6

Extensions and related
work

6.1 Introduction

In this chapter, we consider extensions to the theory described in
Chapter 3, and we describe distance sampling methods that are closely
related to line and point transect sampling. We also examine models
that do not fit into the key + adjustment formulation of earlier chapters.
The material on these other models is not exhaustive, but is biased
towards recent work, and models that may see future use and further
methodological development. Most of the older models not described
here are discussed in Burnham et al. (1980). One of the purposes of this
chapter is to stimulate further research by raising some of the issues
that are not satisfactorily handled by existing theory.

6.2 Other models
6.2.1 Binomial models

Binomial models are a special case of multinomial models, the theory
for which is given in Section 3.4. We examine them briefly, since closed
form estimators are available for some underlying models for the detec-
tion function; these are sometimes used as indices of abundance, to
assess change in abundance with habitat (Section 8.9) or over time.
Line and point transect methods sometimes provide a quick and
inexpensive alternative to census methods for generating population
abundance indices of songbirds. In areas of thick cover, the observer
may rely heavily on aural detection, with perhaps fewer than 10% of
detected birds visible. Difficulty in both locating the bird and moving
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through vegetation make measurement of each detection distance im-
practical, and the disturbance would also cause many birds to move or
change their behaviour. Bibby er al. (1985) stated:

Recording the distance at which each bird was detected would have
been desirable but was not practicable when so many were heard
and not seen. Overcoming this difficulty might have risked swamp-
ing the observer’s acuity for other birds when an average of about
nine birds was recorded at each five-minute session. A single
decision as to whether or not each bird was within 30 m when first
detected was easier to achieve in the field and sufficient to permit
estimates of density.

Sometimes, therefore, birds are simply recorded according to whether
they are within or beyond a specified distance ¢,. To help classify those
birds close to the dividing distance, permanent markers may be posi-
tioned on trees or bushes at distance ¢;. Only single-parameter models
may be fitted to such data, and it is not possible to test the goodness
of fit of any proposed model. The data may be analysed using the
multinomial method for grouped data. Because there are only two
groups (with the second cutpoint ¢, = «), the sampling distribution is
binomial. As for the models of Chapter 3, numeric methods will be
required in general, but below we consider the half-normal binomial
model for point transects (Buckland 1987a), for which analytic estimates
are available.

Define g(r) = exp{— (r/6)’}, 0 < r < oo

Then

and
S(r) = 2r - exp{- (r/0)*}/c’

Given the binomial likelihood, simple algebra yields the maximum
likelihood estimate

h(0) = 2 - log.(n/ny)/c

where 7 is the number of birds detected and #, is the number beyond
distance ¢,.
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Thus,

n- fz(O) _n- log.(n/n,)

D=
2nk c%nk

where k is the number of plots sampled. Suppose for the example of
Fig. 5.1 that distances had been recorded simply as to whether they were
within or beyond 15m. Then ¢, =15m, k=30, n =144 and n, = 46,
yielding D = 0.00775 birds/m’ or 77.5 birds/ha.

The asymptotic variance of h(0) is

4(1/ny — U/n)
4

C

var{h(0)} =

so that the variance of D may be estimated using the methods of Chapter
5. For the example, we obtain $é(D) = 10.7 birds/ha, compared with 11.1
birds/ha when exact distances are analysed.

Two measures of detectability are ry,, the point at which the prob-
ability of detection is one half, and p, the effective radius of detection.
Further algebra yields

Fip = \/{Q&é}, with Vat(Fs) = 2 - log,2 - El/nz ~ 1/n)
#(0) ¢ oy

while

a:J{#}, with dax(@) = 2 W= Ln)
i©) - ho)y

Thus for the example we have 7, =11.7m, with $&(712) = 0.6 m, and
p = 14.0m, with sé(p) = 0.7 m.

The efficiency of this binomial point transect model for estimating
density relative to the half-normal model applied to ungrouped detection
distances (Ramsey and Scott 1979; Buckland 1987a) is typically around
65%—80% (Buckland 1987a). This loss is relatively small; more serious
is that robust models with more than a single parameter cannot be used
on binomial data, and there is no information from which to test
whether the form of the half-normal model is reasonable. However, bias
from fitting an inappropriate model may be consistent between years,
so that the method can be useful for providing an index of relative
abundance over time at low cost.
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Buckland (1987a) also derived analytic results for a linear binomial
model for point transects, and found that density estimates for a variety
of species are similar under the two models (Section 8.9). In practice, a
detection function is unlikely to be approximately linear, so we give just
the half-normal model here. The linear model had been considered
earlier by Jarvinen (1978), but only partially developed.

The choice of ¢, requires some comment. The value that minimizes
the variance of A(0), of 7, and of p is ¢, = 1.78A(0), which implies
that roughly 80% of detections should lie within ¢,. Buckland (1987a)
finds that estimation is more robust when around 50% lie within
. Further, for simultaneously monitoring several species, an average
value of 80% across all species may mean that few or no birds of
quiet or unobtrusive species are detected beyond ¢;,. A practical advant-
age in selecting a smaller value for ¢; than the optimum is that the
observer will be more easily able to determine whether a bird is within
or beyond c¢,.

As a safeguard, two cutpoints, ¢; and c,, with 0 < ¢; < ¢; < oo, might
be used, so that the sampling distribution is trinomial. The data could
be analysed using the results for the general multinomial distribution in
Section 3.4, but detection functions with at most two parameters could
be used. Another option would be to use the above binomial model,
first using cutpoint ¢, then using cutpoint ¢,. If the two density estimates
differed appreciably, this might be an indicator that the model is not
robust. Otherwise the two estimates might be averaged. For surveys of
several species, the first cutpoint might be used for quieter, more
unobtrusive species, and the second for louder, more obvious species.

Jarvinen and Viisdnen (1975) developed three binomial models for
line transects, in which the detection function was assumed to be linear,
negative exponential or half-normal. The last of these is the most
plausible, but a closed form estimator is not available for it. Program
DISTANCE allows the user to implement this model using numeric
methods. Otherwise, its limitations and advantages are very similar to
those of the binomial half-normal model for point transects, described
above.

Although the goodness of fit of a binomial model cannot be tested,
the homogeneity of the binomial data can. Suppose each line or point
transect is assigned to one of R groups, which might, for example, be
R geographic regions or woods. Then an R x 2 contingency table ana-
lysis may be carried out, where the frequencies are ng,i=1,..., R,
J=1,2. Then n; is the total count within distance ¢, for group i, and
n;; is the total count beyond ¢,. If a significant test statistic is obtained,
then there is evidence that the detection function varies between groups.
This method extends in the obvious way to multinomial models.
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A variety of now outdated line transect methods is given in Burnham
et al. (1980). In particular, a non-parametric binomial method once
thought to have promise is the Cox method, derived by Eberhardt
(1978a). We no longer recommend this method. However, as a matter
of intellectual curiosity, we derived the analogue of the Cox method for
point transect sampling. A linear detection function is assumed, so the
model is very similar in concept to the linear binomial point transect
model of Buckland (1987a). The difference is that the Cox method
assumes that data are truncated at a distance for which the linear
detection function is non-zero, whereas the method of Buckland, in
common with the linear line transect model of Jirvinen and Viisdnen
(1975), assumes data are untruncated in the field; an estimate of the
point at which probability of detection becomes zero is provided by the
model.

Let the distance data be grouped with the first two cutpoints being
¢ and c,. Let the corresponding counts in these two intervals be »n; and
n, with total n=n, + n,. Let k be the number of points sampled. The
Cox estimator is derived by assuming that g(r) =1 + b - r is an adequate
model over the range 0 < r < ¢, (It would be better to assume a
quadratic form, g(r) =1+ b - r*, but we use Eberhardt’s formulation.)
Of course the parameter b is negative. Based on just the counts in these
first two intervals, we can get an estimate of » and hence an estimator
of density, D. We do not provide the algebraic derivation here. The
result is

p=_" {(cz/clf - (my/n) - 1}

B knc (cr/ey =1
Alternatively,
A n-h(0)
b = 2nk

from which one can infer fz(O). In the simple case of the two intervals
having equal widths, A (i.e. ¢, = A and ¢, = 2A), the result reduces to

b _ 7’1] -
dkmA’
In Burnham et al. (1980: 169), the general Cox case was given for line

transects. The f(0) in their publication is not in the same form as used
here for 4(0). For comparison we provide the results below.
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Cox estimator for point transects:

oo 2| (@/e) - (min) - 1
ho)= 2[ (/e - 1 ]

Cox estimator for line transects:

f0) = 1 [(Cz/cl)2 < (m/n) — 1}

C2 (/) -1

For this same context of two cutpoints and truncation at c,, if we
assume the detection function has the generalized form g(y)=1+b- »?
for 0 < y < ¢, and where p is a known integer = 1, then relevant results
for point and line transects are

hoy=2 [(Cz/c.)“" - (mi/n) — 11

C% (cz/cl)” -1

and

0y = L[(Cz/cl)1 P (mifn) - 1}

2 (Cz/Cl)p -1

Corresponding theoretical sampling variances are

var{iz(O)} -4 [

12

(cafe) ™ ]z (=)
(c2le)? -1 n

and

+ 2 —
var{f'((»}=%[ (/) ”} pd=p)

5] (Cz/Cl)p -1 n
where p; = E(m)/n, and is estimated by p, = n/n.
6.2.2 Empirical estimators

Emlen (1971, 1977) developed a non-mathematical approach for line
transect analysis of songbird data. He assumed that a characteristic
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proportion of birds of any species will be detected in the surveyed area
2wL. He called this proportion the coefficient of detectability. This
corresponds to the parameter P, defined in Section 3.1. The method
typically uses data from only two to four distance categories, and an
estimator of the product E(n) - f(0) is determined from a smoothed
frequency histogram of perpendicular distances. The density estimate
from this model is probably best considered as a rough index of relative
abundance, and is not recommended (Burnham et al. 1980: 164).

Ramsey and Scott (1979, 1981b) developed a point transect model
similar to Emlen’s (1971, 1977) line transect model. Suppose cutpoints
are defined at distances ¢, = 0, ¢, 2¢, . . . , kc, so that the truncation point
w=kc. Let A(0,i) be the area of the circle of radius ic, and let A(, j)
be the area of the annulus with inner radius ic and outer radius je.
Thus, A(,j) = nc*(j> - i). Let n(i,j) be the number of birds counted
within the annulus. Then the corresponding density D(i,j) may be
estimated by

n(i, j)

DG, j) = 167

The value i is chosen to be the smallest value such that the likelihood
of differing densities within the areas 4(0, /) and A(i, ) is at least four
times the likelihood of equal densities for all j > i. That is, i is the
smallest value that satisfies

(DO, DI'"" - DG )" = 4 [DO, )" for all j>i

Having calculated i,

p = 10, i)
A(0,7)
with
o~ D
var(D) = 0.1

This variance estimate is only valid if birds are randomly distributed
throughout the study area, so is likely to be poor, but an empirical
estimate may be obtained, for example using the bootstrap. The density
estimate is only valid if there is an area of perfect detectability, assumed
to extend out to distance ic.
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Wildman and Ramsey (1985) developed the ‘CumD’ estimator, which
is similar to the above, but estimates the distance out to which detection
is certain without the need to group the data. The estimator is defined
for both line and point transects, and observations are transformed to
detection ‘areas’, defined as @ = 2Lx for line transects and a = 7r’ for
point transects. These areas are ordered from smallest to largest, giving
a <a=<---<a, with empirical distribution function F,(a). Let
J(0) =aj0 =0, and let j(1) be the largest integer such that

d, =Jill=max{£|j = \/n}

ajm j

Then for m=2,3,... let j(m) be the largest integer such that

g —dm=jem=1) _ max{] ol (G VI 1)}
Qjgm) — Gjm - 1) 4G = Am -1

Straight lines linking the points [ajm, j(m)n],m=0,1,2,..., form a
convex envelope over F,(a), which is the isotonic regression estimate of
F(a) (Barlow et al. 1972) and yields an estimated detection function that
is a non-increasing function of distance from the point. The slopes d,
are average estimates of density of detections within annuli of increasing
distance from the point. These equate to estimates of object density if
all objects within a given annulus are detected. Likelihood ratio tests
of the equality of density between the first region and the next
m-1,m=2,3,..., are used to provide a stopping rule. The smallest
value of m, m* say, is chosen such that the null hypothesis is rejected,
and all objects within the corresponding radius a;+, where j* = j(m*), are
assumed to have been detected, yielding an estimate of density.

