5 .

Point transects

5.1 Introduction

Songbird surveys often utilize point transects rather than line transects
for several reasons. Once the observer is at the point, he or she can
concentrate solely on detecting, locating and identifying birds, without
the need to traverse what may be difficult terrain; he or she can take
the easiest route into and away from the point, whereas good line
transect practice dictates that the observer follows routes determined in
advance and according to a randomized design. Further, patchy habitats
can be sampled more easily by point transects. Frequently, density
estimates are required for each habitat type, or estimation is stratified
by habitat to improve precision. Designing a point transect survey so
that each habitat type is represented in the desired proportions is easier
than for line transects, and describing the vegetation structure associated
with a point is also easier than for a line. If line transects are used in
patchy habitats, either each line traverses several habitat types, and data
must be recorded separately for each section of line within a single
habitat type, or the design comprises many short lines, so that end
effects (e.g. objects detected behind the observer when he or she first
starts a transect, or objects detected by the observer as he or she
approaches the end of a transect, which are beyond the area to be
surveyed) become problematic. Other advantages of point transects are
that known distances from the points may be flagged, to aid distance
estimation, and only the observer-to-object distance is required, which
is easier to estimate than the perpendicular distance required in line
transect sampling if the observer is far from that part of the line closest
to the object.

At the time of writing, point transect sampling seems to be restricted
to bird surveys, although the theory also applies to the cue count and
trapping web methods described in Chapter 6. The disadvantages of
point transect sampling that make it unsuitable for many purposes
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include the following. Objects may be disturbed or flushed by an
observer approaching the point. It is difficult to determine which of
these would have been detected from the point, but if they are ignored,
density will be underestimated. The observer may detect many objects
and waste much time while travelling between points; for line transects,
a higher proportion of time in the field is spent surveying, and a higher
proportion of detections is made while surveying. Thus, point transects
may be inefficient for objects that occur at low densities.

This chapter illustrates point transect analysis through simulated data
sets for which the parameters are known. As in Chapter 4, a simple
data set is first introduced. Truncation of the distance data, modelling
the spatial variation of objects to estimate var(n), grouping of data, and
model selection philosophy and methods are then addressed. Having
selected an appropriate model, estimation of density and measures of
precision are discussed. In a final example, the objects are assumed to
occur in clusters (e.g. family parties or flocks).

5.2 Example data

The example data were generated from a half-normal detection function,
g(r) = exp(— r*/26%), 0 < r < o with 6 = 10 m. There were k = 30 points,
and the number of sightings per point followed a Poisson distribution
with parameter E(n) =5,i=1, ..., k. Each sighting is of a single object.
Thus E(n) = 5 x 30 = 150, #(0) = 1/6° = 0.01, and true density is

p - E0) - hO)

= 0.00796 objects/m* = 79.6 objects/ha
2nk

Untruncated data generated from this model, together with the fitted
half-normal model, are shown in Fig. 5.1. Data truncated at 20 m and
the corresponding fit of the half-normal are shown in Fig. 5.2. For
comparison, the fit of the uniform + one term simple polynomial detec-
tion function is shown in Fig. 5.3.

The histograms of Figs 5.1 and 5.2 illustrate two methods of presen-
ting point transect data. In Figs 5.1b and 5.2b, the frequency of
distances is shown by distance interval, as for a conventional histogram.
The curve is the fitted probability density function of recorded distances,
with scale chosen to match that of the frequency data. The parameter
h(0) is estimated by the slope of this curve at distance r = 0. At small
distances, the function increases because area surveyed at a given
distance increases with distance from the point. For example, the area
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Fig. 5.1. Histograms of the example data using 20 distance categories. The fit
of the half-normal detection function to untruncated data is shown in (a), in
which frequencies are divided by detection distance, and the corresponding
density function is shown in (b).
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Fig. 5.2. Histograms of the example data, truncated at 20 m, using five distance
categories. The half-normal model, fitted to the ungrouped data, is shown and
was used for final analysis of these data. The fitted detection function is shown
in (a), in which frequencies are divided by detection distance, and the corres-
ponding density function is shown in (b).
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Fig. 5.3. The fit of the detection function using a uniform key with a single
simple polynomial adjustment term to the example data, ungrouped and trun-
cated at w =20 m.

surveyed between r and r + §, where 8 is small, is approximately 2nrd,
whereas the area between 2r and 2r + 3 is roughly 4nrd. To correct for
this increase in area, the ith distance r; may be assigned a weight 1/r;.
For each distance interval, these weights are summed across those
observations falling within the interval. The sums are the ‘corrected
frequencies’ of Figs 5.1a and 5.2a. To guard against infinite weights,
program DISTANCE assigns weights to any zero distances equal to the
weight for the smallest non-zero distance. If data are in frequency form,
DISTANCE approximates the weights by the reciprocals of the mid-
points of the groups. The fitted detection function, plotted so that its
scale corresponds to that of the data, is also given in Figs 5.1a and
5.2a. Note that the detection function may sometimes appear to fit badly
at small distances, as in Fig. 5.2; this is not a programming error, but
arises because of the deceptive nature of point transect data. Relatively
few distances are recorded close to the point, where area surveyed is
small, so the fit of the model is not heavily influenced by distances close
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to zero, whereas the height of the first histogram bar is dominated by
small distances. The corresponding density is plotted with untrans-
formed frequencies, and should appear to fit the data well, as in
Fig. 5.2b, provided heaping is not severe, adequate truncation is carried
out, and an appropriate model is selected.

5.3 Truncation

The largest detection distance in the example data was 34.16 m, consid-
erably greater than the second largest of 26.87 m (Fig. 5.1). Unless the
true detection function is somehow known (as it is for this simulated
example), large distances can prove difficult to model, and the extra
terms required increase the variance in A(0). If the uniform + simple
polynomial model is fitted to the untruncated data of Fig. 5.1, four
polynomial terms are required, and a less plausible shape for the
detection function is obtained than for the single term fit of Fig. 5.3.
In Chapter 4, we suggested as rules of thumb that either roughly 5% of
observations be truncated or truncation distance w be chosen such that
g(w) = 0.15. These rules do not carry across to point transects, for which

