of distance, although the
point estimate is rather closer to the true density of 240 objects/km’.
Average cluster size can be estimated by the ratio of estimated object
density (255.6) to estimated cluster density (81.56), giving 3.134. The
precision of this estimate could be quantified using the bootstrap. In
each bootstrap resample, both densities, and hence their ratio, would
be estimated, and a variance and confidence interval obtained as de-
scribed in Section 4.7.3.

This procedure cannot generally be recommended. However, it
may be useful if the population being sampled occurs in loose aggrega-
tions, rather than tight, easily defined clusters. The distance to each
individual object should ideally be measured in this case, although it
may be sufficient to record positions and sizes of smaller groups within
a cluster. The method will often perform poorly unless sample size is
fairly large.
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(c) Stratification Choice of number of strata is determined largely by
sample size. The more strata, the greater the reduction in size bias, but
an adequate sample size for estimating f(0) is required in each stratum
(perhaps at least 20-30 per stratum). Defining two strata, corresponding
to cluster sizes 1-3 and = 4, sample sizes before truncation are 52 and
53 respectively. If four strata are defined, for cluster sizes 1-2, 3, 4 and
= 5, sample sizes before truncation are 29, 23, 26 and 27. The data were
analysed for both choices of stratification.

Table 4.5 Summary of results for different stratification options. Model was
uniform with cosine adjustments; distance data were truncated at w=20m,
except for the stratum comprising clusters of size 5-9, for which w=35m

Cluster ~ Sample size Effective strip

sizes after truncation width (m) D §E(b) 95% CI for D
All 89 11.4 265.7 41.9 (195.4, 361.4)
1-3 51 11.0 96.9 17.6
4-9 38 12.1 147.4 35.0

All 244.3 39.2 (178.8, 333.8)
1-2 29 10.0 51.2 16.0

3 22 13.7 50.1 16.3

4 22 11.7 78.2 21.0

5-9 24 22.6 53.3 18.0

All 232.8 35.8 (172.5, 314.2)

Results are summarized in Table 4.5. In this case, no precision is
lost by stratification, despite the small samples from which f(0) was
estimated, and the estimated densities were closer to the true value
of 240 objects//km’ than for the case without stratification. In our
experience, loss of precision arising from stratification by cluster size is
seldom large, provided sample size in each stratum does not fall below
20, and the method is a simple way of reducing the effects of size-biased
sampling. Mean cluster size may be estimated by a weighted average of
the mean size per stratum, with weights equal to the estimated density
of clusters by stratum. Alternatively, E(s) may be estimated as overall
D from the stratified analysis divided by D, from the unstratified
analysis. For two strata, this yields E(s) = 244.3/81.56 = 2.995, and for
four strata, E(s) =232.8/81.56 = 2.854. Both estimates are close to the
true mean cluster size of 3.0. The reader is referred to Drummer (1985)
and Quinn (1985) for further information on stratification.

(d) Regression estimator The procedure we recommend in most cases
is a regression of s; or log.(s;) on g(x;) (Section 3.6.3). This allows an
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Fig. 4.6. Scatterplot of the relationship between the size of a detected cluster
and the distance from the line to the geometric centre of the cluster for the
example in which probability of detection is a function of cluster size. The
correlation coefficient is 0.485 (w = oo).

estimate of E(s) at the point where g(x;) = 1; that is, the point at which
detectability is certain, where size bias should not occur. Proper truncation
of the distance data should be considered prior to the regression analysis
(e.g. g(x) =0.15). Applying this method to the example, with dependent
variable log, (s), vields E(s) = 2.930 and s&¢{E(s)} = V[Vat { E(s)}] = 0.139,
which is close to the true mean cluster size of 3.0 with good precision.
The corresponding density estimate is 239.0 individuals/km? with
se =38.1, cv=16.0% and 95% confidence interval [171.3, 333.5]. The
regression approach allows f(0) to be estimated using all the robust
theory available and then treats the estimation of mean cluster size as
a separate problem. The analyst has good control over the estimation
under this procedure. A scatter plot of cluster size against distance or
estimated detection probability can be used to investigate the form of
the relationship, although the scatter can be wide (Fig. 4.6).

The regression estimate of E(s) reduces the bias but some precision
may be lost in correcting for the size-biased sampling of cluster size.
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Often, var(5) is a small component of var(D), so that little precision
is lost by applying an adjustment for size bias. Use of § as an estimate
of E(s) is not recommended if dependence between cluster size and
detection distance is suspected.