This innovative and intuitively appealing approach is computationally
inexpensive and easily programmed. However, probability of detection
should be at or close to unity for some distance from the point for the
method to yield good estimates; because of the paucity of sightings close
to the point, this distance must be appreciably greater for point transects
than for line transects for comparable performance. Also, estimation of
a distance up to which all objects are detected through hypothesis testing
causes the method to underestimate density when sample size is small,
as there are too few data for the tests to have much power. Bias in the
method is therefore a strong function of sample size, at least for small
samples. Investigation of how large sample size should be for the method
to perform well would be useful. Wildman and Ramsey (1985) show
that it must be very large if the true detection function, expressed as a
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function of area, is negative exponential. For point transects, this
corresponds to the half-normal detection function, when expressed as a
function of distance, and bias is still of the order of 23% for a sample
size of 10 000.

6.2.3 Estimators based on shape restrictions

Johnson and Routledge (1985) developed a non-parametric line transect
estimator based on shape restrictions for which they found ‘a general
improvement in efficiency over existing estimators.” The method has not
seen wide use, but the recent release of software TRANSAN (Routledge
and Fyfe 1992) makes it more accessible, and we encourage further
evaluation.

The density function f(x) is constrained to be non-negative and to
integrate to unity. In addition, Johnson and Routledge added the
monotonicity constraint that f(x) must be monotonic non-increasing
and the shape constraint that f(x) must have a concave shoulder,
followed by a convex tail, separated by a single point of inflection. The
range of concavity must be determined, or guessed, by the user, and it
is suggested that the percentage of detections that fall within the point
of inflection might be as high as 90% or below 50%.

The parameter f(0) is estimated by grouping the distance data, and
using the frequencies in a histogram estimator of f(x). Let A; represent
the height of the ith histogram bar, i=1,...,u. Find the adjusted
heights, % , by minimizing

(hi — b

M:

i=1

1l

subject to the imposed constraints. Then f(0) is estimated by f(O) =h.

Johnson and Routledge used a bootstrap approach to quantify preci-
sion, but one that is more sophisticated than the general purpose
bootstrap described in Section 3.7.4. For the single-parameter case, a
guess can be made of say the lower 100(1 - 20()% confidence limit for
f(0), and bootstrap resamples generated. The parameter f(0) is estimated
from each resample, and if the proportion exceeding the estimate from
the true data is greater than o, then the current guess of the limit is
estimated to be too large, and is reduced. The process is repeated until
the true limit is located with adequate precision. Johnson and Routledge
suggested that a more efficient search procedure might be developed. A
general algorithm for evaluating confidence limits in this way for single
parameter problems, which updates the estimated limit after each
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resample, was given by Buckland and Garthwaite (1990). Its optimal
properties were noted by Garthwaite and Buckland (1992).

Johnson and Routledge based their conclusions on estimator perform-
ance on a simulation study, in which the Fourier series and half-normal
models were compared with the shape restriction estimator. If the
procedures recommended in earlier chapters were implemented, more
severe data truncation would have been carried out for some of their
simulations, and the Fourier series and half-normal models would have
been rejected as inappropriate in some. However, the shape restriction
method proved to be robust to choice of truncation point and to the
true underlying detection function, and therefore merits further invest-
igation and development.

6.2.4 Keranel estimators

(a) Line transect sampling There are several methods for fitting prob-
ability densities using kernels. They are based on the concept of replac-
ing a point (a detection distance here) by a distribution, centred on that
point. This is done for all observations, and the distributions are
summed, to provide the estimated density function. Buckland (1992a)
compared the kernel estimator of Silverman (1982) with the Hermite
polynomial model for fitting the deer data from survey 11 of Robinette
et al. (1974). To force the algorithm to fit a symmetric density, differen-
tiable at zero (and hence possessing a shoulder), each distance x was
replaced by two, x and — x. The optimum window width for a normal
distribution with standard deviation o, i.e. &= 1.060n" "’ yielded a
comparable but less smooth fit to the data than the Hermite polynomial
model. The kernel method is far less computer-intensive than the meth-
ods recommended here, but the kernel estimate of f(0) is highly sensitive
to the choice of window width (Buckland 1992a). Further, the kernel
method does not readily yield a variance for f(0), although the bootstrap
may be used, either as described in Section 3.7.4 or using the more
sophisticated approach of Garthwaite and Buckland (1992), noted in
Section 6.2.3. A final disadvantage of the kernel method is that covari-
ates cannot be incorporated, thus ruling out the methods of Section
3.8.2. One advantage of the kernel method is that observations have
only a local effect on the fitted density. For parametric or semi-
parametric methods, if the model fails to fit the tail of the distribution
well, its fit at zero distance may be adversely affected.

Brunk (1978) developed a kernel method based on orthogonal series, an
approach which is a close parallel to the key + adjustment formulation,
especially if the adjustment terms are orthogonal to the key, as for the
Hermite polynomial model. Buckland (1992a) found that Brunk’s method
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gave unstable estimation relative to the Hermite polynomial model when
the data were simulated from a markedly non-normal distribution.

(b) Point transect sampling Quang (1990b) proposed a method based
on kernel techniques. As in his line transect developments, he assumed
that perfect detectability occurs somewhere, but not necessarily at zero
distance; that is, that g(r) = 1 for some value of r = 0. Given g(0) = 1,
it was noted in Chapter 3 that density estimation could be reduced to
estimation of A(0) = lim,_,, f(r)/r. Under Quang’s formulation, this gener-
alizes, so that the maximum value of the ratio A(r) = f(r)/r over all r
must be estimated. He used the kernel method with a normal kernel
(Silverman 1986) to estimate f(r) and hence A(r).

The concept of maximizing Ah(r) is also applicable to series-type
models. Suppose a model is selected whose plotted detection function
increases with r over a part of its range, thus indicating that objects
close to the point are evading detection, either by fleeing or by remaining
silent. Then A(0), which is the estimated slope of the density at zero,
/’(0), may be replaced by the maximum value of A4(r) = f’(r) in the point
transect equation for estimated density (Section 3.7.1).

6.2.5 Discrete hazard-rate models

The hazard-rate development of Chapter 3 assumed that either the
sighting cue or the probability density of flushing time is continuous.
Often this is not the case. For example whales that travel singly or in
small groups may surface at regular intervals, with periods varying from
a few seconds to over an hour, depending on species and behaviour,
when the animals cannot be detected.

(a) Line transect sampling Schweder (1977) formulated both continu-
ous and discrete sighting models for line transect sampling, although he
did not use these to develop specific forms for the detection function.

Let ¢(z, x) = pr{seeing the object for the first time | sighting cue at (z, x)}
where z and x are defined in Fig. 1.5. Then if the ith detection is recorded
as (t;, z;, x;), where f; is the time of the ith detection, the set of detections

comprises a stochastic point process on time and space. The first-time
sighting probability depends on the speed s of the observer so that

q(z. x|8) = Q(z, x) - E{ [l - 0@z xi)]}
i>1
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where Q(z, x) is the conditional probability of sighting a cue at (z, x)
given that the object is not previously seen; Q(z, x) is thus the discrete
hazard. Assuming that detections behind the observer cannot occur, then

g(x|s) = L u(z, x)q(z, x|s)dz

where u(z, x) is the probability that a sighting cue occurs at (z, x),
unconditional on whether it is detected; u(z, x) is a function of both
object density and cue rate.

More details were given by Schweder (1977, 1990), who used the
approach to build understanding of the detection process in line transect
sampling surveys. In a subsequent paper (Schweder er al. 1991), three
specific models for the discrete hazard were proposed, and the corres-
ponding detection function for the hazard they found to be most
appropriate for North Atlantic minke whale data is:

g(x)=1-exp[-exp{d + b - x+ ¢ - log.(x)}] 6.1)

If we impose the constraints 4" < 0 and ¢’ < 0, this may be considered
a more general form of the hazard-rate model of Equation 3.7, derived
assuming a continuous sighting hazard:

g(x) = 1 - exp[- (x/0)" )

When 4" =0, Equation 6.1 reduces to Equation 3.7 with @’ = b - log.(o)
and ¢’ = - b. Thus a possible strategy for analysis is to use Equation 3.7
(the standard hazard-rate model) unless a likelihood ratio test indicates
that the fit of Equation 6.1 is superior. Both models are examples of a
complementary log-log model (Schweder 1990).

(b) Point transect sampling Point transects are commonly used to estim-
ate songbird densities. In many studies, most cues are aural, and
therefore occur at discrete points in time. Ramsey e al. (1979) defined
both an ‘audio-detectability function’ g4(r) and a ‘visual-detectability
function’ gy(r). (Both are also functions of T, time spent at the point
seeking detections.)

Let p(r, r) = pr{ object at distance r is not detected within time ¢}

Then
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g«N=1-p@r, T)=1-3[1 -y pr(j)
j=1

where j is the number of aural cues the object makes in time T, pr( )
is the probability distribution of j, and y(r) is the probability that a
single aural cue at distance r is detected. This assumes that the prob-
ability of detection of an aural cue is independent of time, the number
of cues is independent of distance from the observer and the chance of
detecting the jth cue, having missed the first j — 1, is equal to the chance
of detecting the first cue. Hence the audio-detectability function is of
the form

g4 =1 -yl —y()]

where

y(s) =Y s7pr(j)

j=0

is the probability generating function of j.

