FIXED VERSUS RANDOM SAMPLE SIZE
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A few values are given below:

x gx) &)

0.0 1.0000 - 0.00001
0.1 1.0000 —0.00002
0.5 1.0000 —-0.00102
1.0 0.9960 —-0.02215
1.5 0.9648 -0.11778

Even though effort is spiked at x =0, g(x) has a distinct shoulder.
However, if total effort is decreased, this shoulder will vanish and
g(0) =1 will fail.

The result illustrated above is due to a threshold effect. Once effort
is large enough to achieve g(0) = 1, more effort cannot push g(0) higher,
but it can increase g(x) for values of x > 0. We conclude that if there
is sufficient total effort expended, then a shoulder is expected to be
present even with a spiked relative effort function. The converse is
disturbing: if total effort is too little, we can expect g(0) < 1, and there
may be no shoulder. We emphasize the implications of guarding the
centreline; if this is done, then as total effort decreases, more of the
relative effort is likely to go near the centreline. This forces e(x) to
decrease more quickly, ultimately becoming spiked. The end result might
be that we would have g(0) < 1, and g(x) might be spiked (no shoulder).
The data analysis implications are that if g(x) is, or is believed to be,
spiked, then there is a basis to suspect that g(0) is less than one.
Conversely. if there is a shoulder, then there is a greater chance that

g0 =1

6.6 Fixed versus random sample size

6.6.1 Introduction

Theory and application of distance sampling has been almost exclusively
in terms of fixed line lengths (and a fixed number of replicate lines) or

fixed time spent at each point, for a fixed number of points. This
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approach means that line lengths /,, .. ., / (and & itself), and of course
L, are a priori fixed measures of sampling effort; that is, they are known
before traversing the transects. It is then sample size n (overall and per
line) that is random. Similarly, for point transects, k is fixed, time spent
at each point is fixed and number of detections is a random variable.
In principle it is possible to do the reverse: fix the total sample size to
be achieved and traverse the line(s) until that predetermined # is reached,
or count at a point until a predetermined sample size is reached. This
sampling scheme results in L, or time at the point, being a random
variable.

The purpose of this section is to provide some results comparing the
cases of random and fixed n, under simplistic but tractable assumptions,
and to comment upon this alternative design. We conclude that the two
schemes (fixed L and random n, or fixed » and random L), under some
idealized conditions, are not importantly different in their statistical
properties. Primarily, field (i.e. applied) considerations dictate the choice
between sampling schemes.

A common example contrasting fixed and random effort sampling is
provided by the (positive) binomial and negative binomial distributions.
For the binomial d1str1but1on sample size is fixed at » and we record
the number of successes, y, in » independent binary trials. For the
negative binomial, we fix the number of successful trials (y) and sample
the binary events until y successes occur, so that the number of trials,
n, is random. (The added notation, ‘~’, is needed here to indicate which
variable is random.) The correspondmg probabilities, expectations and
variances are given below for the positive and negative binomial cases
respectively:

E(y)=np

Pr{§=iln}=(?J1’i(1 - var(y) = np(l - p)

3 E(np) =y
Prifi=i ="t pa -
rin=i+yly}= ( y—1 J (1 -py var(np) = E(np)(1 - p)

Despite the differences in the two sampling schemes, the sampling
variances are essentially the same. In particular, with reference to a fixed
n under the direct (binomial) sampling approach, if we could select y
for the inverse sampling such that y = np, then both sampling methods
would have the same sampling variance.

Moreover, the respective MLEs and their variances are, for the
positive binomial,
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.y . 1-
52 arp=20oD)
and for the negative binomial,
Y . 1-
p==, var(p)= p(—~ﬂ
n E(n)

Thus, again, if we design the inverse sampling so that E(n) = n, there
is no important large sample difference between the two approaches.
Another example more related to distance sampling is use of randomly
placed quadrats versus a sample of random points, with the data being
distance to the nearest plant (e.g. Patil er al. 1979b). In quadrats, the
area is fixed and counts are random. In nearest neighbour sampling,
the plant count is fixed but the area sampled is random. Under an
appropriate matching of the effort expended under the two schemes, the
corresponding density estimates have almost equal large sample samp-
ling variances when plants are randomly distributed (Holgate 1964).
We surmise that this relationship holds for most positive and negative
sampling schemes, i.e. there exist pairs of schemes such that the sampling
variance of the parameter estimator is almost the same under either
approach. In line transects, we have either L as fixed and » as random,
or we fix n and traverse a random line length until » detections are
made. To be consistent with the usual definitions of direct (positive)
and indirect (negative, or inverse) sampling, we label these as below:

Positive case n fixed L random
Negative case n random L fixed

Comparability of sampling variances requires that comparable effort be
used in both schemes; this translates into the pair of relationships
E(L|n)=L and E(n|L)=n.

6.6.2 Line transect sampling with fixed n and random Z, under
Poisson object distribution

We examine here some properties of D under such comparable schemes
assuming a homogeneous Poisson distribution of objects, a constant
detection function everywhere in the sampled area (spatially invariant
g(x)), and independent detections. For the (usual) L-fixed case under
these_assumptions, n has a Poisson distribution with mean 2LD/f(0).
For L random, we assume a random starting point for the line and we
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move along it until » detections are made. Thus, there are n — 1 random
inter-observational segments, of length I;, which add to L. The first
segment is from the starting point to the point perpendicular to the
first detection. In general, the ith segment of length l is the distance
travelled between points perpendicular to detections i — 1 and i, where
i=0 is defined to be the starting point. Assuming that the number of
objects in any area of size a, including the total area (a = A4), is Poisson
with mean aD, then it can be shown that T is an exponentially distributed
random variable with mean E(l) f(0)/(2D). The pdf of [ is

21D
() === - exp| - =2
i =755 - exe [ f(O)]
By the assumptions we have made here, the 71 .. l are independent.

Because L is the sum of independent exponential random variables, it
is known that

is distributed as a gamma [n, f(0)/(2D)] distribution, so it has pdf

207 g [ 20D
£(0) P17 710

(n-1)!

fiD)=
It is also easily established that
4 n - f(0)
E(L =—
(L|n) 2D
which leads to the estimator

5="71O (6.13)
2L

f(O) is computed conditional on n exactly as in the case of fixed L and

random 7, so f(0) is the same estimator in either sampllng scheme.
Compare the estimator in Equation 6.13 to that when 7 is random:

228



FIXED VERSUS RANDOM SAMPLE SIZE

~_n-f(0)
D= 5L (6.14)

Under a sampling theory approach, the two estimators have different
expressions for small sample bias. For random L, from Equation 6.13,

E(l~)) =n. EI:f_(Qm]
2 L

Given a Poisson distribution of objects and constant g(x), it is reason-
able to assume that / and x are independent. Then the above becomes

E(D)=". E{lln] - ELf(0)|n]
L

(8]

Under the gamma distribution of L,

Ebn]{nll]‘[fl(%}

which yields

n_ p ELAOIn

0= /)

When L is fixed,

- E[/(0)n]
EDY=D ———————=
@) S0)

so there is little difference between the two sampling schemes for large

n in this example. For L random, the bias associated with /L could be
eliminated by using

5on- 1)~‘f(0)
2L

This adjustment for bias when # is fixed and L is random seems generally
appropriate.
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An asymptotic formula for the variance of D in Equation 6.13 is

2 ~ 2
var(D) = {f (O); L ] : [ Vai(Lln) J + [ ™ } - var[ f(0)|n]
2E(L|n) [E(L [m]] [2EL|n)

= D [lev@P + lev{ S0 | m)T] 6.15)

For the Poisson distribution of objects and a spatially invariant g(x),
so that / is exponential, we have

2
7 — e 1 f(0)
var(l) = [E(])] —[—2 :l
and

2
var(Zln) =n- [J;Lgl}

Using these results and Equation 6.15 gives

1

var(D) = D* - [; +[ev {f(Oln)}]z]

The variance of D in Equation 6.14 is

var(D) = D? {—:1— + [cv{j;(Olﬁ)}]2 }
E(n| L)

Under comparable effort, in which case E(L|n) =L and E(®m|L) = n, it is
clear that for large samples, var(D) = var(D).