Table 5.1. Summary of AIC values for two truncation values {(w) for the example
data analysed as ungrouped and three different groupings (five groups of equal
width, 20 groups of equal width, and five unequal groups such that the number
detected was nearly equal in each group). For each analysis, the model with the
smallest AIC is indicated by an asterisk

w=20m w = largest obsn
Data Model (key + No. of parameters No. of parameters
type adjustment) Key Adjust. AIC Key Adjust. AIC
Ungrouped Uniform + cosine 0 i 765.51 0 2 918.46*
Uniform + polynomial 0 1 764.48 0 4 92232
Half-normal + Hermite 1 0  764.31* 1 0 919.16
Hazard-rate + cosine 2 0 767.22 2 1 919.79
Grouped  Uniform + cosine 0 1 403.36 0 2 374.06*
(5 equal)  Uniform + polynomial 0 1 400.83* 0 4 377.78
Half-normal + Hermite 1 0 401.97 1 1 374.22
Hazard-rate + cosine 2 0 403.52 2 1 37591
Grouped  Uniform + cosine 0 i 768.16 0 2 764.20*
(20 equal) Uniform + polynomial 0 1 766.90 0 2 830.04
Half-normal + Hermite 1 0 766.85* 1 0 764.34
Hazard-rate + cosine 2 1 769.94 2 1 765.25
Grouped  Uniform + cosine 0 1 426.28 0 2 468.50
(5 unequal) Uniform + polynomial 0 1 426.69 0 4 47691
Half-normal + Hermite 1 0 425.93* 1 0  467.17*
Hazard-rate + cosine 2 0 428.04 2 0 47239
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a higher proportion of detections occurs in the tail of the detection
function. This can be seen in Fig. 5.1; Fig. 5.1a shows that probability
of detection is as small as 0.12 at a distance of 20 m, yet 13 of 144
observations (9%) lie beyond 20 m (Fig. 5.1b). We suggest that roughly
10% of observations should be truncated for point transects, or alter-
natively, w should be chosen such that g(w) = 0.1, where g(w) is esti-
mated from a preliminary fit of a plausible model to the data. In this
example, a truncation distance of 20 m roughly satisfies both criteria,
and is used subsequently for the example data.

Truncation of the data at w = 20 m removed 13 detections. If a series
expansion model is used, up to three fewer parameters are required to
model the truncated data than the untruncated data (Table 5.1). Outliers
in the right tail of the distance distribution required additional adjust-
ment parameters. Except for the hazard-rate model, which performed
relatively poorly on these data, density estimates varied more when data
were untruncated (Table 5.2). The poor performance of the uniform +
polynomial model when fitted to untruncated data divided into 20

Table 5.2 Summary of estimated density (13) and coefficient of variation (cv)
for two truncation values (w) for the example data. Estimates are derived for
four robust models of the detection function. The data analysis was based on
ungrouped data and three different groupings (five groups of equal width, 20
groups of equal width, and five unequal groups such that the number detected
was equal in each group)

Truncation
Data Model (key + w=20m w = largest obsn
type adjustment) D cv (%) D cv (%)
Ungrouped  Uniform + cosine 75.05 14.4 74.13 10.6
Uniform + polynomial 60.76 12.1 70.88 18.0
Half-normal + Hermite 70.82 15.7 79.62 12.6
Hazard-rate + cosine 62.36 18.7 71.02 18.1
Grouped Uniform + cosine 73.74 14.5 73.77 11.5
(5 equal) Uniform + polynomial 62.01 12.7 70.14 25.7
Half-normal + Hermite 69.06 16.0 64.53 26.3
Hazard-rate + cosine 52.14 14.5 79.13 17.2
Grouped Uniform + cosine 75.54 14.0 74.24 10.7
(20 equal) Uniform + polynomial 61.09 12.2 42.26 9.0
Half-normal + Hermite 71.30 15.6 80.25 12.3
Hazard-rate + cosine 82.98 26.9 70.85 18.6
Grouped Uniform + cosine 74.91 14.3 74.36 15.8
(5 unequal) Uniform + polynomial 61.93 12.8 57.45 37.0
Half-normal + Hermite 71.57 15.8 80.73 13.0
Hazard-rate + cosine 84.76 37.2 57.50 13.9
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groups was because DISTANCE failed to converge when attempting to
fit a better model; convergence problems are encountered more com-
monly when appropriate truncation is not carried out. If the correct
model is known and used, then truncation is not necessary provided the
measurements are exact and no evasive movement prior to detection
occurs. However, the true model is never known in field surveys.

Truncation of the distance data deletes outliers and facilitates model
fitting. However, as some data are discarded, the uncertainty in D may
increase. For the example data, when the true model was used (i.e. the
half-normal), the coefficient of variation was around 3% higher for
analyses of truncated data in three of the four analyses, but 10% lower
(16.0%, compared with 26.3%) in one of the analyses of grouped data.
When an incorrect model was fitted, the cv increased after truncation
in eight analyses and decreased in four.

The true density in this example was 79.6 objects/ha. In exactly one
half of the 16 analyses of Table 5.2, the estimate was closer to the true
density after truncation than before. The case for truncation is therefore
not compelling for these simulated data. However, real data tend to be
less well behaved, and if no truncation is imposed in the field, truncation
at the analysis stage is advisable.

5.4 Estimating the variance in sample size

If objects were known to be distributed at random, the distribution of
sample size » would be Poisson with var(n) = E(n), so that Var(n) = n.
Most biological populations exhibit some degree of clumping, so that
var(n) > E(n). If the survey is well designed so that points are spread
either systematically or randomly throughout the study area, or within
each stratum if the study area is divided into strata, then point transect
methods are ideally suited to estimating var(n) empirically, from the
variability in sample size between individual points. For the example
data, there were k = 30 points, and sample sizes n; within the truncation
distance of w=20m were 1, 1, 5, 6, 3,8,7,5,3,4,1,8,3,1, 2,7, 4,
4,6,7,6,8,4,3,5 2,4,2,9 and 2.
From Section 3.7.2,

k
Vat(n) = k Y, (i - 1)1tk = 1)

i=1

with k& — 1 degrees of freedom. All counts here are positive; had any
been zero, they would be retained when calculating the variance. For
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the example, the above formula yields Vat(n) = 172.7, or §&(n) = 13.14.
Equivalently, the variance of the mean number of objects per point,
n =n/k = 4.367, may be estimated:

k
Gar(n) = Y, (n;— n)*/{k - (k - 1)}

i=1

so that Var(n)=0.1919=Var(n)/k®. Since n=131 after truncation,
Var(n) > n, indicating possible clumping of objects. However, the vari-
ance-mean ratio does not differ significantly from one (p = 0.12):

Vat ()
-1y 2 _ 389
which is a value from i _; = x3 if the true distribution of » is Poisson.

For this simulated example, we know the true distribution is indeed
Poisson.

5.5 Analysis of grouped or ungrouped data

Because the assumptions of point transect sampling are known to hold
for the example, analysis of ungrouped data is preferred. Generally, little
efficiency is lost by grouping data prior to analysis, even with as few
as five or six well-chosen intervals. If recorded distances tend to be rounded
to favoured values (heaping), or if there is evidence of movement of
objects in response to the observer before detection, appropriate group-
ing of data can lead to more robust estimation of density (Chapter 7).
Often, there are sound practical reasons for recording data by distance
group, instead of measuring each individual detection distance, in which
case the field methods determine the analysis option.

For the example, estimated densities tended to be rather more variable
between models when analysis was based on grouped data, although
coefficients of variation were not consistently higher (Table 5.2). Provided
distances can be measured accurately, and movement in response to the
observer before detection is not a problem, we recommend that analysis
should be of ungrouped data. Otherwise, data should be grouped. If
heaping occurs, group cutpoints should be selected so that favoured
distances for rounding tend to occur midway between cutpoints. Choice
of group interval is often more critical than for line transect sampling,
since a smaller proportion of detections occurs near zero distance, yet
it is the value of a function at zero distance, 4(0), that must be estimated.
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It is this difficulty that gives rise to the relatively large variability in
density estimates in Table 5.2. On the other hand, although poor
practice, it is not uncommon for 10% or more of perpendicular distances
to be recorded as on the line in line transect sampling. It is rare for an
object to be recorded as at the point (r = 0) in point transect sampling,
so that spurious spikes in the detection function at small distances are
uncommon.