The visual detectability function, g,(r), is modelled in a continuous
framework, and yields Equation 3.8: g(r) = 1 — exp[- k(r)T ]. Ramsey et
al. (1979) then combined these results to give

gy =1-wy( —y(r) - exp[- k(NT]

A detectability function may be derived by specifying (1) a distribution
for the number of calls, (2) a function describing the observer’s ability
to detect a single call, and (3) the function k(r) of visual detection
intensities. Ramsey et al. considered possibilities for these, and plotted
resulting composite detection functions. One of their plots shows an
audio detection function in which detection at the point is close to 0.6
but falls off slowly with distance and a visual function where detection is
perfect at the point, but falls off sharply. The composite detection
function is markedly ‘spiked’ and would be difficult to model satis-
factorily. This circumstance could arise for songbird species in which
females are generally silent and retiring, and can be avoided by estimat-
ing the male population alone, or singing birds alone, if adults cannot
easily be sexed. If data are adequate, the female population could be
estimated in a separate analysis.
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6.3 Modelling variation in encounter rate and cluster size
6.3.1 On the meaning of var(n)

We have concentrated our modelling and data analysis considerations
on the detection function g(y) and, where applicable, the mean cluster
size E(s). For both of these data components, we emphasize estimation
of parameters as a way to extract and represent the structural (i.e.
predictable) information in the data and thus make inferences about
population abundance. However, it is also necessary to estimate the
sampling variance of D, var(D), which involves at least one additional
set of parameters, namely var(n), which may vary over strata and time.
The variance of the counts, var(n), is intended to summarize the non-
structural or residual component in the counts. By definition, var(n) =
E[n — E(n)', thus we must consider whether the expected encounter rate
is constant for each line or point. Expected encounter rate could vary
over a sampled area, in which case there is structural information in
the counts. We can go further with this idea by considering the infor-
mation in the actual spatial positions (x—y coordinates) of detections in
the sampled area, given the known distribution of effort (i.e. the
locations of lines or points). This entails fitting a relative density
distribution model to the large-scale spatial structure of object density
as revealed through the spatial variation of encounter rate.

This added level of analysis would require fitting FE[n(x, y)], the
expected encounter rate as a function of spatial position. Then var(n)
is estimated from the residuals about this fitted model for encounter
rate, denoted by E(n/l) in the case of line transect sampling. (To obtain
results for point transects, replace /; by 1 and L by k throughout this
section.) If we have k replicate lines in a stratum, then var(n) should be

estimated as
k 2
ni i
i;li.l:li [liﬂ

k-1

Var(n) = L (6.2)

If we assume there is no variation in encounter rate among complete
lines within a stratum or time period, then we have

E[%J =u (6.3)
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which is constant for all lines. Proper design can ensure that this
assumption is reasonable. Relevant design features are stratification,
orientation of lines parallel to density gradients (i.e. perpendicular to
density contours) and equal, or appropriate, line lengths. When Equa-
tion 6.3 is true, the appropriate estimator of u is L = n/L, and Equation
6.2 gives, within a stratum,

Gty =L (6.4)

which we have already recommended.
The critical point is that if Equation 6.3 fails to the extent that there
is substantial variation in per line encounter rate, with

- g™

then Var(n) from Equation 6.4 is not appropriate as it includes both
stochastic (residual) variation and the structural variation among
Ui, - .., Mk This latter variation does not belong in var(n), as it repre-
sents large-scale variation in the true object density over the study area.
This variation is of interest in its own right, but it is difficult to model
and estimate. We will return to this point in Section 6.3.3.

A final comment on the meaning of var(n) is in order; as stated above,
var(n) is meant to measure the residual (stochastic) variation in detection
counts, n. There are two components to this stochastic variation. First,
there is always the small-scale, hence virtually unexplainable, spatial
variation in locations of objects. Thus even if detection probability was
one over the strips or plots in which counts are made, there would be
a substantial component to var(n) due to the small-scale sampling
variation in the number of objects in the sampled area, a. Second, when
detection probability is not one, then there is the further stochastic
variation in the counts due to the particular detections made given the
number of objects in area a. Although possible, it is neither necessary
nor useful to partition var(n) into these two components.

6.3.2 Pooled estimation of a common dispersion parameter b
Often we can assume that the expected encounter rate ; is constant for
each replicate line or point within a stratum and time of sampling; thus

we assume Equation 6.3. As noted above, this equation will hold under
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proper design of the study. The subject of this section is efficient estimation
of var(n); this is a concern when sample sizes per stratum are low.

The basic idea of efficient estimation of var(n), once the L; are
appropriately modelled, is that we can model the structure of var(n)
over strata and/or time. The idea of modelling variances is not new to
statistics (e.g. Carroll and Ruppert 1988) and the practice is becoming
increasingly common. As a starting point to any such modelling, we
recommend the representation

var(n) =b - E(n) (6.5)

and then modelling the dispersion parameter 5. However, the only case
we consider here is for when b may be constant over strata and/or time.
This is a common situation in our opinion.

Assume the data are stratified spatially and/or temporally into V
distinct data sets, indexed by v = 1, ..., V. Within each data set, assume
some replication exists, with line lengths

lUJ"j:ls--‘skv,U:l,...,V

and corresponding counts ny;. Nominally, we must now estimate V
separate count variances var(n,), v =1, ..., V. The problem is there may
be sparse data for each estimate, due to little replication within data
sets (small ky) or few detections (small n,, perhaps under ten). Experi-
ence, and some theory, suggests that the dispersion parameter b in
Equation 6.5 will be quite stable and can be modelled, thereby reducing
the number of dispersion parameters that must be estimated. If objects
have a homogeneous Poisson spatial distribution by data set, then
b =1. This is not a reasonable assumption; we should expect b > 1, but
still probably in the range 1 to say 4.

An accepted principle in data analysis is that we should fit the data
by a plausible but parsimonious model, i.e. a model that fits the data
well with few parameters (e.g. McCullagh and Nelder 1989). This
principle applies to dispersion parameters as well as to structural para-
meters such as f(0), 4(0), E(s) and E(n). Below we provide formulae for
estimating a common dispersion parameter across all ¥ data sets.

Separate estimates for each data set are found by applying Equations
6.4 and 6.5:

k, 2
| Mei _ o
i; w,:lvi Lv:l

Var(ny) = L, P
v
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where L,=Y1,
and

b" _ ‘fa\r(nv)

v
hy

with k, ~1 degrees of freedom. If b, = b for all V data sets, then under
a quasi-likelihood approach (McCullagh and Nelder 1989), the estimator
of bis

(ky — 1)by

1

M=

v

v
2 (ky = 1)
v=1

It

b= (6.6)

|4
which has Y (k, — 1) degrees of freedom.

v=1

The estimator b should have good properties because it is based on
a general theory. There is, however, an obvious alternative moment
estimator:

| 4 | 4
Z‘{a}.(nv) Znybv
h=2"1 = 2= 6.7)
|4 Vv
zm 2
v=1 v=1

We performed a limited simulation comparison of these two methods
(i.e. Equations 6.6 and 6.7), and failed to distinguish one as inferior, in
terms of bias or precision.

The case of a common dispersion parameter and a pooled estimator
is analogous to the analysis of variance assumption of homogeneity of
error variance and use of the corresponding pooled estimator of error
mean square. When b is so estimated, the squared coefficient of variation
of n=n+...+n, is estimated by

[ev(n] =

S| o

and for any one stratum,
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B

[ev(m)l =

x

v

These squared coefficients of variation are then used in formulae for
sampling variances of D and D,; in particular, we can get the best
possible variance estimator of an individual stratum density estimate
based on

<o b A .
[ev(D)’ = - + [V O} + [ev{E@)}

Assuming constant f(0) and E(s) over the V strata, which the above
formula implicity does, the limiting factor on the precision of D, is just
the sample size n,.

Further comparative investigations of the two estimators of b would
be useful. Use of such a pooled estimator is most compelling when
sample sizes, n,, are small, in which case weighting by sample size seems,
intuitively, to be important. Yet in Equation 6.6, the weights ignore
actual sample sizes. Perhaps when per survey sample sizes, n,, are smaller
than the number of replicate lines or points, k,, Equation 6.7 would be
better.

Further thoughts on this matter arise by considering an average
density estimate over temporally repeated surveys on the same area.
Then an average density over the repeated surveys is estimated as

D ="210 g
2L

where

L=L+...+L,

The sampling variance on D is provided by the usual formula but with
[cv(n)] computed as

Vv
3 vai(n,)

[ev(n] =" =
7

X |ow

where b is estimated from Equation 6.7, thus supporting use of Equation
6.7 for temporal stratification. However, this argument does not apply
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to spatial stratification. (In computing this D, one should consider
whether true density varies by time; if it does, then either D may not
be relevant, or its variance should include the among D, variation, which
the above cv(n) does not do.)

(a) An example In 1989 and 1990, Ebasco Environmental, under con-
tract to the US Minerals Management Service, conducted 13 consecutive
aerial line transect surveys for marine mammals offshore of the states
of Oregon and Washington, USA (Green et al. 1992). The same set of
32 parallel transects (i.e. k, = 32 for all v) was flown each survey during
an 18-month period. A given survey took about a week; surveys were
a month or more apart in time. Two species of dolphin were of
particular interest and generated enough detections to allow density
estimation: Risso’s dolphin (Grampus griseus) and Pacific white-sided
dolphin (Lagenorhynchus obliquedens). Most of the detections occurred
during the eight spring and summer surveys (two in each season in both
1988 and 1989). Table 6.1 presents summary results for Var(n) and b
from these eight surveys.

Table 6.1 Encounter data and dispersion parameter estimates from the
study reported on in Green er al. (1992) for Pacific white-sided and
Risso’s dolphins for the spring and summer surveys (indexed by v) in
1988 and 1989 (surveys 5, 6, 7 and 13 were in autumn and winter, and
spring survey 9 targeted grey whales). k, = 32 for each survey

Pacific white-sided dolphin Risso’s dolphin
v ny @(nv) I;U v ny Va\r(nu) I;,,
1 2 3.28 1.64 1 6 10.31 1.72
2 14 5846  4.18 2 11 37.33  3.39
3 6 21.29 3.55 3 7 10.51 1.50
4 5 3.81 0.76 4 10 25.30  2.53
8 3 5.49 1.83 8 6 7.05 1.18
10 5 3347  6.69 10 20 66.71 3.34
11 2 0.93 0.47 11 5 2146 429
12 3 2.23 0.74 12 1 0.72  0.72
Totals 40 128.96 19.86 66 179.39 18.67

Table 6.1 shows that individual survey estimates of the dispersion
parameter are quite variable, ranging from 0.47 to 6.69 for Pacific
white-sided dolphin and from 0.72 to 4.29 for Risso’s dolphin. However,
the corresponding sample sizes of total per survey counts are small,
ranging from 1 to 20, and averaging, per survey, 5 and 8.25 for Pacific
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white-sided and Risso’s dolphin, respectively. Because of the small
sample sizes for these data, most of the variation in the eight estimates
of b for each species is surely sampling variation and not variation
in true dispersion over time. We believe it is appropriate and desir-
able to compute and use a single b for each species in this case.
Equation 6.7 yields b = 128.96/40 = 3.22 and 179.39/66 = 2.72 for Pacific
white-sided and Risso’s dolphins, respectively. Both estimates are close
to the ‘default’ value b =3 suggested by Burnham et al. (1980: 35-6)
for when no estimates are available (such as in the initial planning of
a study).