The condition under which the two sampling schemes have almost the
same variance for estimated density is that the coefficients of variation
for n and L are equal:

var(n|L) var(L|n)

[EGILY  [EL|n}
This relationship holds for the above case.
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6.6.3 Technical comments

Assuming independent detections, then a general formula for the cumul-
ative distribution function of / is

] I U (N S
Fi(h=1 E,O[l w~f(0)} Pr{N=ila=2wl} (6.16)

The probability of moving distance 7 and detecting no objects is
1 — Fj(l). Assume the area examined for detections is of width + w about
the line. Then the unconditional probability of detecting an_object is
1/[w - f(0)]. The event that there are no detections in distance / happens
if there are no objects in the area of size 2w/, or if there is one object
but it is not detected, or there are two objects and both remain
undetected, and so forth. The joint probability that there are i objects
in the area of size 2w/ and all are undetected is (under the assumptions
made)

17 s s
[l_w'f(O)} -Pr{N=ila=2wl}

For i=0,1,2,... these events are mutually exclusive, hence we get
Equation 6.16. For the Poisson case,

exp(- 2wiD) - @wiD)'

Pr{N =ila=2wl}= A

Thus

o[ 1 7. exp(-2wID) - (- 2wIDY
o= z{l W-f(O)}

T
i=0 B

- — _— 7 . —_— 1 . 7
=1 — exp[- 2wiD] exp{[l o (O)} (2wlD)}

=1 - exp[- 21D/f(0)]

which is the cdf of an exponential distribution. Notice also that w drops
out of Fj(/) in this example.
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Closed form results can also be derived if a negative binomial dis-
tribution is assumed for Pr{N—- ila= 21w} (Burnham et al. 1980: 197).
However, we have not perceived a simple way to derive results for the
random L case without making strong assumptions about Pr{N-
ila= 2wl} and independence of detections.

Finally, we describe how to find Pr(n|L), as this is needed to compare
the two schemes. Let N be the number of objects in the searched strip
of area 2wL. The event n = arises as the sum of mutually exclusive
events: N =i and all i objects are detected, N=i+1 and only i are
detected, N =i + 2 and only i are detected, and so forth. The probability
formula is

Pr(R|L) = 3 Pr{fi = i| N} -Pr{N|a=2wL} (6.17)
N=i

For example, under the assumptions of a spatially constant detection
function and independent detections, Pr{n = i| N} is binomial:

Prin=i|N} = (~)[ ;(0)} [l_m}

For the Poisson case,

exp(= 2wLD) - @wLD)"
N!

Pr{Nla=2wL} =

Applying Equation 6.17 with these distributions gives

exp[- 2LD/f(0)] - [2LD/f(O)}

Pr(n|L) = i

which is a Poisson distribution.
6.6.4 Discussion

Having fixed » and random L is often not a practical design in line
transect sampling. In particular, when planes or helicopters are used,
you cannot set out to fly a random distance; L cannot exceed the fuel
capacity of the plane. For most methods of traversing the line(s), the
distance to travel must be specified in advance. This also allows an
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accurate cost estimate for a study, which is generally necessary. Further,
in most studies, if effort ceased when the required sample size was
reached, the observer would have to return to some point at the study
boundary, and it would be wasteful not to seek and record detections
for the maximum possible time in the study area.

Representative coverage of the area being sampled is also an import-
ant consideration. Lines, or points, are allocated so as to achieve a
representative sampling of the area. This is critical to allow valid
inference from the sample to the entire area. If L was random, one
might finish before completing the a priori determined sample of lines,
or finish the sample of lines and still need to sample more. With random
line length, it is difficult to assure a representative sample over the area
of interest; thus there is more danger of substantial bias in D due to
unbalanced spatial coverage.

Point transect sampling is potentially more amenable to a fixed n
strategy. The fixed n can be set on a per point basis. Then a repre-
sentative sample of k points can be selected and every point can be
visited. The amount of time at each point will vary. An upper bound
could be put on time, leading to a mixed strategy: stay at a point until
n detections are made, or until the maximum time is reached. There is
potential to develop the theory for such a strategy. However, it is still
not especially practical to ask a recorder to be aware of when n total
detections are made, and then to stop effort. Also, should this » be a
total for all species, or for one target species?

We have not here presented any theory for point transects with fixed
n and random time, as that theory is more difficult to conceptualize.
For the typical application to birds, detections depend on cue gener-
ation, which would have their own temporal distribution. This adds
another level of complexity to the case of a scheme with fixed » and
random time.

Even for a fixed line length scheme, there is information in the
interobservational distances as defined here. For example, the /; may
be used to assess the spatial distribution of objects (Burnham et al.
1980: 196-8). Under the (unlikely) hypothesis of a Poisson spatial dis-
tribution and constant g(x), / is an exponential random variable. There
are many tests available for the null hypothesis that a random sample
is from an exponential pdf. The distribution of / under other object
distributions can be determined by methods presented here. The infor-
mation contained in the /; is reduced in practice, because they are likely
to be serially correlated. However, if independence can be assumed, the
information in the /; might be used to provide better estimates of the
residual variation in the 7; this subject may be worthy of study. The
concept is that
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2
~ n ~
var(n|L) = (Z] - Vai(L|n)
might hold true. Given independence of the interobservational distances,

> ;- Liny
Var(L|n) == 1

thus giving an_alternative estimator of var(n|L). The above variance
estimator for L also provides the basis for an empirical estimator of
var(D) for the fixed n scheme if such sampling is practical and valid.

A final important comment is required about the relative merits of
random and fixed line lengths. Often, lines are a priori of fixed (fre-
quently equal) length, in which case all the fixed length (and random
n) theory holds. However, designs or field practice often result in
unequal line lengths, for example when lines are placed at random but
then cross from one side to the other of an a priori defined area, or
when bad weather causes effort termination during a ship survey, so
that a transect is shorter than intended. Either of these instances gives
the appearance of some stochasticity in line length, hence one might
consider that the set of lines has a random component that should be
accounted for in variances (and perhaps biases) of estimates (Seber
1979). We disagree with this thinking; it is entirely appropriate to
condition on achieved line length in these and other cases, provided the
stochastic variations in length are unrelated to the density of objects,
or if it is not possible to fit a model that relates variation in line length
to object density.

It does not follow that random line length theory applies, simply because
the survey design or field protocol results in varying line lengths. The theory
applies only if there is information about density D in the probability
distribution of line lengths. Even in the case of randomly placed lines
running across a predefined area, there is no information about object
density in the probabilistic distribution of line length by itself. Moreover,
in this case the line lengths are known before they are ever traversed, hence
there is every reason in theory to consider line length as a fixed ancillary
(i.e. it affects the precision of D but contains no direct information about
D) in all the usual designs and field protocols.