(¢) Bivariate models for the detection function This methodology, due
to Drummer and McDonald (1987), relies on several parametric models,
each incorporating a parameter (o) to reflect the size bias in the sample
data. The data are transformed to x/s* and the bivariate detection
function is expressed as g(x, s) = g(x/s%); o =0 represents the special
case where cluster size and detection distance are independent and no
size bias exists (Otto and Pollock 1990). Program SIZETRAN was used
for the analysis of the example data and four models were considered:
the negative exponential, the half-normal, the reversed logistic, and the
generalized exponential (Drummer and McDonald 1987, Table 1). These
models incorporate the size bias by modelling the scale parameter as a
simple increasing power function of observed cluster size, s* Under this
approach, truncation is not an option with current software and separate
consideration of l:?(s) is not necessary.

The choice of the best model might be guided by AIC and this leads
to the half-normal model (Table 4.6). The generalized exponential model
failed to converge and cannot be considered. The estimates under the
half-normal model are quite good (Table 4.6), but the precision is poorer
than under the sequential approach using regression (cv = 21.3% instead
of 16.0%). This model fits the data well as judged by x> goodness of fit
tests (p > 0.15). The data were simulated from this model with o = 1,
so that it would be expected to fit well. Estimation under the other
models seems less satisfactory; the estimated density of individuals is
too high under both the negative exponential and the reversed logistic
(Table 4.6). Still, the confidence intervals cover the true density, partially
because the estimated standard errors are so large. In each case, there
is clear evidence of a size-biased sample (i.e. o is significantly greater
than zero, Table 4.6).

Table 4.6 Summary of results for three models allowing for dependence between
cluster size and detection distance (standard errors). The parameter o is
incorporated into these models to account for size-biased sampling (Drummer
and McDonald 1987). Data are untruncated (W = o)

~

Model AIC & D, D

Negative exponential 6744 1113 (0.214) 140.7 (41.4) 397.6 (114.6)
Half-normal 668.9  1.092 (0.150) 87.1 (19.3) 247.5 (52.9)
Reversed logistic 671.1  1.076 (0.171) 952 (27.8) 2714 (77.5)
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If the size-biased nature of the data had been ignored (i.e. o =0), the
point estimates would have been less satisfactory. In general, the point
estimates of the density of individuals would have been too high (e.g.
D =385.0 and 384.6 for the negative exponential and reversed logistic,
respectively). In this example, AIC selected a good model and the point
estimates were quite satisfactory. Again, this illustrates the importance
of meeting the key assumptions and obtaining an adequate sample of
quality data.

The bivariate approach is interesting and appealing from a statistical
viewpoint, but precision seems poorer than for the sequential regression
approach. Software development is required to address convergence
problems, and to allow the user to specify a finite truncation width.
Further study is needed to investigate the robustness of the approach.
The method of Quang (1991), using Fourier series, may partially address
this aspect.

4.9 Assumptions

Assumptions of line transect sampling are covered in detail in Section
2.1, and further discussion is given in Chapter 7. We outline a few issues
here, to counter some of the more common misconceptions about what
is assumed in deriving density or abundance estimates.

Most model selection procedures and some variance estimation pro-
cedures assume that objects are randomly and independently distributed
throughout the study area. Provided lines are randomly located, or a
systematic grid of lines is randomly positioned in the study area, the
assumption is not required. If object density is highly variable, or
dependence between detections is strong, then the possible effect on
model selection should be borne in mind, and robust variance methods
should be adopted, with care taken to ensure that the correct sampling
unit is selected; whether a detection associated with one sampling unit
is made should be largely independent of detections made in other
sampling units. Often, all effort carried out by a single observer in a
single session comprises a suitable sampling unit. Detections made
within the unit might be highly dependent (e.g. if one bird calls in
response to the calls of another, both might be detected by the observer,
or encounter rate might be abnormally high on one leg of a marine
mammal survey because of exceptional sighting conditions). Between
units, dependence should be slight. If random lines are used, the appro-
priate sampling unit is the line, and all data associated with it. If the
design comprises a systematic grid of lines, use of lines as sampling units
should again prove satisfactory. These issues are discussed further in
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Section 3.7. The most extreme departure from independent detections
is when objects occur in clusters. Strategies for this case are outlined in
Section 4.8.

Estimation of g(0) for line transect surveys is considered in Chapter
6. There is currently no approach to this problem that is wholly
satisfactory, so whenever possible, surveys should be designed to ensure
that g(0) = 1. The solution of guarding the centreline can be counter-
productive if this gives rise to two detection processes. If one process
generates detections at large distances, but is such that g(0) is appreci-
ably less than one, and the other generates detections only at small
distances, then the composite detection function will be impossible to
model adequately. If such a field strategy is adopted, data from the two
processes should be recorded and analysed separately, although prob-
lems are likely to remain. If it is suspected that g(0) is less than one,
methods that might increase it include using more observers to cover
the line, travelling more slowly along the line, using only experienced
observers, improving the training of observers, and upgrading optical
aids. For terrestrial surveys in which animals are flushed, trained dogs
can be an effective aid, allowing a wider area to be efficiently searched.