5.6 Model selection
5.6.1 The models

The same four models for the detection function are considered as in
Chapter 4. Thus, the uniform, half-normal and hazard-rate models are
used as key functions. Cosine and simple polynomial expansions are
used with the uniform key, Hermite polynomials are used with the
half-normal key, and a cosine expansion is used with the hazard-rate
key. The data were generated under a half-normal detection function so
we might expect the half-normal key to be sufficient without any
adjustment terms. However, the data were stochastically generated, so
that the addition of a Hermite polynomial term in one analysis of Table
5.1 is not particularly surprising. A histogram of the data using 15-20
intervals, as in Fig. 5.1, tends to reveal the characteristics of the data,
such as outliers, heaping, measurement errors, and evasive movement
prior to detection.

5.6.2 Likelihood ratio tests

If default settings are accepted, DISTANCE determines the number of
adjustment terms required to attain an adequate fit of the data using
likelihood ratio tests. Consider the example data, ungrouped and with
w=20m, analysed using the uniform key with a single polynomial
adjustment (Table 5.1). How was it determined that a single adjustment
was required for this model? Let &, be the value of the likelihood
for fitting a uniform key alone, let &, be the maximum value of
the likelihood when a single polynomial term is added, and &, be the
value after fitting two polynomial terms. Program DISTANCE gives
log, (£,) = — 394.986, log. (££,) = — 381.239 and log, (¥£,) = — 381.061. The
likelihood ratio test of the hypothesis that the uniform key provides an
adequate description of the data against the alternative that a single
polynomial adjustment to the key provides a better fit is carried out by
calculating
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x* = -2 log. (Lo/E)
= - 2[log. (£o) — log. (£1)]
=— 2[- 394.986 + 381.239]
=27.49

If the true model is the uniform key without adjustment, this statistic
is distributed asymptotically as xi. In general, the df for this test statistic
is the difference in the number of parameters between the two models
being tested. A value of 27.49 is much larger than would be expected
if the distribution really was xi (p < 0.001), suggesting that a uniform
detection function is not an adequate description of the data, a conclu-
sion that is obvious from Fig. 5.3. Less obvious is whether an additional
polynomial term should be fitted. The above test is now carried out,
but with &, replacing &, and ¥, replacing ¥;:

x? == 2[log. (£)) — loge (£2)]
=0.36

Again comparing with yi, this test statistic is not significant (p = 0.55),
so a further term does not improve the fit of the model significantly.
Our experience suggests that a larger value than the conventional
o = 0.05 is often preferable for the size of the test, and we suggest
o = 0.15 (Section 3.5.2).

If the likelihood ratio test indicates that a further term is not required
but goodness of fit (below) indicates that the fit is poor, the addition
of two terms (using DISTANCE option LOOKAHEAD = 2) rather than
just one may provide a significantly better fit. Another solution is to change
the default setting of SELECT = sequential to SELECT = forward or
SELECT = all in DISTANCE.

5.6.3 Akaike’s Information Criterion

Akaike’s Information Criterion (AIC) provides a quantitative method
for model selection, whether models are hierarchical or not (Section
3.5.3). The adequacy of the selected model should still be assessed, for
example using the usual > goodness of fit statistics and visual inspection
of both the estimated detection function and the corresponding density
plotted on histograms of the data, as shown in Figs 5.1 and 5.2. The
plots allow the fit of the model near the point to be assessed; some lack
of fit in the right tail of the data can be tolerated.

AIC was computed for the four models for both grouped and un-
grouped data, with truncation distance w set first to 20 m (13 observations

151



POINT TRANSECTS

truncated) and then to the largest observation, selected so that no
observations were truncated (Table 5.1). Three sets of cutpoints were
considered for grouped analyses under each model. Set 1 had five equal
groups, set 2 had 20 equal groups, and set 3 had five groups whose
width varied, such that the number detected in each distance category
was nearly equal. AIC cannot be used to select between models if the
truncation distances w differ, or, in the case of an analysis of grouped
data, if the cutpoints differ, so AIC values can only be compared within
each of the eight sets of results in Table 5.1.

The AIC values in Table 5.1 select the half-normal (true) model in
four of the eight sets of results. The uniform key with cosine adjustments
is selected three times, and the uniform key with simple polynomial
adjustments once. Since the half-normal model is selected for the
preferred analysis of ungrouped data, truncated at 20 m, the main analysis
will be based upon it. However, the AIC value for the uniform +
polynomial model is almost the same as for the half-normal + Hermite
model, and might equally well be adopted on this basis. We examine
the consequences of selecting this model later. The only model that
might reasonably be excluded from further consideration on the basis
of its AIC value is the hazard-rate + cosine model.

Table 5.3 Goodness of fit statistics for models fitted to the
example data with w =20 m and 20 groups

Model xz df p

Uniform + cosine 20.34 17 0.26
Uniform + polynomial 19.84 17 0.28
Half-normal + Hermite  19.20 17 0.32
Hazard-rate + cosine 20.32 16 0.21

5.6.4 Goodness of fit

Goodness of fit is another useful tool for model selection (Section
3.5.4). Goodness of fit statistics for the example data without grouping,
with w =20 m, and using 20 groups of equal width to evaluate the x’
statistic, are given in Table 5.3. These data were taken when all the
assumptions were met, and all four models fit the data well. If a model
was to be selected from these results, there might be a marginal pref-
erence for the half-normal + Hermite polynomial model, which we know
to be the correct choice in this case. Heaping in real data sets generally
means that fewer than 20 groups should be used, with perhaps six to
eight usually being reasonable. If heaping is severe, fewer groups might
be required, ideally with each preferred rounding distance falling near
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the middle of each group. The grouped nature of the (rounded) data is
then correctly recognized in the analysis. If cutpoints are badly chosen,
heaping will lead to spurious significant % values. If data are collected
as grouped, the group cutpoints are determined before analysis, although
consecutive groups may be merged.

5.7 Estimation of density and measures of precision
5.7.1 The standard analysis

The preferred analysis from the above considerations comprises the fit
of the half-normal key without adjustments to ungrouped data, trunc-
ated at w = 20 m. The variance of n is estimated empirically.

Replacing the parameters of Equation 3.5 by their estimators and
simplifying under the assumptions that objects at zero distance are
detected with certainty, detected objects are recorded irrespective of their
angle from the observer, and objects do not occur in clusters, estimated
density becomes

n - h(0)

D=
2nk

where n is the number of objects detected, k is the number of point
transects sampled, and 4(0) is the slope of the estimated density /(r) of
observed detection distances evaluated at r =0; A(0) = 2®/v, where v is
the effective area of detection.