(b) Basis for the theory The derivation of fi,, b, and b (from Equation
6.6) can be carried out in a quasi-likelihood framework (McCullagh and
Nelder 1989: 323-8). The starting point is the model n,; = W, - l,; + €,; with
E(e,)=0 and var(e,)=by, - E(ny) =by - Wy - by; for i=1,...,k, and
v=1,..., V. A special case of the model is to use b, = b for all v. Given
independence over all i and v, then the optimal estimator of p, is
obtained as the solution to the equation

k
v AETINY A
1|z Ho - bif
i§1 v I:bv'uv‘lvi:|
The solution is

R My

uv:L_,,

and this is true regardless of whether or not the dispersion parameter
b varies by stratum. Direct application of quasi-likelihood theory gives
the estimate of separate dispersion parameters as

I 1 % (ny; — }10 ) lvi)z
bv—kv_l .i=21 l:lv'lvi

k, 2
b | Ti _

L iglv |:lvi ijl
v ky = 1) -n,

Applying the same theory to the special case of a constant dispersion
parameter produces the result
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k ~ 2

7 1 2 (myi = Wy - i)

hb=—— . ACCLI o B T
S (k- 1) AE ek

v=1

This is equivalent to

LS (my my)
=y g, | e Py
ugl[n" ]i§1 ’ [lvi Lu]

b= 7
Zl(kv - 1)
"1 ~
> — - (ky=1) - var(m)
v=1nU
= v
Y (ko - 1)

v=1

f(kv—n-év

v=1

14
2 ko= 1)

v=1

In principle there are ways to test Hy: b, = b for all v. However, the
motivation for getting a pooled estimate of an assumed constant disper-
sion parameter is strongest with sparse data, in which case the tests we
are aware of are not reliable. Testing H, : b, = b in this distance sampling
context with sparse data is an area in need of research.

6.3.3 Modelling spatial variation in encounter rate

Total numbers, or density, in an area can be reliably estimated even if
there are predictable trends in density over the area (though care must
then be taken with the spatial allocation of lines or points). An example
of predictable trends would be a consistent year-to-year density gradient
with distance from coastline in some marine mammals, or a biologically
significant association of, for example, some dolphin species with
measurable oceanographic features such as surface temperature. The
distance sampling methods presented in this book can be embedded in
point process sampling theory to allow density surfaces to be fitted to
the spatial coordinates of detection locations and even to relate such
surfaces to measurable covariates. The information for this modelling
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1s contained in the spatial locations of detections as represented in an
x—y coordinate system and in any covariates measured at those locations
and elsewhere over the study area.

When important trends in density exist within strata, the main effect
on theory presented here is with respect to estimation of var(n) using
Equation 6.4. Improved estimation of var(n) requires modelling en-
counter rate to give reliable estimation of

= | Mt
Hoi= E(lvij

and then use of Equation 6.2 by stratum. With carefully designed studies,
Equation 6.4 will be reliable. However, we think there is substantial
benefit to be gained by the addition of biological information and
understanding, made possible by modelling the density of the population
over the study area. Thus, while the estimation of var(n) is our motivation
for mentioning point process modelling of encounter rate, the benefits
to be gained go beyond improved sampling variance estimators.

Some basic theory for embedding distance sampling in a point process
model of the population over the study area has been developed by
Schweder (1974, 1977) and Burdick (1979). We give here our own view
of how one can conceptualize this modelling of encounter rate; some
simplifications are made below compared to a completely general theory.
Again, we consider line transect sampling; theory simplifies for point
transect sampling because points may be treated as dimensionless.

Let D(x, y) represent the intensity function for a point process model
of objects over area A. (One can think of D(x, y) - dx - dy as the expected
local density about point x, y.) The density parameter D that we have
focused on in this book can be defined by

ijJ D(x, y)dxdy=D
A 4

Note that D is really an average density over the study area; also,
technically the above double integral gives E(N/A), whereas D = N/A.
The symbol A4 is given a dual role here, both as the scalar size of the area
and as a symbol for the set of points defining the study area. In a point
process model, the expected number of points in any area a ¢ 4 is

E(N)a) = JJ D(x, y)dx dy
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For one realization of the process, the probability of finding one or
more points in the area a is 1 — exp[- E(N|a)].

The relevant surveyed areas for line transects are the sample strips of
length /; and width 2w, thus changing our symbolism some, we can write

Eoil = [ [, D6y px pds dy

The above still denotes an integral over an area. Now we have added
p(x, y), which is the conditional probability of actually detecting an
object at coordinates (x, y), given an object is there. To simplify the
formulation of the problem, we translate the local coordinate system
for the above double integral so that the x-coordinate is the transect
centreline, and the y-coordinate is perpendicular to that line. (Given a
straight line, this is a linear translocation-rotation coordinate transfor-
mation.) Thus

L rw
Ewmi|l) = J.O j_ LDy p(x,y) dy dx

The next step is critical. In the above coordinate representation, for
a given y, variations of p(x, y) in x (i.e. along the line of travel) either
do not exist or are irrelevant (in the absence of covariates to explain
such spatial variations). Therefore, we can now replace p(x, y) by the
detection function g(y). In practice, the scale will always be such that
I; is at least an order of magnitude larger than w. Hence we can safely
model the local intensity at any point x in this strip over which
integration occurs as the intensity which applies on the transect centre-
line; hence intensity is assumed to be independent of y. That is, in the
strip of area 2wl;, we assume the model D(x) = D(x, y). Under these
simplifying assumptions, the above double integral becomes

I, w
Em|l) = L J D) g(y) dy dx

w I
= J_wg(y)dy : j D(x) dx

0
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1 f D(x) dx

1 ("
=2wl; -j dy|-
el vl B L5204 R

=2W1,"Pg'l_),‘

where D; is the average density along the ith transect. Summing over
transects, we get

Em|Ly=D-2wL - P,

where

k

z 2Wli . D,‘

5 - i=1
2wl

is the average density along the sample of lines used.

It is the above D that line transect methods actually estimate (Burdick
1979). Either the design of the line placement must produce D=D
(random line placement has the purpose of achieving E(D) = D; expect-
ation is with respect to randomization of line placement), or we must
model D(x, y), fit the model from the sample data of spatial coordinates
of detected objects, and compute the overall D( N/A) from

% jL D(x, y)dxdy =D (6.8)

Also, from D(x, y) and P, we can then get

E@mill) = P, f L . D(x, y) dx dy

=2wl;- P, - D;

If D;=D for all i = 1, ..., k, then per line encounter rates are constant
and we have
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and Equation 6.4 is valid.

The additional information from distance sampling, which is relevant
to D(x, y), is in the set of coordinates of detection locations, (x;, y;),
j=1,...,m,i=1,...,k and any covariates taken at these locations.
To extract this spatial information, these points are treated, concep-
tually, as a sample of size n from the probability density function defined
by

d(_x, y) = M
2wl - D

over the disjoint areas represented by the k lines traversed. Using some
form of parametric model for d(x, y), one fits the model to these
(x, y) data by standard statistical methods, thereby getting d(x ¥). This
is not a trivial undertaking, but it is possible. The normalization of
d(x, y) to integrate to one over the sample area of transects 1s necessary
for identifiability reasons in the fitting of d(x, y). Using D( = D) obtained
from standard line transect analyses, one obtains the desired rescaling:

D(x,y)=2wL - D - d(x, )

If D(x, y), hence d(x, y), is taken as constant over the entire study area,
then d(x, y) 1ntegrates over the study area to 4/(2wL), and from Equa-
tion 6.8, we get D = D. However, if D(x, y) varies substantially over
the study area and lines are poorly placed, this approach used in
conjunction with Equation 6.8 could give a much less biased estimate
of D= N/A.

We suggest simplifying the process of relating the (x,y) detection
location data to D(x, y) by projecting each location perpendicularly onto
the line and using that point as the recorded detection location. At the
scale (much larger than w) over which important variations occur in
density, this redefined detection location is acceptable. Detection loca-
tions now become distances along the lines, and the problem is effect-
ively reduced to one dimension and numerical scaling-integrations
become one-dimensional line integrals. Now all the locational data
(xg vy, j=1,...,mi=1,...,k, fall on a (disjoint) ‘line’ in the study
area. Thus the pdf 7(x, y), which is really one-dimensional, of a detection
location is

t(x,y) = 280
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where the normalizing vy is the line integral

k
Y= ZL D(x, y) dx dy
i=1 i

Note that v is not identifiable from the (x, y) location data alone. Any
parametric model for D(x, y|8) now generates the parametric likelihood

k n!
£(0)=T"TI 1(xj; y;|8)
i=1 j=

Standard numerical MLE and model selection methods can be applied;
at each iteration, y must be recomputed by numerical line integra-
tion. Once the MLE 0 is found, then v is estimated as L - D from the
usual line transect estimation of D and we can get

D(x,y)=t(x,y|8) - L-D

(A similar, but by no means identical, development of basic theory is
possible for point transects.) More sophistication can be added if the
parameters 0 affecting density are modelled as functions of covariates
recorded at the locations of detections (and available for a grid of points
over A).

In many data sets, even when E(s) is also estimated, we see that the
contribution of Vat(n) to var(D) is large, often greater than 50%, and
sometimes in excess of 70%. We suspect that Equation 6.3 often fails
and a more detailed analysis of the data to estimate varying encounter
rates would be useful. The scientifically critical part of this procedure
is what to use as a model for D(x, y), or equivalently, r(x, y). The
technically difficult part is computing the integrals that are needed, and
fitting ¢(x, y) (or d(x, y), but that is unnecessarily harder). These integrals
and the fitting will generally be done by numerical methods. Additional
sampling variance is mtroduced by D(x, ), so there must be a worthwhile
reduction in the bias of Var(n) and/or bias of D, and the detection of
important spatial trends in density, to justify this additional analysis.
General software and methods for these analyses need to be developed.
We expect to see this subject area implemented for practical use in the
next five to ten years. This spatial modelling in terms of x—y coordinates
1s a necessary first step to the incorporation of spatially varying covari-
ates that affect object density.
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6.3.4 Modelling variation in cluster size

The modelling strategies for encounter rate outlined above may also be
applied to cluster size. Spatial and temporal variation in mean cluster
size is common, and as with encounter rate, this structural variation
should if possible be modelled. A simple method of achieving this is to
stratify in space and time before estimating mean cluster size. When
sample sizes within strata are small, a common dispersion parameter
¢ = var(s)/E(s) might be assumed. Suppose the stratification yields V
data sets. If E(s)) =5, v =1, , V, then the variance of E(sv) 1s esti-
mated by the sample variance of observed group sizes, var(sy), divided
by n,. The dispersion parameter is estimated by

2{(”1} - 1) N X/'a\,\r(—sv)

LV E(sy)
c=
Z (ny = 1)
v
Then
TGy = T _ ¢S

hy Hy

If size bias in the sample of detected clusters is suspected, then E(sy)
and var(s,) should be estimated by one of the methods outlined in
Section 3.6 before apphcatxon of the above equatlon for ¢. That method
yields estimators E(sv) and var[E(v,,)]— - Var(s,) for some value d,,
from which the variance of E(s) is estlmated by

Var[E(sy)] = ¢ - Eso) - do

Modelling the spatial variation in cluster size may be seen as an
alternative to dividing an area into geographic strata. The latter is an
attempt to create sub-areas in which spatial variation in cluster size is
small, whereas the former allows mean cluster size to vary as a continu-
ous function through the area. Similarly, temporal variation in cluster
size may be modelled. Having fitted a surface for mean cluster size,
using perhaps generalized linear or generalized additive modelling tech-
niques, mean cluster size can be estimated for the study area as a whole,
or for any part of it, and if temporal variation is also modelled, mean
cluster size can also be estimated at different points in time.
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6.3.5 Discussion

The spatial models described in general terms in Section 6.3.3 and
alluded to above are also applicable to the parameters f(0) (line tran-
sects), £(0) (point transects) and go. Similarly, estimation of these par-
ameters by individual strata, combined with the assumption of a
common dispersion parameter, are options available to the analyst.
However, these parameters are unlikely to vary spatially to the same
degree that encounter rate and mean cluster size do. Additionally,
estimation of f(0), #(0) or g, is bias-prone when samples are small,
whereas estimation of encounter rate and mean cluster size are less
problematic. For these two reasons, the case for spatial modelling of
the detection process, or for estimating f(0), 4(0) or g, separately within
strata, is less compelling than for encounter rate and mean cluster size.