Random movement of objects before detection generates positive bias
in estimates of object density. Hiby (1986) showed that bias is small
provided that object movement is slow relative to that of the observer
(up to around a third of the observer’s speed). A strategy for line
transect analysis of fast moving objects is outlined in Section 7.6.
Movement in response to the observer is problematic, and is discussed
in Section 2.1. From a practical viewpoint, field procedures should be
developed that ensure that most detections occur at distances for which
responsive movement is unlikely to have occurred. In other words, the
observer should strive to detect the object before the object is able to
move far from its initial position in response to the observer’s presence.
If this is not possible, the methods of Turnock and Quinn (1991) or
Buckland and Turnock (1992), which use ancillary data to adjust for
the effect of movement, might be attempted. The latter method is
described in Section 6.4.

If the distance data appear to have a distinct mode away from the
origin, the analysis is problematic. This might happen by chance, as a
result of heaping, or through the presence of evasive movement prior
to detection. Some robust models will attempt to fit the data near the
origin, so that the mode of the density function is to the right of the
origin. In these cases, it is often prudent to constrain the estimated
detection function to be monotone non-increasing in an attempt to
minimize bias. A weak constraint is to impose the condition
g(x) < g(0) =1 for all x > 0. This condition is often sufficient to achieve
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a monotone non-increasing function and satisfactory estimates of f(0).
The alternative is a constraint forcing a strict non-increasing function
such that g(x;) = g(x;.,), where x; < x;,,. The default option of DIS-
TANCE imposes the strong constraint. To reduce the computational
cost of applying the constraint, the estimated density is evaluated at just
ten points, and the fit is modified if the constraint is not satisfied for
all successive pairs of these points. The user may instead select the weak
constraint, or override both constraints. DISTANCE warns the user if
a constraint has caused the model fit to be modified. In this case, the
bootstrap estimate of var( f(0)) is recommended, since the assumptions
on which the analytic variance is based are violated.

Consistent bias in distance estimation should be avoided. If distances
are overestimated by 10%, densities are underestimated by 9%; if they
are underestimated by 10%, densities are overestimated by 11%. If on
the other hand distance estimation is unbiased on average, measurement
errors must be large to be problematic. For marine surveys, reticles or
graticules (Section 7.4.2) are almost essential for accurate distance
estimation. In terrestrial surveys, distances can often be measured, and
if this is not practical, good range finders can be effective up to around
300 m. Distance categories can be accurately determined in aerial sur-
veys by lining up markers on the windows with markers or streamers
on the wing struts, although the height of the aircraft must be accurately
measured and constant. In hilly terrain, perpendicular distances from
the aircraft must be determined by other means.

4.10 Summary

Data analysis is relatively easy if the survey is well designed and the
data properly collected. The analysis of small samples, especially where
some assumptions have been violated, is more problematic. The analysis
of ‘good’ data, such as here, is relatively easy using available software.
Adequate analysis cannot be carried out without specialist software.
An objective strategy must be followed, such as that outlined in this
chapter and Section 2.5. The data must be checked for recording or
data-entry errors. Plotting the distance data as histograms will often
reveal anomalies that must be further considered. Truncation of some
observations in the right tail of the distance data should always receive
consideration. Several candidate, robust models should be considered.
The use of AIC and other criteria are helpful in selecting the best model,
or a small subset of good models, for final analysis and inference. Once
a model is selected, MLE is used to obtain parameter estimates and
measures of their precision. With good data (adequate sample size and
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validity of the key assumptions), inference using two or three good,
robust models is likely to yield similar estimates. This is reassuring
because the methods to select the best model are subject to uncertainty.

If objects on the centreline are missed, E(ﬁ) will be too low. If 20%
of objects on the centreline are missed, the density estimate can be
expected to show a negative bias of around 20%. Movement prior to
detection is also problematic. Measurement errors, especially near the
centreline, are more difficult to treat. If measurement errors are random,
then the sampling variance may be somewhat inflated, but bias may be
small. Systematic measurement errors invariably generate bias and
should be avoided. Valid inference depends on field design and attention
to the assumptions. While analysis procedures are robust to some types
of assumption failure, there is no substitute for quality data taken
carefully under the assumptions. Searching should be conducted such
that the distance data have a broad shoulder. The presence of a shoulder
makes model selection less important and improves the quality of
inference. The reader is urged to study the material in Chapter 7 prior
to the conduct of a survey involving distance sampling.