Once we consider line lengths as known and fixed prior to data
collection, or after the fact we condition on actual line lengths when
appropriate, then some potential statistical methods are not relevant.
For example, it is not relevant to apply finite population sampling ratio
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estimation theory to encounter rate; such ratio estimation theory leads
to slightly different formulae for var(n) than we give in this book. The
key point here is that line lengths /; may often differ; this does not make
them random in any sense that concerns us, especially if we know the
actual line lengths before they are traversed. It is proper to take these
line lengths as fixed unless there is a probability distribution on possible
line lengths which depends on the density parameter of interest. The
latter is only likely to be true under the scheme of fixed n, in which
random linear effort continues until » detections are made, or under
adaptive sampling schemes, in which sampling effort increases when
areas of high density are found.

6.7 Efficient simulation of distance data
6.7.1 The general approach

To produce simulated distance data requires the Monte Carlo generation
of sample size n, detection distances y = x or r, and for the clustered
case, cluster sizes s. The efficient way to do this is first to generate
sample size according to some discrete distribution, p(n), then generate
n distances and cluster sizes based on the bivariate sampling distribution
of distance and s. The alternative is first to generate spatially distributed
clusters, and independently for each cluster, a cluster size s. Then
determine for each cluster whether it gets detected according to some
detection function, g( y|s). This method is indirect and inefficient. The
purpose of this section is twofold: to show how to simulate distance
data directly and to outline explicitly how the simulated data of Chap-
ters 4 and S were generated.

The following general approach is recommended. First, decide on a
detection function; it will be bivariate if cluster size is to vary and there
is to be size-biased detection. Otherwise, g(y) depends only on distance.
For the clustered case, decide on a probability distribution, n(s), of
cluster sizes in the yet-to-be-sampled population. Also select a sampling
distribution for sample size, p(n), such as Poisson or negative binomial.
It is then possible to specify the exact parameterization of p(n). To
simulate data for k replicate lines or points, first generate independent
sample sizes n, ..., nx according to p(n). If objects do not occur in
clusters, just generate n; independent distances, i=1,..., k, according
to the probability density function of distances, f(y). This function is
determined by, and computed from, g(y), and the context (line or point
transects). If cluster size varies but detection is independent of size, then
for each generated distance y, produce independently a value of the
random variable s according to w(s).
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The case of size-biased detection requires a two step process of either
generating y from its marginal density function, then s from the size-
biased distribution n*(s|y), or the reverse (which we recommend): gener-
ate an observed cluster size from the marginal size-biased distribution
of detections, m*(s), then generate y from f(y|s). The detailed theory for
these distributions, given g(y|s) and n(s), is in Section 3.6.6.

The distribution of n, p(n), must have, at least implicitly, E(n) as one
of its parameters, where

Em) = 2LD, (line transects)

Q)

E(n) = —2*;% (point transects)

(n by itself refers to 3.14159...). The density D, denotes density of
clusters. We use f(0) and 4(0) in these representations to facilitate the
case without truncation (w = o).

We now summarize quantities that must be specified to simulate
distance data. These quantities are interrelated and hence cannot be
independently set; in particular, we recommend that either E(n) or
sampling effort (L or k) is specified, and the other quantity is computed.
Constants to be specified are w and k, and for line transects, line lengths
IL,i=1,...,k which sum to L. Separately specified parameters are
Ds and E(s), and any additional parameters in p(n) other than E(n).
Fundamental distributions to specify are p(n) and w(s). Finally, there is
the detection function, g(y|s), which, in conjunction with n(s), deter-
mines the sampling distributions of y and s. In general we would need
to compute f(0), £(0), w*(s), f(x|s) and f(x]s) numerically. From Section
3.6.6, formulae necessary in simulation of line transect data are

1

SO0]s) = ’ (6.18)
fo g(x|s)dx
fo=—1 (6.19)
= T(s)
s=1 f(0]s)
n*(s) =[ &Jn(s) (6.20)
SOls)
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and

Sf(x]s) = f(0]s) - g(x|s)

Formulae necessary in simulation of point transect data are

and

hO|s) = L
o g(r|s)dr
-
< T(s)
s=1 h(OIS)
e n | B0
" (s) —{h(0|s)]nm

Sris) =hO[s) - r - g(r|s)

If the distribution of » is assumed to be Poisson, then

pn) =

e "PEm)”

n!

A useful parameterization of the negative binomial is

pn) =

which has

and

'+ n)

r®Tx+1)

_T)n.,re

’

0<9, 0<1t<]1,0=n

Emy=0 —

var(n) =
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In point transects all with a fixed observation time, T and 6 can be the
same over different points (within a stratum). For line transects, the
/; usually vary, and we recommend keeping T constant while letting 6
vary by line length, because this gives coherent results: n, + ... +
is then distributed as negative binomial with parameters T and 6, +
...+ 8. Thus, we can arbitrarily vary the line lengths and still have
sample sizes (individually and totals) as negative binomial random vari-
ables. Under this strategy, 1/1 is the variance inflation factor relative to
a Poisson (random) spatial distribution of objects. For the case of T =1,
use the Poisson distribution for Monte Carlo generation of sample sizes.

Consider the line transect case with one long line (i.e. ignore replicate
lines) of length L and objects not clustered. We would first specify
g(x), then compute f(0), by numerical integration if need be. It is
important to keep straight the units of measurement in a simulation,
because with real data, detection distances and line length are often
in different units, such as metres and kilometres. Also, the units of
S(0) are the reciprocal of the distance units used for x. Say we get
S(0) = 10, with units on x taken as kilometres. Then effective strip width
is 0.1 km or 100 m.

In this hypothetical example, next we specify D; = 2 clusters/km® and
E(n) =70. Now we determine L from E(n) = 2LD,/f(0): 70 =2 -2 - L/10,
or L =175km. If we want »n to be Poisson, then we generate it from a
Poisson with mean 70. Given n, generate x,...,x, from the pdf
S(x) = f(0) - g(x).

We illustrate the approach in more detail for the simulation generation
of examples in Chapters 4 and 5.

6.7.2 The simulated line transect data of Chapter 4

The half-normal bivariate detection function may be taken as

2
g(x|s) = exp [—- %(ﬁ] }

where we model the scale parameter, o, as a function of cluster size (c.f.
Quinn 1979; Drummer and McDonald 1987; Ramsey er al. 1987; Otto
and Pollock 1990). In particular, the form o(s) = ¢ - s* has been much
used. We think this is a reasonable model for data analysis; however,
for simplicity of theory, we used a linear form for line transects:

(6.28)

_ s-E@)
o(s) = 00,:1 +b EG) }
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subject to the constraint

E(s)
T E@) -1

and assuming 0 < b, although to a limited extent, negative values of b
are mathematically possible. This form is also suggested by us because
it puts the problem into the framework of generalized linear models
(McCullagh and Nelder 1989). The case b = 0 corresponds to detection
probability independent of cluster size. For w = o, f(0|s) and f(x|s) are

closed form:
_|af2]. 1
f(Ms)—[\/,J pp

2
fexls) =[\/%] 6 exp[— %[ﬁj ] (6.29)

Applying Equation 6.19, we have

2 1 RN
JO) = ['\/E] - _{\/n} " E{o(s)}
2, n(s) - o(s)
1

s=

The form of 6(s) in Equation 6.28 is convenient because we can explicitly
evaluate its expectation with respect to n(s); in fact, E{c(s)} = oo for
any value of the parameter b. Thus, for any extent of size bias under

this model,
21 1
f(0) = {'\/n} . _Go

From Equation 6.20,

=[1+b- s_i(s)}n(s) s=1,2,... (6.30)
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The expected value of s in the sample of detected clusters is

. . var(s)
E*(s)=Y s n's) = E(s)+b
2 E(s)

A simple choice for m(s) is to let s — 1 have a Poisson distribution
with mean E(s) — 1:

e—[E(s)—l] A [E(S) _ 1]s—l
(s— 1!