For the example data, and adopting the preferred analysis, program
DISTANCE yields A(0) = 0.01019, with §&{h(0)} = 0.001233 (based on
approximately n = 131 degrees of freedom). The units of 4(0) are m 2

Thus

131 x 0.01019

D= = 0.00708 objects/m* or 70.8 objects/ha
2n x 30
The estimator of the sampling variance of this estimate is

var(D) = D - {[cvm)] + [ev {A(0)}]*}

where [ev(m)])* = Vat(n)/n® = 172.7/131% = 0.010065
and [ev{R(0)}] = Vat {h(0)}/{h(0)}> = 0.001233/0.01019° = 0.01464
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Then var(D) = (70.8)* [0.010065 + 0.01464]
=123.84

and §e(D) = Vvar(D)
=11.13

The coefficient of variation of estimated density is cv(D) = §&(D)/D =
15.7%, which is likely to be adequate for some purposes. Note that
even with a sample size of »n =131 after truncation, the coefficient of
variation is over 15%. A 95% confidence interval could be calculated as
D + 1.96(s8(D)), giving the interval [49.0, 92.6]. Log-based confidence
intervals offer improved coverage by allowing for the asymmetric shape
of the sampling distribution of D for small n. Applying the procedure
of Section 3.7.1, the interval [52.1, 96.2] is obtained, which is wider than
the symmetric interval, but is a better measure of the uncertainty in the
estimate D = 70.8. In line transect sampling, the variance of D is usually
primarily due to the variance in n, but this is less often the case in point
transect sampling, where precision in 2(0) can be poor; here, variance
in n accounts for 41% of the total variance estimate.

If the uniform model with polynomial adjustments is adopted, estim-
ated density is 60.9 objects/ha, with 95% log-based confidence interval
[48.2, 77.0]. The true parameter value, D = 79.6 objects/ha, lies above
the upper limit of this interval. We return to this example later, to show
how the bootstrap may be used to estimate variances and to determine
confidence limits that incorporate model misspecification uncertainty.

For some purposes it is convenient to have a measure of detectability.
For example, it may be useful to assess whether the detectability for a
species is a function of habitat, which may have implications for survey
design. The effective radius of detection p = J(v/m), estimated by
p =V{2/h(0)}, may be used for this purpose. For long-tailed detection
functions, p may be considerably larger than intuition would suggest,
because large numbers of objects are detected at far distances, where
the area surveyed is great, relative to close distances, where the surveyed
area is small. A parameter that is unaffected either by this phenomenon
or by truncation is ry,;, the distance at which the probability of detecting
an object is one-half. For any fitted detection function g(r), it may be
estimated by solving g(f1,2) =0.5 for 7. For the example with
w=20m and p=14.0m and 7,,, = 13.0m.

We know that the true detection function is half-normal for the
example. Using that knowledge, closed form estimators are available
and the analysis is simple to carry out by hand, provided the data are
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both ungrouped and untruncated. Using the results of Chapter 3,
Section 3.4.4,

n
=Y ri/2n=94.81 m’

i=1

It follows that
h(0) = 2m/9 = 1/6% = 0.01055

and estimated density is
D = 144 x fl(O)/(Zn x 30) = 0.00806 objects/m’, or 80.6 objects/ha

The effective radius of detection is estimated as p = V(26°) = 13.8 m, and
the radius at which probability of detection is one-half is estimated by
12 = V(267 log,2) = 11.5 m. These estimates are in excellent agreement
with the true values of D = 79.6 objects/ha, p =14.1 m, and r,;, = 11.8 m.

The results of Section 3.4 also yield variance estimates for this special
case:

Var[(0)] = 4/% (1P -26%)*=8.850x 107", or se[A(0)] = 9.407 x 10" *
i=1
Thus [cv{#(0)}] = var {A(0)}/{h(0)}* = 0.0009407°/0.01055% = 0.007951
Also, [cv(n)]’ = 0.010065 from above
so that @(b) =D*. {lcvm)) + [cv{fz(O)}]Z}
= (80.6)? [0.010065 + 0.007951]
=117.04

and s&(D) =10.82
The 95% log-based confidence interval is then [62.0, 104.7] objects/ha.
5.7.2 Bootstrap variances and confidence intervals

The bootstrap is a robust method, based on resampling, for quantifying
precision of estimates. One circumstance in which the bootstrap is likely
to be preferred is when the user wishes to incorporate in the standard
error the component of variation arising from estimating the number of
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polynomial or Fourier series adjustments to be carried out. We recom-
mend the following inplementation.

Generate a bootstrap sample by selecting points with replacement
from the k points recorded until the bootstrap sample also comprises &
points. Repeat until B bootstrap samples have been selected. Typi-
cally, B will be around 200 to 1000. Density D is estimated from
each bootstrap sample, and the estimates are ordered, to give b(i),

i=1,..., B. Then
b3={
i

A B A A~
Vatp (Dg) = { S (D) - Dn)z} /(B-1)

i=1

M

ﬁ(i)}/B

1

and

while a 100(1 — 20))% confidence interval for D is given by [D, i D s
with j= (B+ 1)a and j' = (B + 1)(1 — o). It is convenient to select B so
that j and j* are integer. Thus for o = 0.025, one might select from the
following values: 199, 239, 279, .. ., 999. The estimate D calculated from
the original data set is usually used in preference to the bootstrap
estimate Djp, with se(D) estimated by V {Vats(Ds)}. Applying this to the
example with B = 399 (so that (B + 1)a = 10, an integer, for o = 0.025),
we take a sample of 30 points at random and with replacement from
the 30 in the example data set. Suppose this yields the following points:
1,1, 3, 5,6, 6, 6, 8 10, 10, 11, 12, 15, 15, 17, 17, 17, 18, 18, 20, 21,
22, 22, 25, 26, 26, 26, 28, 30, 30. The bootstrap sample therefore
comprises each detection distance recorded at points 6, 17 and 26 three
times, each distance recorded at points 1, 10, 15, 18, 22 and 30 twice,
and each distance from points 3, 5, 8, 11, 12, 20, 21, 25 and 28 once.
Those for remaining points are excluded. This bootstrap sample is analysed
in exactly the same way as the actual sample, to yield an estimate D,. The
exercise is repeated 399 times. The sample variance of these bootstrap
estimates was 159.8, giving s¢(D) = 12.6 objects/ha. After ordering the
bootstrap estimates, the tenth smallest value (j = (B + 1)a = 10) was found
to be Dyg = 53.6 and the tenth largest value was Do = 100.7, giving
an approximate 95% confidence interval for D of (53.6, 100.7) objects/ha.
This compares with D+1.96- s&(D) = (60.8, 100.4)ha by the more tradi-
tional method. Assuming the distribution of Dis log-normal and using
the result of Burnham et al. (1987: 212), we obtain the interval (63.1,
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102.9) objects/ha. Note that the lower limit is smaller for the bootstrap
method. This is because cosine adjustments to the half-normal fit
sometimes generated a fitted detection function with a flatter shoulder
than that of the half-normal. If no adjustments to the half-normal fit
are allowed, the bootstrap should duplicate the analytic method, except
asymptotic normality is not assumed when setting confidence limits.
Applying this with B = 399 gives §&(D) = 10.8 and an approximate 95%
confidence interval for D of (62.5, 102.7), which is shifted slightly to
the right of the symmetric analytic interval, reflecting the greater uncer-
tainty in the upper limit, but agrees well with the interval calculated
assuming the distribution of D is log-normal.