In principle, it is possible to model the density surface, allowing for
spatial and temporal variation in individual parameters, together with the
effects of environmental conditions on parameters, effects of cluster size
or observer on probability of detection, and so on. In practice, considerable
software development would be necessary, and if the principle of parsimony
was ignored, implementation of such general models would be prevented
by numerical difficulties. Section 6.8 on a full likelihood approach lays out
the philosophy and structure around which more general modelling could
be developed. A simpler, if less comprehensive, strategy is to fit a spatial
and, where relevant, temporal model for each parameter in turn. By fitting
these models independently, with inclusion of covariates such as environ-
mental factors where required, a spatial surface can be estimated for each
of the parameters encounter rate, mean cluster size, f(0) or #(0), and, where
relevant, go. Density can then be estimated at any point in the study area
(and at any time in the study period, if temporal variation is modelled) by
combining the estimates from each surface at that point. Abundance can
then be estimated for any selected part or the whole of the study area by
evaluating the density estimate at a grid of points, and implementing
numerical integration. Variances may be estimated using resampling
methods, to avoid the assumption that the surfaces for the different
parameters are independently estimated.

6.4 Estimation of the probability of detection on the line
or point

For both line and point transects it is usual to assume that the prob-
ability of detection on the centreline or at the point is unity; that is,
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go = 1. In practice the assumption is often violated. For example, whales
that travel in small groups or that dive synchronously may pass directly
under a survey vessel without being detected, or birds in the canopy of
high forest directly above an observer may be unrecorded unless they
call or sing. As shown in Section 3.1, it is easy to include the component
go in the general formula for line and point transects; far more difficult
is to obtain a valid estimate of g,. Most of the methodological devel-
opment for estimating g, has arisen out of the need to estimate the
size of cetacean stocks from line transect surveys, so that the effects of
commercial or aboriginal takes on the stocks may be assessed. A
summary of the evolution of ideas, mostly within the Scientific Com-
mittee of the International Whaling Commission, follows.

(a) Line transect sampling Early attempts to estimate go were based on
the models of Doi (1971, 1974). These were exceptionally detailed
models, incorporating the effects of whale dive times and blow times,
whale aggregation, response to the vessel, vessel speed, observer height
above sea-level, physiological discrimination of the observers, number
of observers on duty, binocular specification and angular velocity of eye
scanning. The models gave rise to estimates of gy with very high
estimated precision, but different model assumptions led to estimates
that differed appreciably from each other (Best and Butterworth 1980;
Doi et al. 1982, 1983). In other words, by making many detailed
assumptions, the estimator has high precision but at the expense of high
bias, and the validity of the approach is questionable.

Butterworth (1982a), using the approach of Koopman (1956), de-
veloped a continuous hazard-rate model very similar to that described
in Section 3.2, and used it to examine mathematical conditions under
which go < 1. Butterworth et al. (1982) used this formulation to derive
a formula for g, that was a function of vessel speed:

g() =1 —exp(— a/v)

where v is vessel speed and o depends on the form of the hazard
function. They argued that, if the whales were stationary and vessel
speed zero, there would be infinitely many chances to detect whales on
the centreline, so that go(0) = L. If the true hazard is such that go(v) <1
for v > 0, and if the specific hazard is independent of vessel speed, then
the ratio of estimated whale density assuming g, =1 at two different
speeds will estimate the ratio of g, values at those speeds:

bvl _ go(vy) _ 1 - exp(— a/vy)

Dy, $o0(v2) T 1- exp(— 0./vg)
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Solving this equation for o and substituting in the above equation for
go(v) with v = v, say yields an estimate of gy(vz). Surveys of minke whales
in the Antarctic are generally carried out on board vessels travelling at
12 knots.

Butterworth e al. (1982) reported on variable speed experiments in
which v; = 6 or 7 knots and v, = 12 knots. They obtained estimates of
g0(12) close to 0.7, but precision was poor, and estimates did not differ
significantly from 1.0. Despite using a hazard-rate formulation, they
assumed that the detection function was negative exponential, and
Cooke (1985) criticized this; if the form is negative exponential at one
speed, then it can be shown mathematically under the above model that
the form cannot be negative exponential at the other speed. Cooke
(1985) proposed a method based on the ratio of sightings rate at the
two speeds. However, he noted that expected precision of estimates from
this approach is low even when all the assumptions of the method are
satisfied, and listed other reservations about the approach. Hiby (1986)
also showed that random whale movement at a speed of 3 knots gener-
ated large bias in the sighting rate of a vessel travelling at 6 knots. This
bias could be corrected for if the true average speed of movement was
known, but he questioned whether it could be reliably estimated. Butter-
worth (1986) applied Cooke’s approach, using four different methods
of confidence interval estimation, to two data sets, both separately and
combined. He found that most of the 95% intervals for g,(12) spanned
the entire range [0,1], and in every case, the upper limit exceeded 1.0.
In one case the lower limit also exceeded 1.0. Given the unresolved
difficulties, the method has not been used again.

Zahl (1989) continued development of methods to analyse variable
speed data, and put the use of variable numbers of observers on the
sighting platform into the same theoretical framework. In common with
Schweder (1990), he argued that discrete hazard-rate models are more
appropriate than continuous models for whale data. He developed such
a model in conjunction with a generalization of Cooke’s (1985) method.
While precision was improved (Zahl, unpublished), it remained poor,
and he did not address the problem of random whale movement.

Butterworth er al. (1982) also described a parallel ship experiment.
Although designed for examining whether whale movement was affected
by the presence of a vessel, they noted that the expected proportion of
sightings seen from both platforms in such an experiment can be
estimated from the fitted detection function. Their estimates were incon-
sistent with results from the variable speed experiment, which they
attributed to the use of the negative exponential for modelling perpen-
dicular distances. Butterworth et al. (1984) extended the method to
provide estimates of g,, assuming a generalized exponential form for the

202



PROBABILITY OF DETECTION ON THE LINE OR POINT

" detection function. Buckland (1987c) generalized their results to provide
go estimates from parallel ship data using any model for the detection
function, and allowing a different detection function for each vessel. He
then analysed the data assuming the continuous hazard-rate model of
Section 3.2. This resolved some of the inconsistencies observed in
parallel ship data, but the observed duplicate sightings distribution
departed significantly from the distribution predicted by the method. If
some whales exhibit behaviour that makes them particularly visible
relative to other whales, then the duplicate sightings proportion may be
higher than anticipated at greater distances, and the observed data show
such an effect. Two additional problems remained unresolved. The first
is identification of duplicate detections (i.e. whether a sighting made by
one platform corresponds with one made by the other), especially in
areas of high whale density; the second is assessment of whether estim-
ates of g, from parallel ship experiments are valid for correction of
abundance estimates derived from normal survey data.

Schweder (1990) proposed new parallel ship experiments, in which one
vessel is not only to one side of but also behind the other. He showed
using a discrete hazard-rate model (Section 6.2.5) that sightings of cues
from the two platforms cannot be considered independent. By placing
one vessel behind the other, whales that are below the surface when the
first vessel passes may be visible to the second vessel. Results from
experiments advocated by Schweder, together with further methodologi-
cal development, are given in Schweder et al. (1991), who estimated go
for North Atlantic minke whales. They mapped out surfacings as re-
corded by one observer in terms of relative position to the other, coding
duplicate sightings as 1 and those missed by the reference observer as
0. The hazard probability of sighting was estimated from these data,
and integrated multiplicatively, using stochastic simulation. The surfac-
ing pattern of minke whales was estimated from monitoring two whales
to which a VHF transmitter had been attached. This allowed them to
estimate g, without the assumption that the observers detect animals
independently. Instead, the assumption of independence is transferred
to individual surfacings; conditional on an animal surfacing at a given
location, the probability of detection of that surfacing is assumed to be
independent between platforms. They obtained g, = 0.43, with 95% con-
fidence interval (0.32, 0.54). This interval took account of uncertainty
in whether detections were duplicates.

Several authors have noted that, if a negative exponential model is
assumed for the detection function and a correction factor e is defined
to allow for deviations of the true detection function from this
model, then although neither e nor g, can be estimated robustly or with
good precision. their ratio, called the ‘ek’ factor, where h = 1/g, can
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(Butterworth et al. 1984; Cooke 1985; Kishino et al. 1988). However,
the method is still sensitive to the assumption that sightings from
the two platforms are independent. Following a comparison of the
performance of the negative exponential, exponential power series,
hazard-rate, Fourier series and Hermite polynomial models (Buckland
1987b), the Scientific Committee of the International Whaling Com-
mission adopted the hazard-rate model in preference to the negative
exponential model.

The variable speed and parallel ship methods both require special
experiments. These take the vessels away from survey work, and g,
during the experiments may not be typical of g, values during normal
survey mode; for example experiments are carried out in areas of high
whale density, so that sample size is adequate. The field procedure most
widely used currently is the ‘independent observer’ method; an addi-
tional observation platform is used (for example a second crow’s nest
vertically below the main one), and observer(s) search independently of
the observer(s) on the primary platform. Observers on one platform are
not advised of sightings made from the other. Few resources beyond
those needed for normal survey mode are required, and the method is
therefore often incorporated into normal survey mode.

The methods and problems of analysis are similar to those for a
parallel ship experiment with inter-ship distance set to zero, and there
Is again a strong case for using discrete hazard-rate models in any future
methodological development. Identification of duplicate cues is simpler
than for two ships, since the bridge can more easily coordinate informa-
tion from the two platforms, and matches are more easily made when
both detections are observed from almost the same position. Exact
recording of times of cues aids the identification of duplicate sightings,
especially when the same cue is seen from both platforms; if feasible, a
whale detected from one platform should be located say from the bridge
and followed so that if it is later detected from the other platform, it
may be more easily identified as a duplicate.

Two further methods of examining independent observer data have
arisen from the Southern Hemisphere minke whale subcommittee of the
International Whaling Commission. The first uses one platform to
confirm the positions of a sample of schools, and then plots the
proportion of these sightings detected by the other platform by distance
from the centreline, which should provide an empirical fit to the detec-
tion function (with g(0) < 1) for the second platform. Butterworth and
Borchers (1988) describe this approach, and apply it assuming a negative
exponential detection function (their ‘DNE’ method). The second
method does not require that duplicate sightings are identified, and is
discussed in Hiby and Hammond (1989). It uses information on pairs
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of sightings from between and within platforms that are definitely not
duplicates to prorate sightings that may be duplicates, without the
necessity to identify whether any specific pair of sightings is a duplicate.
D.L. Borchers (personal communication) has noted a theoretical short-
coming of this approach, and recommends that it not be used.