We used this n(s) in the Chapter 4 examples and then created a table
(in the computer) of the values of n*(s), from Equation 6.30, for specified
E(s), b and oo. Then a value of a detected cluster size was generated by
standard Monte Carlo methods. Given a value of s, then x was generated
according to the distribution of Equation 6.29. This was done by
generating a ) variate on 1 df and calculating x = o(s) - vy~

The distribution of sample detections in Chapter 4 was negative
binomial, set up with T = 0.4, so that the variance inflation factor is 2.5.
The choice of 12 replicate lines was arbitrary. Other choices made:
0o = 10m and E(n) =96. It was then convenient to use L = 48km and
keep the encounter rate constant over replicate lines (whose lengths
varied). These choices and decisions produce, by design, the result

n(s) = s=1,2,...

E(n)=6;1=%

=25 i=1,...,12

which implies 6; = 641/;/48.
In metres, f(0) = 0.0798, hence with a conversion factor to units of
per km’, density of clusters is

96 x 0.0798
T 2x48

The simulation was set up in such a way that density of individuals is
79.8 - E(s) = 239.4 regardless of the value of b; b only determines the
degree of size bias. Values of » used were 0 and 1 (with the same set
of ny, ..., np).

x 1000 = 79.8 clusters/km?

6.7.3 The simulated size-biased data of Chapter 5
The generation of the simulated data for point transects with size bias

used the same half-normal bivariate detection function as for the line
transect case:
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2
gl = exp[— %(@J }

However, the relevant formulae are now Equations 6.22-6.25. In par-
ticular, we have for w = oo,

1
hQO]s) = [c(s)]z

and

2
r 1 r
s loG)’ GXP{ 2[0@)]} (31

Using Equation 6.23 with the above expression for #(0|s), we have

h(0) = =l
Sn - (ol EUOWN]
s=1
Thus we choose to parameterize o(s) as
2 _ 2 S= E(s)
{o(s)} =0 {1 +b EG) }
subject to the constraint
E(s)
T E() -1
This model gives
h(0) = L
G
and
hO]s) = :
s — E(s)
0'(2,-[1 +b~———E(s) ]
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Hence, from Equation 6.24,

n*(s) = [&} n(s) =
h(0]s)

_ .s—E(s) _
—{1+b _—E(s) :|1t(s) s=1,2,...

o)
Go

n(s)

which is the identical "(s) in the line transect case in Equation 6.30.
For the Chapter 5 size-biased example data, we choose T(s) to be the
geometric distribution,

) =(1-B°"'"-B 0<B<l s=1,2,...

For this distribution, E(s) = 1/. From the above expression for m*(s),
we have for this example

s— E(s)
E(s)

n*(s)={1+b- ](1—[3)5“-[3 s=1,2,... (6.32)

Note that b =1 corresponds to considerable size bias and gives the
simple form

) =s-1-B° "B s=1,2,...
For the example in Section 5.8, we used E(s)=1.85 hence
B = 0.54054, and b = 0.75. These values serve to specify n*(s) completely.
Also, we set 6, = 30m, which, together with b = 0.75, serves to specify

g(r|s), h(0]s) and f(r|s). The latter is given by Equation 6.31; that
density function has cumulative distribution function

2
flr]s)=1 —exp[— %($] ]

Consequently, for this example, a random r, given an s drawn from
Equation 6.32, was produced as

r=-=2-0(s) - log.(l —u
where u is a uniform pseudo-random variable on the interval 0 to 1.
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The variation in counts, n, was generated from the negative binomial
distribution with variance inflation (dispersion) factor set at 2.65, so
that T = 0.37736. The encounter rate per point was set at 1.6 and then
k was set at 60 points to give, overall, E(n) = 96. In terms of Equation
6.27 and associated results, this means that on a per point basis (which
is how the random counts are generated), we specified

Em)=61=""_15
and
var(n;) = @ =2.65 E(ny) i=1,...,k

Hence, T is as above and 6 =0.52416. As a consequence of the choice
of model and parameters in this example, the density of clusters is

96 x [1/30]
21 X 60

x 1000 000 = 283 clusters/km’

and density of individuals is 1.85 x 2.83 = 523 objects/km’.

6.7.4 Discussion

We have recommended simulating the pair (y, s) by generating s from its
marginal distribution 7" (s), and then y from the conditional distribution,
f(»]5). The algebra for this was straightforward in the above two examples.

Consider, however, the reverse process for the point transect example
above: generate r from f(r) then s from " (s|r). The relevant formulae are

1l S a_gy¢'.8.,. _1(_r
SOy = TA=B7 By exp{ Z(G(S)] }

and

2
1—By-!. _1f_r }
(1-P) em[ 2(0@))

oo 2
5- 1f_r
sg'](l -By ' eXp[— 2[0’(.&‘)) :|

243

' (s|r) =



EXTENSIONS AND RELATED WORK

Use of these formulae would entail much more computing than the use
of n*(s) and f{(r|s). Heuristically, this is because there is only a finite
(and small, usually) number of possible values for s, whereas infinitely
many values of r can occur. Therefore, with each new r, one must
recompute the entire distribution n*(s|r) before s can be generated.

In some real applications, cluster sizes potentially range from one to
thousands, for example dolphin surveys on some species. To simulate
the essence of such applications, it is not necessary for s to vary over
this set of values. A set of a hundred (or fewer) values should suffice
(e.g. s taking values 1-10, 15, 20, 30, 50, 75, 100-900 by 100, 1000—5000
by 500). Keeping the range set of s small will greatly speed up simula-
tions.

Closed form expressions underlying simulations will be the exception.
Even in the above line transect examples, if we take w as finite,
numerical integration must be used to find the necessary quantities given
by Equations 6.18 to 6.21. Expect to use numerical integration; fortun-
ately for purposes of simulation, the numerical methods need not be
highly sophisticated.

Sometimes we only want to explore statistical properties of estimators
of f(0), h(0), g(x|s), g(r|s) and E(s), and not properties of D; and D.
In this event, it is not necessary to generate a random sample size » for
each replicate. In fact, it is better to fix n and do, say, 1000 replicates
at that »n, and repeat the process over a set of values of n.

6.8 Thoughts about a full likelihood approach
6.8.1 Introduction

In principle, analysis of distance data could be based on a full likelihood,
£(D,8), for all data components. The focus is on average density D in
the study area; we represent all the other parameters by 8. These other
parameters appear in the probability components for n, y = x or r, and
s. An advantage of having a full likelihood is that it allows the
computation of profile likelihood intervals for D. The disadvantages are
the need to specify probability models for #» and s. We have avoided
assuming any probability model for n by using an empirical estimator
of var(n), and getting confidence intervals assuming D is log- normally
distributed. Similarly, a point estimator and sampling variance of E(s)
can be obtained in a regression framework, so no probability model is
required for n(s) or n*(s) (the distribution of s in the entire population,
and in the detected sample, respectively). Probability models, and likeli-
hood inference, have only been used for the distance part of the data,
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and we use generalized approaches to ensure robust inference for n
and s. The purpose of this section is to demonstrate how a full likeli-
hood approach could be used, to make some comparisons of profile
likelihood intervals to traditional and log-based intervals, and to com-
ment on other advantages of a full parametric (likelihood) approach.