Variances of functions of the fitted density, such as p or r,,, may
be estimated using the methods of Section 3.4, or from the above
bootstrap method, replacing the bootstrap estimate of density ﬁ(i) by
the appropriate estimate, such as pg, or ry,. Adopting the analytic
approach,

p )
= 1/NQ26°
062 (207
so that
se(p) = */(266)/\/l 3 (- 262)2] =0.61 m
i=1
and

§&(f1/2) = 88(P) - V(loge2) =0.51 m

By comparison, the bootstrap method yields $¢(p) =1.12m, with
95% confidence interval (12.62, 16.84) m, and §&(r1,2) = 0.93 m, with 95%
confidence interval (10.51, 14.02) m. If no cosine adjustments are allowed,
as above, we get s€(p) = 0.66 m, with 95% confidence interval (12.55,
15.00) m, and $&(r1/2) = 0.55m, with 95% confidence interval (10.45,
12.49) m. These results are in good agreement with the analytic results.

We noted earlier that the AIC value for the preferred analysis of the
example data was almost the same as that using the uniform key with
a single polynomial adjustment. However, the latter model gave an
estimated density of 60.9 objects/ha, with 95% confidence interval [48.2,
77.0]. Thus the true parameter value, D = 79.6 objects/ha, is outside the
confidence interval. The bootstrap option within DISTANCE was im-
plemented with B =200 replicates, to obtain a variance for A(0) that
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allows for estimation of the number of polynomial terms required. It
gave se{h(O)} = 0.000783 compared with the analytic estimate of
se{h(O)} = 0.000581, which is conditional on a single term adjustment to
the uniform key. Thus the variance is larger as expected, and the revised
95% confidence limit for D is [46.6, 79.3]. The true density is therefore
still just outside the interval, probably because the uniform + polynomial
model gives a negatively biased estimate of density for this data set. To
attempt to improve the variance estimate corresponding to D = 60.9, a
component of variance corresponding to model misspecification bias
should be estimated. We do this by generating 199 bootstrap samples,
and analysing each resample by the three models of Table 5.1 that gave
competitive AIC values, namely uniform + cosine, uniform + polynomial
and half-normal + Hermite polynomial. In each resample, the bootstrap
estimate of density is taken to be the estimated density under the model
with the smallest AIC. Under this rule, the uniform + cosine model was
selected in 49 of the 199 replicates, the uniform + polynomial model in
92, and the half-normal + Hermite polynomial model in the remaining
58. The 95% percentile confidence interval was [48.0, 94.5] objects/ha,
which is wider than the intervals obtained by assuming that the selected
model is the correct model, and comfortably includes the true parameter
value, D = 79.6.

In the above bootstrap implementations, the sampling unit was taken
to be the individual point. This is valid if points are randomly dis-
tributed through the study area, and provides a good approximation if
points are arranged as a regular grid. To reduce travel time between
points, transect lines are sometimes defined, and counts are made at
regular points along each line. If the spacing between lines is similar to
the distance between neighbouring points on the same line, then the
point may still be taken as the sampling unit. However, if separation
between lines is large, then the line should be taken as the sampling
unit. Thus lines are selected with replacement until the number of lines
in the resample is equal to the number in the real sample, or, if the
number of points per line is very variable, until the number of points
in the resample is as close as possible to the number in the real sample.
If a line is selected, the data from all points on that line are included
in the resample.

5.8 Estimation when the objects are in clusters
If point transects are used for objects that are sometimes recorded in
clusters during the survey period, the recording unit should be the cluster,

not the individual object, and analyses should be based on clusters. In this
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section, various options for the analysis of clusters are considered. If it
is assumed that (i) probability of detection is independent of cluster size
and (ii) cluster sizes are accurately recorded, or alternatively that they
are estimated without bias at all distances, then E(s) may be estimated
by the mean size of detected clusters. 5. Estimated cluster density is then

. n-h0)
D. = 2nk

and estimated object density is

. A _ n-hO)-5s
D=D, 5=—"-2"2
s 2nk

Note that the formula for cluster density is identical to that for object
density when the objects do not occur in clusters. The formula for the
variance of D; is also identical to that given for object density in Section
5.7.1. The variance of object density is now estimated by

var(Ds) var(E)]
D; 57

Var(D) = D* -

_p. [v?rz(n) , O] | ks
n 2 ,
OF 5

where

@5 = 3 (5 - 9 intn - 1}

i=1

In practice, larger clusters often tend to be more detectable than small
clusters at greater distances, so that E(s), and hence D, are overestim-
ated. This is a form of size-biased sampling (Cox 1969; Patil and Ord
1976; Patil and Rao 1978; Rao and Portier 1985). Bias can be negative
if the size of a detected cluster at a large distance from the observer
tends to be underestimated. If either bias occurs, then the above method
should be modified or replaced.

The simplest approach is based on the fact that size bias in detected
clusters does not occur within a region around the point for which
detection is certain. Hence, E(s) may be estimated by the mean size of
clusters detected within distance v of the point, where g(v) is reasonably
close to one, say 0.6 or 0.8. In the second method, a cluster of size s;
at distance r; from the point is replaced by s; objects, each at distance
ri. Thus, the sampling unit is assumed to be the object rather than the
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cluster. For the third method, data are stratified by cluster size (Quinn
1979, 1985). The selected model is then fitted independently to the data
in each stratum. If size bias is large or cluster size very variable, smaller
truncation distances are likely to be required for strata corresponding
to small clusters. The final method estimates cluster density D conven-
tionally, as does the first. Then, given the r;, E(s) is estimated by
regression modelling of the relationship between s; and r. All four
approaches are illustrated in this section using program DISTANCE.

The data used to illustrate the four methods were simulated from a
half-normal detection function without truncation, in which the scale
parameter ¢ was a function of cluster size:

2 __ 2 .S—E(S)
{o(s)} —oo[l+b _—E(s) J

where 6, = 30 m, b = 0.75 and E(s) = 1.85 for the population. (In Chapter
4, o(s) was assumed to be a linear function of s; for point transects,
theoretical considerations suggest that it is more appropriate to assume
{o(s)}’ is a linear function of s.) Cluster sizes s were generated by
simulating values from the geometric distribution with rate E(s)-1and
adding one, and a cluster of size s was detected with probability

r2
g(r|s)=exp —Z{Ts)}z

The expected sample size was E(n) =96, distributed between k = 60
points, with var(n) =2.65- E(n). True densities were Dg =283 clus-
ters/km’ and D = 1.85 x 283 = 523 objects/km>. The bivariate detection
function g(r, s) is monotone non-increasing in r and monotone non-
decreasing in s. The detected cluster sizes are not a random sample from
the population of cluster sizes; the mean size of detected clusters 5 has
expectation > E(s).