These strategies for analysis carry over to more complicated surveys
involving stratification, surveys repeated in time using the same lines,
multiple observers, aerial or underwater platforms, or samples of very
large areas. Some of these issues are illustrated in Chapter 8 (and by
Burnham et al. 1980: 41-55), and specialized theory is extended in
Chapter 6.

Surveys of clustered populations require additional care in counting
the number of individuals in each cluster detected and addressing the
possible size-biased aspects of such sampling. Plotting the cluster sizes
s; against the x; distances is always recommended. Our experience
suggests that size bias is often a minor issue if cluster size is not too
variable; proper truncation of perpendicular distance data can often
allow simple models to provide valid inference concerning the density
of clusters and individuals. However, if the largest cluster is, say, more
than five times the size of the smallest, correction for possible size bias
should be investigated. When cluster size is highly variable (e.g. from
one or two individuals to many thousands, as in some species of marine
mammals), then very careful modelling and analysis of the data is
required.

Populations in large, loose aggregations, scattered around the sample
area, are problematic. Theory and software are readily available for the
analysis of sample data from populations of individuals randomly dis-
tributed in space, and the same is true of populations distributed under
some regular stochastic process that generates some degree of spatial
aggregation, by computing var(n) empirically. Good theory and software
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now exist for the analysis of populations that are clustered in definable
clusters where the cluster size is not too variable. Difficulties arise when
populations are spatially distributed in loose clusters whose boundaries,
and therefore size, must be determined subjectively. This situation is in
need of additional research, but bootstrap methods may play an important
role in the analysis of such data. If at all possible, the location of each
individual object should be recorded in this circumstance, so that the
method of Section 4.8.2(b) can be applied, but the cluster to which each
individual belongs should also be noted, to allow comparative analyses of
clusters. Populations in large or highly variable groups require great care
in estimating E(s) in ways that minimize or avoid bias. Estimation of average
cluster size must receive special emphasis in the design of the survey and the
pilot study (e.g. temporarily leaving the planned centreline in aerial surveys
of cetaceans to count individuals more accurately).

The following is intended as a crude checklist of the stages required
to carry out a full analysis of line transect data. Not all steps are
necessarily required in any given analysis, especially if similar data sets
have been analysed previously.

1. Key in and validate the data. The data should not be aggregated in
any way prior to entry. Thus if distances are ungrouped, they should
not be entered as grouped data, even if they are subsequently grouped
for analysis. Distances should be entered by line, so that individual
lines can be defined as the sampling units. For stratified designs,
these lines should be allocated to their strata.

2. Plot histograms of the perpendicular distance data, using different
choices for the cutpoints, and fit a preliminary model to the data.
Examine the histograms for evidence of failure of assumptions. If
data are ungrouped, assess whether they should be grouped before
analysis, selecting group cutpoints to reduce the effect of heaping,
or to alleviate the effects of a spurious spike in the data at zero
distance (Section 4.5). If data are grouped, assess whether any groups
should be amalgamated.

3. Identify a truncation point w for perpendicular distances, preferably
such that g(w) = 0.15, although truncation of roughly 5% of obser-
vations is often satisfactory (Section 4.3). Assess from the histograms
whether this truncation distance is reasonable; if not, select one or
more alternatives. Try fitting a few models, possibly with different
grouping options or different truncation points.

4. Where relevant, select an appropriate truncation point w and an
appropriate choice of grouping (if any). Fit several models that
satisfy the model robustness, shape and estimator efficiency criteria.
We recommend some or all combinations of a half-normal, uniform
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or hazard-rate key with simple or Hermite polynomial or cosine
adjustments. Select a single model, for example using Akaike’s In-
formation Criterion, and assess its adequacy using goodness of fit
(Section 4.6). If the fit is poor, investigate the reasons, and evaluate
possible solutions. Assess the sensitivity of estimation to the model
selected; if sensitivity is high (e.g. the detection curve is excessively
spiked under one or more models), examine whether the estimates
from the selected model should be replaced or supplemented by those
from other models that yield adequate fits.

. If the detections are of clusters of objects, assess whether there is
evidence of size bias, and if necessary, try one or more of the methods
of Section 4.8 to correct for it.

. Having identified a model for the perpendicular distance data, review
the options for variance estimation, for stratifying some or all com-
ponents of estimation, and for including covariates. Select options
that are likely to reduce bias; of the options remaining, select those
that yield the most efficient estimation. Fit the data using the
preferred model(s) and options.
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