6.8.2 Full likelihood for line transects: simple examples

(@) Half-normal g(x), Poisson n Assume that objects are spatially
distributed as a homogeneous Poisson process, that the detection func-
tion is half-normal, that w = e, and that objects are single entities (i.e.
we take s = 1). Then data from replicate lines may be collapsed into just

the total count, n, for total line length L, and the perpendicular distances
X1 ..., x,. The detection function g(x) and pdf f(x) are

1(xY
g(x) = exp {— 5(5] }
and f(x)=['\/;2°—_2—]exp{—%(§j} 0<x<e,0<0

The probability distribution of » is

_ exp{= 2LD/f(0)} - {2LD/f(0)}"
B n!

Pr(n)

(Section 6.6). We have

ﬂmf%%

so there are only two parameters, ¢ and D, although it is sometimes
simpler to leave f(0) in the formulae. The full likelihood is

&am=mw{ﬁﬂm}
i=1

exp {~ 2LD/f(0)} - {2LDIf©0)}" * 2 1{x: Y
= n! o H\/E?] FxP {— E(E] }]

I=
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We define

and simplify £(D,0) by collapsing terms where possible and by dropping
some multiplicative constants, giving

L(D, 6) = exp {— LDo(2m)} - {LDoVQ2mn)}" - [l - exp {- iﬂ
o”" 26°

or simplified as much as possible,
£(D,0) = exp {— (LDG\/(Zn) + ET—ZJ} . D" (6.33)
9

Note that we ignore multiplicative constants in the likelihood function.
The joint MLEs from Equation 6.33 are

- T
o=\
n

and

Standard likelihood theory can be used to derive the theoretical varlance
of D, which may be expressed in a variety of ways:

515D SO _ o (15 e (1 1
vay === =P [E(n)] P [E(n)+2E(n)]

= D [{cv(m)}® + {ev(f(0)}]

Thus, these results are all exactly the same as what are derived by the
‘hybrid’ method of using E(n) = 2LD/f(0), the Poisson variance of n,
and a likelihood only for the distance data.

In general, the hybrid approach with empirical estimation of var(n)
will be almost fully efficient for D and is more robust as no distribution
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need be assumed for n. One advantage of a full likelihood approach is
the possibility of using a profile likelihood interval for D. Such intervals
can be expected to perform better than D+ 1.96 §&(D) or log-based
intervals because the likelihood function encodes information about the
sampling distribution of D, thus allowing for non-normality of D (or
log.(D)). Below, we give some general explanation of profile likelihoods,
then derive the profile log-likelihood function for D for the above
example.

(b) Profile likelihood intervals Let £ (D, 8) be the full likelihood such
as that given in Equation 6.33. The profile likelihood is symbolically

(D, @(D)) = maximum value of £(D, 8) over 0 for any given value of D

This is then a function of just the single parameter D. For computing
profile likelihood intervals, it is convenient to use the following function:

o(D) = 2 {loge%(D, 8) — log. (D, 6(D))} (6.34)

In Equation 6.34, i(ﬁ,é) is equivalent to $(D,§(D)), where D is the
MLE of D. The function ¢(D) is a pivotal quantity, asymptotically
distributed as a single degree of freedom chi-square, xi. This approxi-
mate distribution of ¢(D) holds better at small sample sizes than the
assumed normality of D underlying the use of D+ 1.968(D). A
100(1 — o)% profile confidence interval for D is given as the set of all
values of D such that ¢(D) < yj(a), where yi(a) is the 1 — o percentile
point of the xi distribution (3.84 for a 95% confidence interval). We
only need the interval endpoints, which are the two solutions to the
equation

0(D) = 2 {loge2(D, 8) - loge (D, 6(D)} = xi(@) (635
Barndorff-Neilson (1986) described the theory underlying the method,
including ways to improve on the approximation of ¢(D) as a x; random
variable.

(c) Profile formulae, half-normal g(x), Poisson n Starting with the like-

lihood in Equation 6.33, we first must find the maximum for ¢ given
any fixed value of D. The steps are summarized below:

loge®(D, 6) = — LDoNQr) ~ 2—23 + 1 - loge(D)

247



EXTENSIONS AND RELATED WORK
and

ANoget(D.9) _ 1 pyomy+ L=
dc ©

From the above equation,

1/3
oo T
o(b) = [LD\/(ZR)}

The joint MLEs D and 6 are given above, hence finding the expression
in Equation 6.34 is now merely algebraic manipulation:

2/3
log.£(D, 6(D)) = - ;24 [Q} +n - log.(D)
D

from which
A 3n n
loge (D, 6) = - E3 +n - log.(D)

Reduced to a very simple form, we get for this example
o(D) = 3n - [(DIDY"? -1 - log, {(D/Dy'*}] (6.36)

To get a profile likelihood interval for D, we substitute the values
of D and n in Equation 6.36, tabulate ¢(D) for a range of D, and pick
off the two solutions to Equation 6.35. It can be useful to plot ¢(D),
as is shown in another context by Morgan and Freeman (1989).

Below we look at some numerical examples comparing different
confidence intervals. However, first we determine Equation 6.34 expli-
citly for a few more examples. These, and the above, are overly simplistic
compared to real data, but only very simple cases lead to analytical, or
even partially analytical, solutions for ¢(D).

(d) Negative exponential g(x), Poisson n The negative exponential

g(x) is not a desirable detection function, but for w = » and a Poisson
n, we can derive closed form results for this case. Some formulae are

g(x) = exp {— %}
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f(x)=%~exp{—%} 0<x<e, 0<A

and f(0) = 1/A. The full likelihood is

@D, 1) = SR 2LDISO) - RLDIO)" 1 [1 { x,}]

_.exp
n! i=1 | A

Defining

we simplify £(D, L) to

LD, A) = exp {— [2Lm + %]} D"

- - T At _n-f(0)
Th MLE =— D = = et
e joint s are A " and SLT 3L

From likelihood theory,

el _pp [ 2] : o
var(D) = 7= = D |:E(n):|_D [{ev(m} + {ev(AO))]

Fixing D in £(D, A), we find X(D) as follows:

loge%(D, ) = = 2LDX - % +n - log.(D)

and
dlog E(D, N) _ _ T_
n =-2LD + Y 0
so that
MO =\375
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Finally, we derive
o(D) = 4n - [(szi)” — 1 - log. {(D/D)" }] (6.37)

(e) Negative exponential g(x), Poisson n, Poisson s To the above
example, we add the feature of varying cluster size, but with detection
probability independent of cluster size, s. Let s be Poisson with mean
K. The parameter D is the density of individuals, not clusters. In the
Poisson model, as given above, for counts of clusters, the density
parameter is cluster density, D;, not D. To parameterize this likelihood
component in terms of density of individuals, we must replace D; by
D/x. The full likelihood for this model is

_exp{- 2LD\/} - 2LDAY |1 x| [exp(=x) - «*
FD A= n! R PR BV A B

Using § to denote mean cluster size and x = T/n, this likelihood can be
reduced to

$(D, ;\,, K) = exp {_ (ZLKD}\« + Z + nK]} 3 Dn . Kn(f -1

A

and
loge£(D, A, K) == === —— —nk +n-log.D) + niG - 1) - log.(x)

The hybrid and full likelihood results agree here; in particular,

A_h-§

D=3ix

B = p?| 3
var(D)= D [E(n)]

To get the profile likelihood, we need i(D) and IE(D). Closed form
results do not seem to exist. However, from the two partial derivatives
set to zero,

dlog, £(D, A, x) dlog, L (D, A, x)
Y and K
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we can derive the equations

‘D)= > +5-1 (6.38)
(D)
and
5 _ nx | _x <
A(D) = \/ o [ N 1} (6.39)

The function ¢(D) can be written as

(D) = 61 - {fc(D) —5-log. [[%]“ ] —(5-1) - log [[K(_D)j H (6.40)

To compute ¢(D), choose a value of D, solve Equatlon 6.39 iteratively
(easily done as A(D) is a stable fixed point), compute k(D), then compute
Equation 6.40 (also using D, which is closed form).