A histogram of the untruncated distance data shows a rather long tail
(Fig. 5.4). Truncation at 70 m deleted just under 10% of observations
(eight from 92), and allowed the data to be modelled more reliably. The
same four models were applied as for Section 5.6: uniform + cosine,
uniform + polynomial, half-normal + Hermite polynomial and hazard-
rate + cosine. All four models fitted the truncated data well. AICs for
the four models were 691.8, 693.7, 692.6 and 693.1, which favour the
uniform + cosine model. We therefore use it to illustrate methods of
analysis of the example data.
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The uniform + cosine model for the untruncated data required three
cosine terms to adequately fit the right tail of the data (Fig. 5.4). By
truncating the data, only a single cosine term is required (Fig. 5.5), and
the size bias in the truncated sample of detected clusters is reduced. The
fit of the model was good (i =4.51; p = 0.48). The estimated density
of clusters was 258.1 clusters/km’ (5¢ = 52.2), compared with the true
value of 283. The mean cluster size from the untruncated sample data
was 2.293 (€ = 0.165), which is biased high due to the size-biased
sampling. The scatter plot of cluster size against detection distance (Fig.
5.6) shows wide scatter, but a significant correlation (r = 0.272). Trun-
cation at w= 70 m reduced this correlation to 0.180. Multiplying the
density of clusters by the uncorrected estimate of mean cluster size from
data truncated at 70 m (5= 2.202; $é(5) = 0.168), the density of individ-
uals is estimated as 574.6 objects/km’ with § = 115.1 and 95% con-
fidence interval [389.6, 847.5], which comfortably includes the true
density of 523 objects/km’.

5.8.1 Standard method with additional truncation

Observed mean cluster sizes and standard errors for a range of trunca-
tion distances are shown in Table 5.4. The detection function g(r) was
estimated using a truncation distance of w, while a truncation distance
of v(v < w) was used to estimate mean cluster size. It seems that 70 m
may be too large a truncation distance for unbiased estimation of mean
cluster size, but an appropriate distance is difficult to determine, because
mean cluster size does not stabilize as the truncation distance is reduced.
Possible choices for truncation distance v range between 21.5m, for
which §=1.650, and 46.9 m, giving 5=2.030. If strong size bias is

Table 5.4 Observed mean cluster sizes and standard errors for various
truncation distances v. Probability of detection at the truncation distance
for cluster size estimation, g(v), was estimated from a uniform + 1-term
cosine model with w=70m (Fig. S5.5) for v <70 m, and from a
uniform + 3-term cosine model with w = 120 m (Fig. 5.4) for v =120 m

Truncation

distance, v(m) n 5 5() gw)
120.0 92 2.293 0.165 0.005

70.0 84 2.202 0.168 0.07

46.9 67 2.030 0.183 0.30

36.8 52 2.135 0.228 0.50

31.9 38 2.079 0.243 0.60

27.0 31 1.806 0.199 0.70

21.5 20 1.650 0.232 0.80

14.9 10 2.000 0.422 0.90
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Fig. 5.4. Histograms of the example data using 20 distance categories for the
case where cluster size and detection distance are dependent. The fit of a
uniform + 3-term cosine detection function to untruncated data is shown in (a),
in which frequencies are divided by detection distance, and the corresponding
density function is shown in (b).
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Fig. 5.5. Histograms of the example data using five distance categories and
truncation at w = 70 m for the case where cluster size and detection distance are
dependent. The fit of a uniform + 1-term cosine detection function is shown in
(a), in which frequencies are divided by detection distance, and the corresponding
density function is shown in (b).
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suspected, a reasonable compromise might be v =27.0m, so that 5=
1.806 with §€ = 0.199. Replacing the estimates 5=2.202 and § = 0.168
by these values, density is estimated as 471.2 individuals/km? with
s¢ = 101.5and 95% CI1 [310.4, 715.3]. In view of the difficulty in selecting
v, and the sensitivity of the estimate to the choice, another approach
seems preferable in this instance.

5.8.2 Replacement of clusters by individuals

If a cluster of size s; is replaced by s; objects at the same distance, the
assumption that detections are independent is violated, invalidating
analytic variance estimates and model selection procedures. Robust
methods for variance estimation avoid the first difficulty, but model
selection is more problematic. One solution is to select a model taking
clusters as the sampling unit, then refit the model (with the same series
terms, if any) to the data with object as the sampling unit. Adopting
this strategy, a uniform + 1-term cosine model was fitted to the distance
data truncated at 70 m, and the following estimates obtained. Number
of objects detected, n = 185. Estimated density, D =526.2 objects/km’,
with analytic §¢ = 104.6 and 95% confidence interval [355.3, 779.1]. These
estimates are lower than those obtained assuming cluster size is inde-
pendent of distance, and the point estimate is appreciably closer to the
true density of 523 objects/km’. Average cluster size can be estimated
by the ratio of estimated object density (526.2) to estimated cluster
density (258.1), giving 2.039.

5.8.3 Stratification

Stratification by cluster size can be an effective way of handling size
bias. For the example data, if two strata are defined, one corresponding
to individual objects and the other to clusters (= two objects), sample
sizes before truncation are 36 and 56 respectively. If the second stra-
tum is split into clusters of size two and clusters of more than two
individuals, the respective sample sizes in the three strata before trun-
cation are 36, 27 and 29. The data were analysed for both choices of
stratification.

Results are summarized in Table 5.5. As for the line transect example
in the previous chapter, no precision is lost by stratification, despite the
small samples from which f(0) was estimated. The estimated densities
are lower than that obtained by assuming cluster size is independent of
detection distance, as would be expected if size bias is present. Both
stratifications yield similar estimated densities, and they bracket the
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Fig. 5.6. Scatterplot of the relationship between cluster size and detection
distance. The correlation coefficient is 0.272 (w = o).

estimate obtained by the previous method. The true density is 523
objects/km’, very close to both estimates. Mean cluster size may be
estimated by a weighted average of the mean size per stratum, with
weights equal to the estimated density of clusters by stratum. Alterna-
tively, E(s) may be estimated as overall D from the stratified analysis
divided by D, from the unstratified analysis. For two strata, this yields
E(s)=534.3/258.1 = 2.070, and for three strata, E(s) =524.0/258.1=2.030.
Both estimates are rather higher than the true mean cluster size of 1.85.

5.8.4 Regression estimator

Average cluster size can be estimated from a regression of cluster size
on estimated detection probability. This procedure estimates the average
cluster size for clusters close to the centreline, where detection is
assumed to be certain, and thus size bias is reduced. The loss in precision
in correcting for size bias using regression is generally small. The method
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of regressing zi = loge(s;) on g(x,) (Section 3.6.3), applied to the example
data, yields E(s) =1.772 and se{E(s)} \/[var{E(s)}] 0.125. The corres-
ponding density estimate is 462.2 individuals/km? with §& =91.6,
cv=19.8% and 95% confidence interval [313.8, 680.9]. The estimate
E(s) is close to the true parameter value of 1.85. The resulting density
estimate (462.2) is low relative to the true density (523), although the
confidence interval comfortably includes the true value.