One of the most troublesome aspects of estimating g, is that different
sources of heterogeneity can give rise to substantial bias. Bias in g,
might be positive or negative, depending on the type of heterogeneity,
and how it is modelled. Observer heterogeneity can arise through
different sighting efficiencies for different observers, and through vari-
able sighting efficiency of a single observer through time. Platform
heterogeneity is similar in nature. The same observer may have different
sighting efficiencies from different platforms, and the relative efficiency
of different platforms may vary with environmental or other factors.
Environmental heterogeneity affects the efficiency of both the observer
and the platform, and environmental variables such as sea state and
temperature are likely to affect behaviour of the whales. Individual
animals will in any case exhibit heterogeneous behaviour, which leads
to too many duplicate detections from double-counting methods, and
hence to negatively biased estimates of abundance. Because of the
confounding between the various sources of heterogeneity, it is usually
not possible to model heterogeneity adequately even when carefully
designed experiments are carried out to estimate go.

Traditional methods of handling heterogeneity include stratification
and covariance analysis, and both are potentially useful for reducing
the effects of heterogeneity on estimates of g,. Generalized linear model-
ling provides a framework for implementing both approaches. For
example, stratification by observer can be achieved by introducing one
parameter per observer, and sea state (Beaufort scale) may be incorpor-
ated as a regression variable (covariate). The method can be taken
further. Suppose parameters are defined for each observer and each
platform. Then interaction terms between observer and platform may
be introduced. This method is more reliable if each observer is on duty
for an equal time on each platform, according to an appropriate design.
If observer performance is thought to vary with time, the time that the
observer has been on duty (or function(s) of that time) may be entered
as a covariate. However, problems arise in practice because different
covariates may be highly correlated with each other, and because there
may be considerable confounding between stratification factors. Further,
the quality of data from which g, might be estimated is often poor, so
that a realistic model may have more parameters than the data can
support, and unquantifiable bias may arise either through practical
difficulties in data collection or through inappropriate model specification.
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The methods developed for handling heterogeneity in closed population
mark-recapture by Huggins (1989, 1991) and Alho (1990) are relevant
whenever data from independent platforms are used to estimate g,.
Indeed, probability of detection as a function of distance, estimated by
g(x), is itself a covariate in this framework. The method is illustrated
in a slightly different context in Section 6.12; adding g(x) as a covariate
allows it to be applied here.

We consider each source of heterogeneity, and use simple examples
to illustrate the effects on estimation. For these examples, it is supposed
that each detection function is flat and equal to g, out to some distance
d, and that g, is estimated by the Petersen (1896) two-sample mark—
recapture estimate. Although this approach is simplistic, it serves to
illustrate concepts. Thus we have

gio=ni/N for platform i,i=1,2 (6.9)
2
go=1 _‘1:11[1 — giol = 10+ 820 — £10820 (6.10)

for both platforms combined where n; = number of detections from
platform i and

S ng
N=

, with n;; = number of detections made from both platforms.

12

Suppose that there is a single observer on each of two platforms, one
of whom sees all the whales on the centreline (g, = 1.0) while the other
sees only one half (g2 = 0.5). Suppose further that in the first half of
the experiment, 50 whales (or whale schools) pass within distance d of
the vessel, and the observers see 50 and 25 of these whales respectively.
For the second half of the survey, they switch platforms, and again 50
whales pass, of which the first observer sees 50 and the second observer
25. Then if go is estimated by platform using Equation 6.9, n =n, =75
and n;; = 50, so that g0 = g, = 2/3, and g, = 8/9. In fact, gy = 1, so that
abundance is overestimated by 100 x (9 — 8)/8 = 12.5%. In this case, the
problem may be solved by applying Equation 6.9 to observers instead
of platforms, giving » = 100 and n, = n,; = 50, so that g0 = 1.0, g = 0.5
and go = 1.0. However, the above argument may now be reversed; if for
a given observer g is less for one platform than the other, bias arises
for exactly the same reason. A solution is to estimate g, separately for
each observer on each platform. This allows for an observer effect, a
platform effect and an interaction between them. Data may be too sparse
to support such an approach; Equation 6.9 and generalizations of it are
unstable for small values of n;,. Another solution is to assume there is
no interaction effect, so that g, is assumed to be an additive function
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of an observer and a platform effect. This solution may prove satisfac-
tory when the time spent by each observer on each platform is subject
to a randomized experimental design. However, it assumes that g, for
a single observer or platform remains constant throughout the survey.

Platform heterogeneity arising from heterogeneity in environmental
conditions would be problematic if for example sighting conditions were
better from one platform in some conditions and from the other in
different conditions. Thus reflected sunlight may cause one vessel in a
parallel ships survey to miss many whales that pass between the vessels
and are detected by the other vessel. This will lead to negatively biased
estimates of g, and positively biased estimates of abundance, since each
ship will be affected in this way during different periods of the survey;
from a theoretical point of view, it is identical to the problem of the
above example, for which platform efficiency changes when the ob-
servers swap platforms. However, it is more difficult to design a survey
to achieve balance for environmental effects, and appropriate parame-
terization is problematic.

Observer efficiency may vary over time due to factors such as mood,
health, comfort, time on duty, etc. Both observer and platform efficiency
will vary with environmental conditions. Bias from these sources will
tend to be less; at any given time, implications are similar to the cases
considered above, but over time, bias changes. If no observer or plat-
form is consistently more efficient than another, average bias from this
source may tend to be small. Additionally, environmental conditions
might be introduced into the model as covariates, so that go is related
to environmental conditions by a regression model, which might be a
generalized linear or non-linear model. Again, data inadequacies may
severely constrain the model options.

The fourth class of heterogeneity is heterogeneous behaviour of ani-
mals. If some whales are more easily detected than others, then double-
counting methods suffer the same bias as two-sample mark-recapture
experiments on populations with heterogeneous trappability. Obvious
whales are likely to be seen by both observers, whereas unobtrusive
whales may be missed by both. The number of whales is therefore
negatively biased and g, is positively biased. Suppose that of 160 whales
passing within distance d of the vessel, 80 are certain to be seen from
each of two platforms and g, = 0.25 for both platforms for the remaining
80 whales. Assuming independence between platforms, the expected
numbers of whales detected are n, = n, = 100, n,, = 85. Equations 6.9 and
6.10 yield g0 = g2 = 0.85 and g, = 0.9775. In fact, g0 = g = 0.625 and
go = 0.71875, so that abundance is underestimated by 26.5%. This prob-
lem might be partially solved by stratifying detections by animal beha-
viour, or by type of cue.
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Both heterogeneity in whale behaviour and cues that occur only at
discrete points in time generate positive bias in the g, estimate if the
effects are not allowed for, whereas heterogeneity in observer ability and
in ease of detection from the respective platforms may lead to negative
bias. Schweder’s (1990) methods, referenced above, remove the bias that
arises from heterogeneity in whale behaviour due to differential diving.
If sufficient data are available, the effects of observer heterogeneity
might be removed by adding a separate parameter for each observer to
the model from which g, is estimated, for example using generalized
linear models (Gunnlaugsson and Sigurjonsson 1990), although it must
still be assumed that a single observer is consistent in ability relative to
other observers both within and between watch periods. If there is more
than one observer on each platform, another option is to select teams
of observers so that each team is of comparable ability. Data analysis
should then include a test of whether it is reasonable to assume that
each team was equally efficient at detecting whales. It may also be
necessary to introduce platform-specific parameters, or at least to test
whether such parameterization is required.

Methodological development to solve these difficult problems is con-
tinuing, and an innovative paper by Hiby and Lovell (unpublished)
proposes a sophisticated approach which allows for response by the
whale to the vessel and does not assume stochastic independence be-
tween the platforms. The approach uses data on duplicate cues rather
than duplicate animals, and can be used in conjunction with either line
transect sampling or cue counting methodology. However, it does re-
quire surfacing rate to be estimated, and whether the effects on the
sightings data of both g, < 1 and response to the vessel are simulta-
neously quantifiable has yet to be assessed.

We provide below theory from Buckland (1987c), which allows esti-
mation of g, given independent detections from two platforms a distance
d apart; d > 0 corresponds to parallel ship surveys, where the ships are
separated by a distance d, and d = 0 corresponds to independent observer
platforms on the same vessel or aircraft. The theory for the latter case is
also given in Hiby and Hammond (1989). A continuous sighting cue is
assumed. The method is subject to potentially serious biases, especially if
time periods between cues are not short (say over five minutes for ship-
board surveys). Also given is a method described by Buckland and Turnock
(1992), which is an extension of ideas utilized by the DNE method
(Butterworth and Borchers 1988) mentioned above. The latter approach is
more robust to the effects of animal heterogeneity and of animal movement.

Suppose the two platforms are labelled 4 and B, with B a distance d
to the right of 4 (Fig. 6.1). If both platforms are on the same vessel,
then d=0. Suppose a cluster of whales is detected at perpendicular
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Fig. 6.1. Tllustration of parallel platform method. The platforms are a distance
d apart, so that a detection at distance x from the centreline of platform A4 is
a distance d — x from the centreline of platform B. If the detected object is to
the left of A’s centreline, x is negative. A truncation distance of w from the
centreline of the farther platform is used.

N

distance x from A, where x is negative if the detection is to the left of
A, and positive if it is to the right. Let the probability that 4 detects
the cluster be g4(|x|). In terms of notation used elsewhere in this book,
g4(Jx]) corresponds to g(x) - go; thus g4(0) is not assumed to be unity,
but is the value of g, for platform 4. Further, let the probability that
B detects the cluster be gp(|d — x|), assumed to be independent of
g4(|x]). Then the probability that the cluster is detected by both plat-
forms is g4(|x|) - gs(|d — x).

Now suppose that detected clusters within a distance w of each
platform are analysed, where d/2 < w < e. Define

Ha = fd— " ga(lx]) - dx

wo= | galld=x) - dx
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and
w
pao= | gullx) - galld - x) - d
d—w

Further, let

_ M4 _ _Us _ Was
V= , Vg = and vy=-—"4%
1T ga0) 7 g5(0) 7 24(0) - g5(0)

Standard line transect analysis of the data from each platform, or of
the pooled data from both platforms if the detection function can be
assumed to be the same for both, yields estimates of g(|x[)/g(0) for each
platform. Hence v,, vz and v, are estimated using numerical or analytic
integration. If n, clusters are detected within the strip of width 2w — d
(Fig. 6.1) from platform A4, ng from B and n,p from both, then np/ng
estimates MAB/HB.

Vg - N4

~

Hence  g,(0)=
Vap " Np

Similarly.  g(0) = w242
Vap - By

Variances for these estimates may be found for example using the
bootstrap.

If w is chosen such that g(|x|) is more or less constant for 0 < x < w,
then v4=vz=v,=2w —d, so that

; ,(0) = 12 3(0) = 42
£/0)="" and g(0)=""

which may be obtained directly from the two-sample mark-recapture
estimate of Petersen (1896).