6.8.3 Full likelihood for point transects: simple examples

(a) Negative exponential g(r), Poisson n Results for point transects can
be obtained for a couple of simple cases. Here we assume a Poisson
distribution for n, a negative exponential detection function, g(r) =
exp(— r/A), and k randomly placed points. Basic theory then gives
E(n) = 2nkD)?, and the pdf of detection distance r is

r-exp{—i},

fo)=——5— 0<r 0<h

The full likelihood is

@-exp- 71
exp {- 2mkDN'} - {2mkDAY" pof L T

$(D, }\.) = nl il }\‘2

which simplifies to
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LD\ = exp {— (2nkmf + %J} D

M=

where T=Yr

i=1

The log likelihood is thus
loge (D, A) = — 2k DA — % +n - log.(D)

Standard likelihood theory now leads to

A= L _T Ao A
M= an T2 var) = e
p=_n _n-h0 Dy = D 3
kA 2mk var) =Dl 5
In order to find the profile likelihood, we solve
dlog.£(D, A) T
eaﬁl=—-4nkD?L+P=0
getting
R T 1/3 -
D)=|——
MD) [41:ij|

Using the aboye to form log,¥(D, i(D)) allows us to find the expression
for log,£(D, A), from which we construct a simple representation of

o(D):
o(D) = 6n - [(1)/1‘))”3 -1 - log, {(D/D)'" }] (6.41)

(b) Half-normal g(r), Poisson n Instead of a negative exponential g(r),
let us assume g(r) is half-normal; other assumptions are as in the above
case. Now basic theory gives E(n) = 2nkDo’, and the pdf of detection
distances is
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The full likelihood is

gzl
_ 2y . n n
SB(D’G)___exp{ 21tkD(:l!} {2nkDo’} > g

which simplifies to

£(D, 6) = exp {— (anDc2 + %J} - D"

for T defined as the total, T=Y r

i=1

Standard likelihood theory now leads to

~2 1 ~a 0'4
&= o var(cz) = E(n)
A n _n'};(O) M. | 2
D= ke ™ 2mk var(D) =D [E(n)}

To find the profile likelihood, we solve

ANogetD.0) . yrine T g
Jo o’

getting

T 1/4
S(D) = [4nkD]

Carrying through the algebra and simplifications, we have
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o(D) = 4n - (D/D)'* - 1 - log, {(D/D)"*}] (6.42)

Notice that Equation 6.42 is identical to 6.37; this we expected, because
there is a duality in the mathematics between the case of line transects
with a negative exponential detection function and point transects with
a half-normal detection function, both with » distributed as Poisson and
with w = co.

6.8.4 Some numerical confidence interval comparisons

We used the above results on ¢(D) and var(b) to compute a few
illustrative numerical examples of profile, log-based and standard con-
fidence intervals (nominal 95% coverage). To facilitate comparisons,
what is presented are the ratios, (interval bound)/D Thus, the standard
method yields relative bounds as 1+ 1.96 cv(D), and the log-based
relative bounds are 1/C and C, where

C = exp[1.96 Vlog.{1 + [cv(D)I*}]

Some of our results are based on sample sizes that are smaller than
would be justified for real data; our intent is to compare the three
methods, and the differences are biggest at small n. The actual coverage
of the intervals is not known to us; we take the profile likelihood
intervals as the standard for comparison. Results are shown in Tables
6.2, 6.3, 6.4 and 6.5. One reason for the comparisons is to provide
evidence that the log-based intervals are generally closer to the profile
intervals.

Table 6.2 Some relative 95% confidence intervals, blowe,/ﬁ and
Duppe,/D for the profile, log-based and standard method, for line
transects with a half-normal detection function, w = e, and Poisson
distributed sample size n. Equation 6.36 is the basis of the profile
interval; results are invariant to the true D and ¢

n Profile interval log-based interval  Standard interval

5 0.296 2610 0.366 2.729 -0.074 2074
10 0.437 2014 0.481 2.081 0.241 1.759
20 0.565 1.660 0.590 1.694 0462 1.537
40 0.673 1.439 0.687 1.457 0.621 1.380
70 0.744 1.321 0.752 1.330 0.713  1.287
100 0.781 1.263 0.787 1.270 0.760 1.240
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Table 6.3 Some relative 95% confidence intervals, bzowe,/f) and
Dypper /D, for the profile, log-based and standard method, for line
transects with a negative exponential detection function, w =, and
Poisson distributed sample size n. Equation 6.37 is the basis of the profile
interval; results are invariant to the true D and A

n Profile interval log-based interval Standard interval

5 0.251 3.076 0.321 3.117 -0240 2240

10 0.389 2.264 0.433 2.309 0.124  1.877

20 0.520 1.803 0.546 1.831 0.380 1.620

40 0.635 1.526 0.649 1.542 0.562  1.438

70 0.711 1.380 0.720 1.390 0.669  1.331
100 0.753 1.311 0.759 1.318 0.723  1.277

Table 6.4 Some relative 95% confidence intervals, ﬁ/owe,/b and
Duppe,i}) for the profile, log-based and standard method, for point
transects with a negative exponential detection function, w =, and
Poisson distributed sample size n. Equation 6.41 is the basis of the profile
interval; results are invariant to the true D and A

n Profile interval log-based interval Standard interval
5 0.191 4.056 0.261 3.833 -0.518 2518
10 0.319 2.754 0.366 2.729 -0.074 2074
20 0.453 2.072 0.481 2.081 0.241 1.759
40 0.575 1.684 0.590 1.694 0.463  1.537
70 0.660 1.487 0.669 1.494 0.594  1.406
100 0.708 1.395 0.714 1.401 0.661 1.339

Table 6.5 Some relative 95% confidence intervals, D]owgy/D and
Duppe,/D for the profile, log-based and standard method, for line
transects with a negative exponential detection function (parameter A),
w = oo, Poisson distributed sample size n, and cluster size as Poisson,
mean K. Equation 6.40 is the basis of the profile interval; results are
invariant to true D and A, but depend weakly on true x; k¥ = 3.0 was used
for these results

n Profile interval log-based interval Standard interval

5 0.230 3.440 0.261 3.833 -0518 2518

10 0.365 2.440 0.366 2.729 -0.074 2074

20 0.497 1.900 0.481 2.081 0.241 1.759

40 0.614 1.583 0.590 1.694 0.463 1.537

70 0.693 1.419 0.669 1.494 0.594  1.406
100 0.737 1.341 0.714 1.401 0.661 1.339
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Table 6.2 corresponds to the line transect case in which g(x) is
half-normal and objects have a Poisson distribution. The relative
interval endpoints in that table depend only upon sample size n, so
these results are quite general under the assumed model. The invari-
ance property of the ratios Dijye/D and buppe,/ﬁ applies also to
Table 6.3 (line transect, negative exponential g(x) and Poisson n) and
Table 6.4 (point transect, negative exponential g(x) and Poisson n). The
log-based interval is slightly to be preferred to the standard method
in Table 6.2, and more strongly preferred for the cases of Tables 6.3
and 6.4. The choice in Table 6.5 (line transect, negative exponential
g(x), Poisson n and Poisson s5) is unclear. Note that the results in
Table 6.3 for line transects with a negative exponential g(x) are identical
to results for the same values of n for point transects with a half-
normal g(r).