Table 5.5 Summary of results for different stratification options. Model was
uniform with cosine adJustments distance data were truncated at w = 70 m. True
D =523 objects/km

Cluster Sample size Efective search

size  after truncation radius (m) D EE(ﬁ) 95% CI for D
All 84 41.3 574.6 115.1  (389.6, 847.5)
1 35 39.2 120.8 24.7

2-9 49 439 413.5 100.5

All 534.3 103.5  (366.8, 778.3)
1 35 39.2 120.8 24.7

2 24 41.6 147.1 422

3-9 25 46.0 256.1 80.9

All 524.0 945  (369.0, 744.1)

5.9 Assumptions

The assumptions of point transect sampling are discussed in Section 2.1.
There has been considerable confusion on whether objects must be
assumed to be randomly distributed, both in the literature and among
biologists. If objects are distributed stochastically independently from
each other, but with variable rate depending on location, then the
assumption that points rather than objects are randomly located suffices
unless the rate shows extreme variation over short distances (of the order
of a typical detection distance). If the rate can change appreciably in a
short distance or if the presence of one object greatly increases the
likelihood that another object is nearby (thus violating the assumption
that detections are independent events), then given random placement
of points, reliable estimation may still be possible provided robust
variance estimation methods are used and provided that the results of
goodness of fit and likelihood ratio tests (which will tend to give
spurious significances) are viewed with suspicion. The more serious the
departure from random, independent detections, the larger the sample
size required to yield reliable analyses. Robust empirical or resampling
methods should always be used for estimating the variance of sample
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size, as described in Section 5.7, to guard against the effects of clustered
detections. The most extreme departures from a random distribution of
objects are when the objects occur in well-defined clusters. In such cases,
the above problems are avoided by taking the cluster rather than the
object to be the sampling unit. Strict random placement of points can
be modified. For example, stratification of the study area allows samp-
ling intensity to vary between strata, or a regular grid of points may be
randomly superimposed on the area. Use of a regular grid allows the
biologist to control the distance between points.

Surveys should be designed to minimize departures from the assump-
tion that probability of detection at the point is unity (g(0) =1). For
example, the assumption is likely to be more reasonable for songbirds
if the recording time at each point is long (giving each bird time to
be detected) or if surveys are carried out in early morning, when
detectability may be an order of magnitude higher (Robbins 1981;
Skirvin 1981). We do not concur with the argument that early morning
should be avoided when carrying out point transects. The reasoning
behind it is that bird detectability varies rapidly during the first
hour or two of daylight. Although detectability may vary less later in
the day, it will also be lower, and densities of some species may be
appreciably underestimated. Whenever possible, survey work should be
carried out when detectability is greatest, and survey design should allow
for variation in detectability. Models that are robust to variable detect-
ability (pooling robust) should be used to analyse the data.

Time of season also determines whether it is reasonable to assume
that probability of detection at the point is unity. For multiple species
studies, it may be necessary to carry out surveys more than once, say
early and late in the season. For any given species, the data collected
closest to the time that it is most detectable can then be used. For many
songbirds, it may be practical to survey only territorial males.

For point transect sampling, we consider that it is necessary to assume
that the detection function has a shoulder because we believe that
reliable estimation is not possible if it fails, although small departures
from the strict mathematical requirement that g’(0) =0 need not be
serious. Unlike line transect data, only a very small proportion of point
transect distances is close to zero, because the area covered close to the
point is small. Thus, there is a case for designing surveys to ensure that
g(r)=1 out to some predetermined distance. If there is an area about
the point for which detection is perfect, then different point transect
models will tend to give more consistent estimation. When g’(0) = 0 but
g”(0) < 0, the stronger criterion of an area of perfect detection fails.
Methods based on squaring detection distances (Burnham et al. 1980:
195) and the method due to Ramsey and Scott (1979, 1981b) may then
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perform poorly. Even when the criterion is satisfied, but the distance
up to which detection is certain is close to zero, such methods can be
poor.

The mathematical theory assumes that random movement of objects
does not occur. In line transect sampling, random movement prior
to detection can be tolerated provided average speed of objects is
appreciably less than (i.e. up to about one-third of) the speed of the
observer (Hiby 1986). The problem is more serious for point tran-
sects, for which the observer is stationary. Bias occurs because prob-
ability of detection is a non-increasing function of distance from the
point, so that objects moving at random are more likely to be detected
when closer to the point, leading to overestimation of object density.
As noted above, the assumption that g(0) = 1 is more plausible if record-
ing time at each point is large, but bias arising from random object
movement increases with time at the point; thus recording time at each
point is a compromise, and is typically five to ten minutes for songbird
surveys.

Response to the observer may take the form of movement towards or
away from the observer, or of a change in the probability of detection
of the object. Movement towards the observer has a similar effect on
the data as random movement, and leads to overestimation of density
(Fig. 5.7). Movement away from the observer tends to give rise to
underestimation (Fig. 5.7), as does a decrease in detectability close to
the point, if this is sufficient to violate the assumption that g(0) = 1. An
increase in detectability, as when birds ‘scold’ the intruder, is generally
helpful. However, if birds also move in response to the observer, or if
females are seldom detected except very close to the point, the detection
function might be difficult to model satisfactorily. The effects of re-
sponse to the observer have been considered by Wildman and Ramsey
(1985), Bibby and Buckland (1987) and Roeder et al. (1987).

Bibby and Buckland considered two ‘fleeing’ models. In the first, each
object was assumed to maintain a minimum distance (its ‘disturbance
radius’ ry) between itself and the observer. The radius was allowed to
vary from object to object, and was assumed to follow a negative
exponential distribution. The detection function was assumed to be
half-normal. If the data were to be analysed using a binomial half-
normal model (Section 6.2.1) with the division between near and far
sightings set at ¢; = 30 m (Chapter 6), and if 50% of detections would
fall within ¢, in the absence of evasive behaviour, Bibby and Buckland
calculated that the bias in D (evaluated by numeric integration) would
be — 9% when the mean disturbance radius was 10 m, — 20% for 15 m,
- 30% for 20 m and - 55% for 40 m. In this case, bias might be deemed
‘acceptable’ (< 10% in magnitude) if the mean disturbance radius was
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Probability density f(r)

Detection distance r

Fig. 5.7. Plots of the real probability density function (------- ), the apparent
function when there is movement away from the observer (---), and the
apparent function when there is movement towards the observer ( ).
Estimated density of birds is proportional to the slope of the curve at zero
distance from the point, so that density is overestimated when there is movement
towards the observer and underestimated when movement is away from the
observer.

of the order of one-third the median detection distance or less. In their
second fleeing model, many objects close to a sample point become
undetectable, because they either leave at the approach of the observer,
moving beyond the range of detection, or take to cover, remaining silent
until the observer has departed. The probability that an object at
distance r is undetectable was modelled as half-normal. In otherwise
identical circumstances to the first model, bias in D was found to be
— 24% when the point at which 50% of objects become undetectable was
10m, —44% for 15m, —61% for 20 m and — 88% for 40 m. They
concluded that species for which the second model applied were unsuit-
able for surveying by the point transect method, but considered that the
first model, for which bias was less severe, would apply to most species
of woodland songbird that show evasive behaviour.