The following method, due to Buckland and Turnock (1992), is more
robust. Suppose an observer or team operates normal line transect
sampling techniques from a primary platform (platform A), and an
independent observer or team searches a wider area from a secondary
platform (platform B), ahead of the normal area of detectability for the
primary platform, making no attempt to detect most animals close to
the line. The method does not require the assumption that probability
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of detection on the centreline is unity. If detections from the secondary
platform are made before animals move in response to the presence of
the platforms, the method is unbiased when responsive movement occurs
before detection from the primary platform. Further, if sighting distan-
ces and angles of secondary detections are measured without error,
the method is unbiased when sighting distances or angles recorded by
the primary platform are subject to bias or error. For example, if the
primary platform is a ship and the secondary platform is a helicopter
hovering above a detection, ship’s radar may be used.

Data from the primary platform are used to estimate the encounter
rate (number of detections per unit distance), while data from the
secondary platform allow the effective width of search from the primary
platform to be estimated. The secondary platform may be thought of
as confirming the position of a sample of animals, and the proportions
of these detected by the primary platform allow estimation of the
detection function, without the necessity to assume gy = 1.0.

The probability of detection of an animal from one platform should
be independent of whether the animal is detected by the other. Detec-
tions made by observers on the secondary platform should be at least
as far ahead of the primary platform as the maximum distance at which
animals are likely to move in response to the presence of the observation
platforms. Any secondary detections that occur at shorter distances
should be truncated before analysis. Secondary observers should also
search out as far as the greatest distance perpendicular to the transect
line from which animals would be able to move into the normal
detectable range of the primary platform. For animals that are only
visible at regular points in time, such as whales with a regular dive cycle,
the normal detectability range of the secondary observers should exceed
the distance travelled by the primary observers during the course of a
single, complete cycle. Conceptually, duplicate detections are expected
to be sighted from the secondary platform first, but if the above
conditions are met, the analysis may include duplicates first sighted from
the primary platform.

Of those animals that pass within the normal detectability range of
the secondary observers, the proportion actually detected need not be
high, although if few duplicate detections occur, precision will be poor.
If the secondary platform cannot be in operation throughout the survey,
it should operate during representative, preferably random, subsets of
the survey effort.

Secondary observers need not detect all animals on the centreline of
either platform. However, the perpendicular distance of each secondary
detection from the centreline of the primary platform must be recorded.
It is also necessary to determine whether any animal detected by the
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secondary platform is also detected by the primary platform. Thus, any
animal detected by one platform should be monitored by that platform,
or by a third platform, until either the other platform detects the animal
or it passes beyond the area searched by the other platform. If animals
occur in groups, group size should be recorded by both platforms, either
to help identify duplicate detections or, if duplicates are reliably identified
and animal groups are well-defined, to validate group size estimates.

Suppose for the moment that both platforms operate throughout the
survey. The sightings data from the primary platform are analysed
independently of the data from the secondary platform, to yield a
conventional line transect density estimate ﬁA, calculated assuming no
movement and g, = 1. If animals occur in groups, we define these to be
group densities (number of animal groups per unit area), rather than
animal densities. The estimates may be biased either because of move-
ment in response to the observation platforms or because probability of
detection on the centreline is less than unity. However, for the subset
of duplicate detections, the position of the animals prior to any response
to the platforms is known. A detection function may therefore be fitted to
the distances, as recorded by the secondary platform, of duplicate
detections from the centreline of the primary platform. In addition, a
detection function, relative to the centreline of the primary platform, is
fitted to all secondary detections. An asymptotically unbiased density
estimate, ﬁu, is calculated as follows.

Let g.(x’) = probability that an animal detected from the secondary
platform at perpendicular distance x’ from the centreline of
the primary platform is subsequently detected from the
primary platform, with g,(0) < 1.0

w = truncation distance for perpendicular distances x’
f4(x") = probability density of perpendicular distances, prior to
responsive movement, of animals subsequently detected by
the primary platform

=g x’)u, with p= fo g4(x") dx

np = number of secondary detections
n4p = number of detections made from both platforms (duplicate
detections)
ns = number of primary detections
f3(x") = probability density of perpendicular distances from the
primary platform centreline for secondary detections
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f4s(x") = probability density of perpendicular distances from the
primary platform centreline for duplicate detections, as
recorded by the secondary platform
f(x) = probability density of perpendicular distances x recorded
from the primary platform
L = length of transect line

Then the conventional (biased) estimate of density is

~ n-£(0)
Da= 2L

and the asymptotically unbiased estimate is given by

B, = M Sa0)

C 2L - 24(0)
where
f;(O) - éA (0)
. g4(x") dx’
and

~ . Nug- (X

gty = Tan JaslX)

ng - fz(x")

The probability densities f,z(x") and f3(x") are estimated by standard
line transect methods. The critical assumptions of the method are as
follows.

1. No animals beyond the range of detectability of the secondary
platform are able to move into the range of detectability from the
primary platform.

2. It is always possible to determine whether an animal detected by the
secondary platform is also detected by the primary platform.

3. Given that an animal passes the secondary platform at perpendicular
distance x’, its probability of detection from the primary platform is
independent of whether it was detected by the secondary platform.
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4. Perpendicular distances of animals detected by the secondary plat-
form from the centreline of the primary platform are measured
exactly, or at least without bias.

If the secondary platform is not in continuous operation, the above
procedure is carried out on data collected while both platforms were in
operation and a correction factor is calculated as

D,
D,

Cc =

Density for the entire survey area is estimated by ¢ - D, where D is
estimated from the sightings data from the primary platform for the full
survey, calculated assuming go = 1. To estimate the variance of D, or of
¢ analytically, the correlation between the estimated densities fz(x")
and f45(x") and between n,z and both »nz and n, must be accounted for,
and a robust method should be used to estimate the variance in sample
sizes. Variance can be estimated more simply and more robustly by
applying a resampling method. For example, bootstrap variances may
be obtained by resampling from the sightings and effort data from both
platforms by day or by search leg (Section 3.7.4).

In the presence of random or responsive movement, g,(0) is not a
valid estimate of go, since animals close to the centreline when detected
by the secondary platform may have moved away from it before detec-
tion by the primary platform, and similarly, some away from the
centreline may approach it. Thus g,(0) is biased low for g, (Buckland
and Turnock, 1992). In this case, the method provides a single correction
for both sources of bias; stronger assumptions are required to separate
the two components of the correction.

The above methods were applied to Dall’s porpoise data. The fitted
densities fz(y) and f,5(p), estimated assuming a hazard-rate model, are
shown in Fig. 6.2. The estimate of g,(0) was 0.597, and the multiplicative
correction factor was 0.130 (8¢ = 0.050; 95% percentile confidence interval
[0.075, 0.262]). Thus the corrected density estimate is less than one
seventh the uncorrected estimate. For these data, the combination of
strong attraction of porpoise towards the ship and the close approach
most porpoise were able to make before detection by the shipboard
observers led to an estimate of porpoise density that was an order of
magnitude too high.

The approach outlined above is relatively insensitive to observer,
platform and environment heterogeneity, provided the secondary plat-
form is in operation continuously, or at least during a representative
sample of time periods in the survey. Animal heterogeneity is more
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Fig. 6.2. Fitted densities to all helicopter sightings (upper curve) and to duplicate
sightings (lower curve), Dall’s porpoise, 1984. The hatching indicates the number
of duplicate detections in each perpendicular distance interval (as recorded by
the helicopter), and the open bars correspond to detections made by the
helicopter alone.

problematic, but if the method of detection from the secondary platform
is such that the probability of detection from the primary platform is
independent of, or only weakly dependent on, whether an animal was
detected by the secondary platform, then estimation should be reliable.
It may prove necessary to stratify by behaviour of the animal or, if
animals occur in groups, by group size to satisfy this requirement.
The field methods of our example, for which a helicopter searches
ahead of a survey ship, illustrate one application of the method. If it is
not practical to use a helicopter, but normal survey mode is to search
with the naked eye, then a simpler solution might prove effective.
Suppose an independent observer platform is available on the same
vessel or vehicle as the primary platform. Instruct the independent
observer to scan through binoculars, searching at distances beyond those
typically scanned by the other observers. It does not matter that the
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restricted field of view may cause the observer to miss many animals
close to the centreline. He or she should follow any detection until either
the other observers detect it or it has passed abeam. If his or her average
detection distance is substantially greater than that of the other ob-
servers, the method might prove satisfactory for the case of diving
species, provided the dive cycle is sufficiently short that each animal
group surfaces within detectability range at least once. He or she should
strive to detect animals beyond the maximum distance they are likely
to respond significantly to the vessel, even at the expense of reducing
the overall number of detections made. He or she should concentrate
effort ahead of the vessel, because the above method corrects for
non-uniform effort, and effort searching abeam is wasted, since the other
observers are unlikely to detect any animals at large perpendicular
distances. If normal searching mode is through hand-held binoculars,
the secondary observer could use powerful, tripod-mounted binoculars.
By ensuring that the secondary observer searches beyond the normal
detectability range from the primary platform, bias from heterogeneity
between animals is reduced, especially if the mode of searching from
the secondary platform is very different from that from the primary, as
would be the case if the secondary platform is a helicopter and the
primary platform is a ship or is ground-based.

In practice, it may prove difficult to operate a secondary platform,
especially in poor sighting conditions. Even if sufficient detections can
be made at distances beyond the range over which animals respond to
the observer, it may not be possible to track detected animals, to
determine whether they are also detected by the primary platform. In
designing line transect surveys, priority should be given to ensuring that
go 1s as close to unity as possible and that detections are made prior to
responsive movement. Only if g, might be appreciably less than unity
or if substantial responsive movement prior to detection is suspected
should the methods outlined above be considered.

The methods of Huggins (1989, 1991) and Alho (1990), developed for
mark-recapture models, provide a flexible framework for estimation of
g0, which may prove superior to the above methods. As noted earlier,
their application is illustrated in a similar context in Section 6.12. By
first fitting a detection function to the pooled perpendicular distance
data, the estimated probability of detection for an object at distance
x, £(x), can be included as a covariate. The method used in Section 6.12
then yields an estimate of the probability of detection unconditional on
x, and hence of g,. We encourage further development of this approach.

(b) Point transect sampling Estimation of g, has seldom been con-
sidered for point transect sampling, although in their hazard-rate for-
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mulation, Ramsey et al. (1979) note that g, need not be unity. In
particular, if only aural cues are recorded, then birds that do not call
or sing will not be detected, irrespective of their position. The cue
counting method for estimating whale numbers (described later) is very
similar theoretically to point transects, and g, estimation is more im-
portant in this context. Problems are similar to the line transect case,
and are well described by Hiby and Ward (unpublished), who propose
a model that allows for the discrete nature of cues and yields estimates
of go.

6.5 On the concept of detection search effort

The detection of objects in distance sampling requires some type of
active search effort. This will often be visual, so that observers must
have some visual search pattern. Koopman (1980) discusses ideas on the
search and detection process. We suggest that it is useful to consider
some concept of search effort, and we pursue this suggestion here for
line transects. (Detections are often by aural cues in point transects, in
which case it is not clear to us how to model search effort other than
as time spent at the point.)