These sort of results on confidence intervals would be interesting to
compute for other scenarios. We present the above specific formula for
0(D) to illustrate the ideas; in particular, the negative exponential
g(y) is used only because it is very easy to work with.

Table 6.5 reflects a case where the population of objects is clustered.
The relative confidence intervals are for density of individuals. This is
an interesting case because the log-based and standard relative con-
fidence intervals do not depend upon D, A or x (because the relative
intervals do not depend upon the specific values of ¥ or 5). The relative
profile intervals do not depend upon D or A (thus the results in Table
6.5 are independent of the choice of D and A), but they do depend
weakly upon x because the specific value of § (three in this example)
affects even the relative profile intervals. Heuristically, this seems to be
because the sample size of number of individual animals detected
increases as § increases and the likelihood function uses this information.
To illustrate this point, we give below relative profile interval endpoints
(based on Equation 6.40 and 95% nominal coverage) for a few values
of 5 at n=20:

n s Profile interval

20 1.25 0465 2.023
20 3.00 0497 1.900
20 30.00 0.518 1.813
20 300.00 0.520 1.804

There is quite a noticeable effect here of average group size and this is
an effect that is not found in either standard or log-based methods. We
speculate that in realistic likelihood models, the profile interval would
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be generally more sensitive to information in the data than simpler
confidence interval methods.

(a) One more example Consider line transect sampling, in which g(x)
is half-normal, clusters have a homogeneous Poisson distribution, and
cluster size is a geometric random variable. Further assume that
g0 <1, but that it can be estimated by an independent source of
information, from which it is known that, of m clusters ‘on’ the line, z
are detected. We assume that z is distributed as binomial (m, go). The
counts, n, will be Poisson with mean E(n)=2LDgy/{xf(0)} where
K = E(s) and D is density of individuals. The geometric distribution is
used here in the form w(s)=p’"'(1 - p), hence k= 1/ - p). Also,
f(0)=1-N@m), so that we have

E(n) =V2noLDg(1 — p)

Maximum likelihood estimators are

> xi
=
g = = —

n n
[)=n-fA(0A) 5
2Lgo
. §-1
P=73
and
~ zZ
&o=—
m

and the asymptotic estimated var(D) is

@(ﬁ):bz'{l+i+£+l-[%—lj}
n 2n n m |g

The full likelihood of the data entering into D is given by the pro-
ducts of the likelihoods of the independent data components:
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exp{- [V2m6LDgy(1 - p)I} - {N2RGLDgy(1 - p)}"
n!

n. 2 1 Xi B n
il=-[l \/? ExP {_ 5(;’) } le;[l[p“"‘” (=plx I:[;n](go)z(l - go)m_z]

Dropping constants and otherwise simplifying this likelihood gives

§£(D! o-!p’go) =

F(D, o, p, g) = [exp {— [\/EGLDgo(l -p)+ 2—22]}} X

[D" - p" (1 - py*" (g (1 ~ go)" 7] (6.43)

Closed form expressions for 6(D), p(D) and go(D) do not seem possible,
but ¢(D) can be computed using numerical optimization. A slight ‘trick’
simplifies the process of getting ¢(D).

By setting the partial derivatives of £ with respect to o, p and g, to
zero, and with D arbitrary, we derived the following results:

p(c)_§+1—l
"o

ntz—-L
g°(°):n+m_i
o

and

D =
216’ Lgy(o) - (1 - p(o))

While we cannot easily select D and compute ¢(D), we can specify values
of o and compute the unique associated p(c) and go(c) that apply for
D, which is then computed. These are then the values of 6(D), p(D)
and g¢(D) to use in computing ¢(D) for that computed value of D. All
we need do is select a range of ¢ which generates a range of D, and
then we treat £(D, G, p, go) as a function of D, not of 6. The MLEs are
known, so the absolute maximum of ¥ is known, thus normalizing &
to ¢ is easy.
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Table 6.6 Some relative 95% confidence intervals, bh,wer/f) and
Dupper!D, for the profile, log-based and standard method, for line
transects for the likelihood in Equation 6.43. Sample size n is Poisson,
x is half-normal, s is geometric, and g is estimated from z
~binomial (m, g¢)

n Profile interval log-based interval Standard interval
5 0.238 4.009 0.289 3.457 -0376 2376
10 0.365 2.688 0.395 2.535 0.015  1.985
20 0.488 2.054 0.501 1.996 0287 1713
40 0.593 1.721 0.595 1.680 0.472  1.528
70 0.663 1.568 0.658 1.521 0576 1.424
100 0.700 1.503 0.690 1.449 0.626 1.374

Table 6.6 gives a few numerical results for the model considered here.
Sample sizes n and m are the dominant factors influencing the Table
6.6 results. In fact, these results do not depend on true D, L or ©.
However, they do depend on E(s) and go too strongly to draw broad
conclusions here. Inputs to the likelihood used for Table 6.6 were
Tin=1G6oMLEG=1),5=10(p =0.9) and z = 16, m = 20(go = 0.8). The
log-based intervals are closer to the profile intervals than are the
standard intervals.

It is also worth noting that if » (i.e. the line transect sampling effort)
is increased while m is fixed, the estimate of go is the weak link in the
data. Studies that estimate g, need to balance the effort for the two data
types. It would be best to collect data on g, during the actual distance
sampling study to achieve both such balance of effort (with respect to
n and m) and relevance of g, to the particular study. If in this example
for n =100 we also put z=280 and m =100, then the three relative
intervals are more similar, especially profile and log-based:

Profile interval Log-based interval Standard interval

0.726  1.377 0.728 1.373 0.681 1.319

In practice, it is unlikely that such a high proportion of detections (80%)
could be considered as ‘on’ the line, necessitating the use of methods
that utilize detections off the line (Section 6.4).

(b) A general comment on precision The relative confidence intervals in
Tables 6.2-6.6 have been computed in a variety of cases: line and point
transects, some with clustered populations, different detection functions,
and one case with an adjustment for g(0) < 1. A general conclusion is
that sample size has the overwhelming effect on relative precision of
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D. Relative confidence intervals are quite wide at n = 40, being roughly
+45% of D. At n=70 and 100, the intervals are roughly + 35% and
+ 25%, respectively. This level of precision is under very idealized
conditions that will not hold in practice for real data. With comparable
sample sizes, we expect that relative interval widths will exceed the
tabulated values. These results and our experience in distance sampling
suggest strongly that reliable, precise abundance estimates from distance
data require minimum sample sizes around 100. Coefficients of variation
of around 20% (i.e. intervals of + 40%) are often adequate for manage-
ment purposes; the results presented here indicate minimum sample sizes
of 40-70 in this circumstance.

6.8.5 Discussion

Reliable analysis of distance sampling data is possible without a full
likelihood approach. We recommend a robust approach of empirical
estimation of var(n), a semiparametric, likelihood-based estimation of
f(0) or h(0) from the marginal distance data, and finally, estimation
of E(s) conditional on the observed distances y;, using a regression
approach. Other strategies are possible and use of a bivariate model for
g(y, 5) is closer to a full likelihood approach. The difficult modelling
aspect is to specify general probability models for n and s and it is those
steps we bypass.