Roeder et al. (1987) also considered two models for disturbance, in
which the probability of disturbance was exponentially distributed, being
one at distance zero. They then simulated data in which a ‘disturbed’
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object either moved exactly 10 m away from the observer (model 1) or
hid (model 2). Their conclusions, based on analyses using the method
due to Ramsey and Scott (1979, 1981b), the Fourier series method on
squared distances and an order statistic method, were consistent with
those reported above. In cases where there is an area of perfect detec-
tability well beyond any effects arising from evasive behaviour, Wildman
and Ramsey (1985) showed that their method is still valid under a model
in which objects move away from the observer, and can be modified if
objects close to the observer are known to hide.

The term ‘doughnut’ or ‘donut’ refers to a paucity of observations
close to the point, and is generally attributed to object response of one of
the above types to the observer. Wildman and Ramsey (1985) used data
on the omao or Hawaiian thrush (Phaeornis obscurus) as a good example
of this. In some instances, a poor choice of model can lead to erroneous
identification of a doughnut; the empirical distribution function of
detection distances is useful for assessing whether a doughnut really exists.

Distances are assumed to be measured without error (or to be assigned
to defined distance intervals without error), but the assumption is less
problematic than for line transects in two respects. First, only the
observer-to-object distance is required for modelling. This is often
easier to measure or estimate than the perpendicular distance of the
object from a transect, especially if a detected object is not visible or
audible, or has moved, by the time the observer reaches the closest point
on the transect to it, or if densities are high, so that the observer may
need to keep track of several detections simultaneously. Second, to
reduce the problems inherent in estimating perpendicular distances for
line transect sampling, sighting distances and sighting angles are often
recorded. Effort is often concentrated ahead of the observer, so that
measurement errors in the angles often give rise to recorded angles, and
hence calculated perpendicular distances, of zero. Such data are notori-
ously difficult to model. Point transect data do not exhibit this problem;
small observer-to-object distances are seldom recorded as zero, and
few small distances occur, as the area surveyed close to a point is small.

In songbird point transect surveys on Arapaho National Wildlife
Refuge, locations of detected birds were marked, and were later
measured to the nearest decimetre (Knopf er al. 1988). Such accuracy
is not usually possible; for example, up to 90% of detections are
purely aural in woodland habitats (Reynolds et al. 1980; Scott et al.
1981; Bibby er al. 1985), so that the location of the bird must be
estimated. Consistent bias in distance estimation should be avoided. If
distances are overestimated by 10%, densities are underestimated by
100(1 = 1/1.1%) = 17%; if they are underestimated by 10%, densities are
overestimated by 100(1/0.9* — 1) = 23%. Bias in line transect density
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estimates would be smaller (9% and 11% respectively). Provided distance
estimation is unbiased on average, measurement errors must be large to
be problematic. Permanent markers at known distances are a valuable
aid to obtaining unbiased estimates, and good range finders are effective
over typical songbird detection distances, at least when the habitat is
sufficiently open to use them. Scott et al. (1981) suggest that range
finders are accurate to *+ 1% within 30 m, and to * 5% between 100 m
and 300 m, whereas trained observers are accurate to + 10-15% for
distances to birds that can be seen. In our experience, range finders are
often less accurate than * 5% at distances close to 300 m.

If most objects are located aurally, then the assumption that an object
is not counted more than once from the same point may be problematic.
For example, a bird may call at one location, move unseen to another
location, and again call. It is seldom problematic if the same bird is
recorded from different points, unless it is following the observer.

5.10 Summary

Relative to line transects, relatively few distances are recorded close to
zero distance in point transect surveys. Thus estimation of the central
parameter (h(0) for point transects and f(0) for line transects) is more
difficult, and model selection more critical. This was seen for the first
example, where estimation was satisfactory if the correct model was
selected, but if the uniform + polynomial model was selected, underes-
timation occurred, even though the model selection criteria indicated
that the model was good. One of the contributory factors to this
result was that the true detection function was the half-normal,
which does not have an area of perfect detection around the point, even
though it has a shoulder. Expressing this mathematically, ¢g”(0) # 0, even
though g’(0) = 0. If field methods are adopted that ensure an area of
perfect detectability, estimation is more reliable, and different models
will tend to give very similar estimates of density. The hazard-rate key
is best able to fit data that show a large area over which detection is
perfect, because the hazard-rate detection function can fit a wide, flat
shoulder. It performed relatively badly on the example data sets largely
because it tended to fit a flat shoulder to the simulated data, which were
generated from the half-normal, which possesses a rounded shoulder.
To estimate densities reliably from point transect sampling, design and
field methods should be carefully determined, following the guidelines
of Chapter 7, and the data should be checked for recording and
transcription errors. Histograms of the distance data are a useful aid
for gaining an understanding of any features or anomalies, and give an
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indication of how much truncation is likely to be required. Several
potential models should be considered, and model selection criteria
applied to choose between them. Special software is essential if efficient,
reliable analysis is to be carried out. Variance estimation methods should
be chosen for their robust properties; the model that gives the most
precise estimate is not the best model if either the estimate is seriously
biased or the variance estimate ignores significant components of the
true variance. A strategy for data analysis is outlined in Section 2.5.
Systematic error in estimated distances must be avoided. Observer
training is essential if data quality is not to be compromised (Chapter
7). If more than one observer collects the data, analyses should be
attempted that stratify by observer, to detect observer differences. The
importance of this is illustrated in Section 8.7. It may prove beneficial
to stratify analysis by other factors, such as species, location, habitat,
month, year, or any factor that has a substantial impact on detection
probabilities. Hypothesis testing may be used to determine which factors
affect detection, thus reducing the amount of stratification and increasing
parsimony. If the factor is ordinal or a continuous variable, it might enter
the analysis as a covariate, so that its effect on detectability is modelled.
If objects occur in clusters, the location of the centre of each cluster
and the number of objects in the cluster should be recorded. If clusters
occur but are not well-defined, the observer should record each individual
object, and its location, and use robust variance estimation methods. It
is also useful to indicate which detected objects were considered to
belong to the same cluster, so that a comparative analysis can be carried
out by cluster. The location of the cluster can then be determined by
the analyst, by calculating the geometric centre of the recorded locations.
The checklist of stages in line transect analyses given at the end of
Chapter 4 may also be used for point transect analyses. In that checklist,
replace ‘line’ by ‘point’, ‘perpendicular distance’ by ‘detection distance’,
and ‘Section 4.*’ by ‘Section 5.*’ Also, the rule of thumb for selecting
a truncation point w for detection distances is that g(w) =0.10, or less
satisfactorily, that roughly 10% of observations are truncated (Section 5.3).
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