Conceptually, searching effort has its own distribution about the
centreline for line transects. Can we separate this concept of search
effort from some concept of ‘innate’ detectability? To a limited (but
useful) extent, we think the answer is ‘yes’. Let e(x) be relative searching
effort at distance x, and let E be total absolute effort over all perpen-
dicular distances. Then the perpendicular distance distribution of total
effort is E(x) = E - e(x). Total absolute effort, E, is conceptual because
we do not precisely know what constitutes total effort, given that there
are subjective aspects to the detection process; we do not know how to
measure E on a meaningful scale. However, relative effort at distance
x - dx could be the relative time spent searching at perpendicular dis-
tance x - dx. This measure of e(x) is sensible and could be measured, in
principle. Usually, we require that total effort E is sufficient to ensure
8(0) = 1. Therefore, we will use the norm e(0)=1 to scale e(x). We
maintain, and assume, that e(x) should be non-increasing in perpendicu-
lar distance x.

We consider here some useful heuristic thinking, while recognizing
that this is not the best mathematical approach. Use of a hazard-rate
approach is coherent, but is not required for the points we wish to
make. For the detection function, write

g(x) =d(x) - e(x) (6.11)
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where d(x) is some innate, or standard, detection function, as for
example for some optimal effort, e,(x). By assumption, both d(0) and
e(0) are unity and both functions are non-increasing in x. Based on
Equation 6.11, g'(x) =d'(x) - e(x) + d(x) - €'(x), so that g'(0)=d’'(0)
+ €’(0). It follows that if both effort and innate detectability have a
shoulder, then so does g(x). However, if effort is poorly allocated
perpendicular to the line, then we can get g’(0) < 0, i.e. no shoulder in
the distance data, even when d’(0) = 0, which means that a shoulder is
innately possible with a proper search effort design.

For line transect surveys in which there is visual searching for objects,
especially aerial and ship surveys, histograms of the detection distances
all too commonly have the shape of Fig. 6.3. It seems unlikely that the
innate detectability would drop off this sharply; it is more likely that
the data reflect an inadequate distribution of search effort or another
field problem, such as heaping at zero distance or attraction of animals
to the vessel before detection. We focus on effort here.

In order to pursue this idea mathematically, we need to be able to
conceptualize innate detectability, d(x). Although we may want to think
of d(x) as detectability under some optimal searching pattern ey(x), it is
not possible to define an actual detection function, g(x), free of some
implicit or explicit underlying detection effort distribution. For x < w,

Ia)

Probability density f(x)

Perpendicular distance x

Fig. 6.3. Line transect data exhibiting a shape that is encountered too often;
the idealized histogram estimator of the density function f(x) suggests a narrow
shoulder followed by an abrupt drop in detection probability, and a long,
heavy tail.
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we might allow e(x) to be distributed as uniform (0, w), but this becomes
unreasonable for large w, and impossible as w — . Still, for small to
moderate w, we could define e,(x) to be uniform. Then for a survey
with this effort function, g(x) would reflect the innate detectability of
the object at perpendicular distances x < w.

Our intuition that detectability should not fall off sharply with in-
creasing distance should be applied to d(x). In most line transect
sampling with which we have experience, the assumptions that
d(0) =1 and that d(x) has a shoulder, i.e. d’(0) = 0, seem reasonable to
us. (Many marine mammal surveys are exceptions to the first assumption
(Section 6.4), and potentially to the second.) When the observed data
appear not to exhibit a shoulder, we should bear in mind that the data
really came from the detection function

g(x) = d(x) - e(x)

and hence the probability density function of the observed perpendicular
distance data is

d(x) - e(x)

Jx) =
jo d(x) - e(x) dx

If g(x) is as shown in Fig. 6.4, the data may primarily reflect effort e(x),
not innate detectability d(x). For any data set, we would like to know
the general nature of the effort distribution e(x) to assess our faith in
the assumptions that g(x) has a shoulder and satisfies g(0) = 1.

Desirable patterns for search effort should be addressed at the design
stage, and observers should be trained to follow them; Fig. 6.4 suggests
that the search pattern was poor. We suspect that in aerial and ship
surveys, there are often two distinct search modes occurring simulta-
neously: (1) intense scanning of the area near the centreline for much
of the time, and (2) occasional scans at greater distances and over large
areas, with more lateral effort. This may occur because one observer
‘guards’ the centreline, searching with the naked eye, while another scans
a wider area with binoculars, or a single observer may search mostly
with the naked eye, with occasional scans using binoculars. Data then
come from the composite probability density function, as indicated in
Fig. 6.5. In this case, most choices of histogram interval will obscure
the shoulder.

For the innate detectability, d(x), a shoulder should exist. Assume that
an object on the centreline is moved just off the line. In an aerial transect
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Detection function g(x)

Perpendicular distance x

Fig. 6.4. An undesirable relative effort function e(x) can give rise to the detection
function shown here, and hence to data that exhibit the features of Fig. 6.3.
Relative effort should be expended to ensure that the detection function has a
wider shoulder relative to the tail than is shown here.

survey (Fig. 6.6), the maximum angle of declination to the object would
change from 90° to perhaps 89° or 88°. Assuming the observer’s view
is not obstructed, the perceived properties of the object and detection
cues will barely change. There is continuity operating, so that g(x) will
be almost the same at x =0 as at a small increment from zero. Given
continuity, we maintain that it is not reasonable for d(x) to be spiked
(i.e. d'(x) <0).

We turn our attention now to considering what an optimal ey(x) might
be. We consider an aerial survey (Fig. 6.6), although the theoretical
approach applies more generally. In Fig. 6.6, the angle of declination
v is also the angle of incidence of vision, with ©/2 = y = 0. If objects
are assumed to be essentially flat and detection probability is propor-
tional to the perceived area of an object, then the same object when
moved further away shows less area and so is less detectable. The best
you could achieve in this case is an innate detectability d(x) proportional

to
cos(0) = cos [tan‘ '[%J]
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This only allows for the loss in perceived object area due to the oblique
view of the object as y decreases. Using heuristic arguments, if we add

the effect of perpendicular distance off the centreline and generalize the
result, we get the form

20

as a plausible innate detection function. Here, O is the true area of the

object. We would want AO such that d(0) = 1, in which case the tail
behaviour of d(x) (i.e. as x gets large) is

d(x)=[1-e*]. , 0 < x and for some scale factor o,

1

d(x) =

Detection function g(x)

Perpendicular distance x

Fig. 6.5. The detection function ¢, which is the same as in Fig. 6.4, can arise
from a mixture of curves a and b corresponding perhaps to two observers, one
(a) ‘guarding’ the transect line and the other (b) scanning laterally; such minimal
overlap of effort is undesirable.
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Height
/
/
/
/

N
~ -~
\ b2y~ ¥37~ VT~

Perpendicular distance x

Fig. 6.6. The distance / represents (eye) height of an observer, and detections
at various perpendicular distances x, indicated by the dashed lines, occur for
angles of declination, y. For some types of visual cue, the cue strength depends
critically upon .

This is a very slow drop-off in detection probability. In fact, it cannot
be used as a basis for general theory because it corresponds
to ] d(x) dx — . This d(x) does, however, give some sort of plausible
upper bound on innate detectability, hence on possible effort. That is,
we have reason to expect for any effort e(x), properly scaled on x,

e(x) < cos[tan” '(x)]

1+x

Also, note that in this simple situation, innate detectability would have
a definite shoulder.

Motivated by an aerial line transect mode of thinking, we could
express our effort in terms of a distribution on the angle y (Fig. 6.6).
To make derivations easier, we focus on u, 0 < u < 1, where

e
u= - yY=, tan (h]

and define g(u) as the pdf of u. For greater generality, we use

2 T . .
u=L - tan '(%); now the distribution of effort is proportional to

qlux)]

dx
du

222



ON THE CONCEPT OF DETECTION SEARCH EFFORT

where dx/du is evaluated at u =% - tan '(%} giving
2 12 x
22 fy]
e(x) o< , 0=x

ofiefa]]

The proportionality constant is determined by the convention that
e =1.

Let the effort be uniformly distributed over v, so that g(x) = 1 for all
u and

1
[1 + (ﬁj :I
(o}
If effort is uniform on cos(y), then we spend more time looking away
from the centreline, and the result is

20

It is interesting that if either y or cos(y) is uniform, the tail behaviour
of the induced effort distribution is

e(x) =

2
1
e(x) = — [}j
IE 2] |
c
Note that for the hazard-rate model of g(x) for large x
o b
gx) — (;)
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which of course includes the case of b =2. Because effort decreases
at large perpendicular distances, we would expect the applicable b to be
=2,

It is also useful to consider total effort, E, and its likely influence on
g(x) near x =0. Now Equation 6.11 must be replaced by the more
coherent form (justified by a hazard-rate argument)

gx)=1-—¢ £ ¢® (6.12)

with e(0) = 1, but where e(x) is not mathematically identical to the e(x)
function considered above. Consider what happens at x = 0 as a function
of total effort, E: g(0) = 1 — exp(— E). Some values of g(0) as E increases
are as follows:

E g

0.6321
0.8647
0.9817
0.9997
1.0000

[ R L A

1

It is obvious upon reflection, as the above illustrates, that if effort is
inadequate, detection probability on the line can be less than unity even
if innate detection probability at x = 0 is one. More interesting is what
might happen to a shoulder under inadequate detection effort. Analyti-
cally from Equation 6.12, we have

gx)={1-gx)} E-ex)

and with E finite, we can write
g0)=(1-g0) E- €0

If total effort is large enough to achieve g(0) = 1, we are virtually sure
that g’(0) = 0, regardless of the shape of the relative effort, e(x) (provided
e(x) is not pathologically spiked at x =0, with ¢(0) = — ). Also if e(x)
has a shoulder, then g’(0) = 0. This could occur with insufficient total
effort, E, to ensure g(0) = 1, hence the presence of a shoulder in the
data is no guarantee that g(0) = 1.

The case in which relative effort has no shoulder is interesting. As
noted above, it is possible that ¢’(0) < 0 and yet g’(0) = 0. As an example,
consider the spiked relative effort e(x) = e * for E = 15, so that
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g(x) =1- e—lSe"‘
and
g(x) = (- % )15e7%)

A few values are given below:

X g(x) g'(x)
0.0 1.0000 - 0.00001
0.1 1.0000 - 0.00002

0.5 1.0000 - 0.00102
1.0 0.9960 -0.02215
1.5 0.9648 -0.11778

Even though effort is spiked at x =0, g(x) has a distinct shoulder.
However, if total effort is decreased, this shoulder will vanish and
g(0)y =1 will fail.

The result illustrated above is due to a threshold effect. Once effort
is large enough to achieve g(0) = 1, more effort cannot push g(0) higher,
but it can increase g(x) for values of x > 0. We conclude that if there
is sufficient total effort expended, then a shoulder is expected to be
present even with a spiked relative effort function. The converse is
disturbing: if total effort is too little, we can expect g(0) < 1, and there
may be no shoulder. We emphasize the implications of guarding the
centreline; if this is done, then as total effort decreases, more of the
relative effort is likely to go near the centreline. This forces e(x) to
decrease more quickly, ultimately becoming spiked. The end result might
be that we would have g(0) < 1, and g(x) might be spiked (no shoulder).
The data analysis implications are that if g(x) is, or is believed to be,
spiked, then there is a basis to suspect that g(0) is less than one.
Conversely, if there is a shoulder, then there is a greater chance that

g0 =1

6.6 Fixed versus random sample size

6.6.1 Introduction

Theory and application of distance sampling has been almost exclusively
in terms of fixed line lengths (and a fixed number of replicate lines) or

fixed time spent at each point, for a fixed number of points. This
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