There are, however, reasons to develop a full likelihood approach:
(1) intellectual curiosity, (2) efficiency of estimators and tests if the
assumed model is correct, (3) availability of well-developed likelihood
based theory for profile likelihood intervals and for model selection such
as AIC, (4) the convenience of further developing such models by having
parameters as functions of covariates (effort, environmental, spatial
factors), and (5) as a necessary part of a Bayesian approach to distance
sampling. We consider some of these points and difficulties of the
approach.

Models for the marginal function g(y) are abundant and choices also
exist for bivariate versions, g(y,s) (e.g. Quinn and Gallucci 1980;
Drummer 1985, 1990; Drummer and McDonald 1987; Thompson and
Ramsey 1987; Otto and Pollock 1990), and for the distribution n(s) of
cluster size in the sampled population. Any probability model of a
discrete random variable on s=1,2,... is a candidate for n(s), and if
s can take on hundreds of values (such as for dolphin schools), con-
tinuous models could be used (such as a log-normal distribution for s).
Good probability models for »n are more problematic.

The Poisson distribution for » is not reasonable. The negative bino-
mial model might be tenable, but in general, a reasonable model for
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Pr(n) may need more than two parameters. The negative binomial is
given by

. T®+n 8
which has
E(n)=9 - 1-1
T
var(n) = __Ein)

Pr(n) is not used as parameterized, but rather the relationship
E(n) =2LD/f(0) (line transects), or E(n) = 2nk D/h(0), must be imposed
on the parameters in the distribution. With a multiparameter Pr(n), such
as the negative binomial, there is no obvious unique way to reparame-
terize Pr(n). We suggest it will instead be necessary to optimize the
log-likelihood function subject, for example, to the constraint
E(n) = 2LD/f(0), where f(0) is replaced by its form as a function of the
parameters in the detection function g(x). In some cases, it might be
meaningful to associate one parameter in Pr(n) with E(#n), such as having
T a free parameter, and setting

2LDt
f0)-(1-1)
There are other generalized distributions possible for n, see for example
Johnson and Kotz (1969).

Constructing the full likelihood in the general case is complicated, but
not fundamentally difficult, if strong assumptions of independence are
made. These independence assumptions are often not reasonable, but
robust variances can be found by appropriate quasi-likelihood or boot-
strap methods. Under independence and & replicate lines, the probability
model for the data (from which the likelihood is derived) is symbolically

Pr(n, xy, s j=1,...,mi=1,...,k)
k n
='H| Pr(n,-|l,~) . _Hlf(x,-j|s,j) - (S,j) (6.44)
i= Jj=

where
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J0)
S(Ols)

T(s) =

- TU(S)

is the distribution of cluster sizes given the cluster is detected and
7(s) is the probability distribution in the entire population. It is 7t(s) we
suggest modelling. For point transects, we have k points and

Pr(n;, rg,s,-j,j=1,...,n,~,i=1,...,k)
-1 [Pr(mlpoint i) {jlzilf(rzyISa’) : n*(st (6.45)
where
T(s) = h—’(’% - T(s)

More on the theory of f(x|s), f(r|s) and m*(s) is given in Section 6.7
along with the explanations of f(0), A(0), f(0|s) and /#(0|s) and their
relationship to g(-|s).

Theory development in capture-recapture is in some ways more ad-
vanced than in distance sampling; capture-recapture is also in some
ways a simpler statistical problem. The state of the statistical art in
capture-recapture for survival estimation is represented by Lebreton ez
al. (1992), in which inference is based on (full) likelihood models, and
model selection is based on Akaike’s Information Criterion (AIC; Akaike
1985). We have made use of AIC in model selection for the marginal
detection function, but only for that model component. Drummer (1991)
uses AIC in a bivariate detection function, g(x, s). The full likelihood
approach to capture-recapture is very powerful. Also, using such explicit
parametric models allows meaningful modelling of embedded parameters
as functions of auxiliary information. These approaches could be simi-
larly useful in distance sample and deserve to be explored.

Survival analysis in capture-recapture deals with only two classes
of parameters: survival rates and capture rates. A fully parametric
approach to distance sampling would deal with D, the parameters
in Pr(n) (say 8), in g(-) (say B), and in w(s) (say y). Moreover, if the
locational information in spatial coordinates of detected objects is
used, then D is in effect expanded into a fourth class of parameters.
Thus in its most general form, distance sampling dedls with more classes
of parameters than capture-recapture and is in that sense a harder
problem.
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If Bayesian methods are to be fully developed for distance sampling,
they will require likelihoods as in Equations 6.44 and 6.45 to augment
to priors on the parameters. In either case of a full likelihood or a
Bayesian approach, there will be a need for numerical optimization and
integration methods, possibly on objective functions with a dozen, or
many more, parameters. Even 50 or 100 parameters are not too many
for numerical optimization methods (MLEs and profile likelihoods), so
this scope of problem is numerically feasible now.

6.9 Distance sampling in three dimensions

Conceptually, line transects can be considered as one-dimensional dis-
tance sampling, because only distances perpendicular to the line of travel
are used, even though objects are distributed in two dimensions. Point
transects sample distances in those two dimensions because radial de-
tection distances are taken at any angle in what could be represented
as an x—y coordinate system. In principle, distance sampling can be
conducted in three dimensions, such as underwater for fish, or in space
for asteroids, where objects can be located anywhere in three dimensions
relative to the observer. The observer might traverse a ‘line’, and record
detection distance in two dimensions perpendicular to the line of travel,
or remain at a point, recording data in three-dimensions within the
sphere centred at the point. Given the assumption of random line or
point placement with respect to the three dimensional distribution of
objects, the mathematical theory is easily developed for the three-dimen-
sional case. In practice, the third dimension may pose a problem: there
may only be a thin layer in three dimensions, and in the vertical
dimension, objects may exhibit strong density gradients (e.g. birds in a
forest canopy, or fish near the sea surface). Operational problems could
be difficult; we do not claim this extension to three dimensions has
application, but it is interesting to consider.

Assume that we follow a line randomly placed in three dimensions.
Now we sample volume, not area, so D = objects/unit volume; line
length is still L. Assume we record distances r for all objects detected
out to perpendicular distance w. Counting takes place in a cylinder of
volume v = w?L, rather than a strip of area a=2wL. The statistical
theory at a fixed slice through the cylinder perpendicular to the line of
travel is just like point transect theory. This sort of sampling (i.e. a
‘tube transect’) is like ‘pushing’ the point transect sampling point a
distance L in three dimensions.

Aside from volume v replacing area a, we need little new notation: n
is the sample size of objects detected in the sampled cylinder of radius
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w; py is the average probability of detecting an object in the cylinder of
volume v; g(r) = probability of detecting an object that is at perpendicu-
lar distance r, 0 < r < w; D is the true density of objects in the study
space.

A basic starting place to develop theory is the formula

Emy=D-v-p,=D-nw’-L-p,

The unconditional detection probability is easily written down because
objects are, by assumption, uniformly distributed in space within the
cylinder. Therefore, the pdf of the radial distance r for a randomly
specified object (before the detection process) is

_2mr

(n=—
u\r nwz

The unconditional detection probability is p, = E[g(r)], where expecta-
tion is with respect to pdf u(r). This is a weighted average of g(r):

pvszu(r)-g(r)dr=%fw27tr'g(r)dr
0 Tw" Jo

Notice that this p, is identical to the unconditional detection probability
in point transects.

A direct approach can be used to derive E(n). Let ve be a small volume
in the cylinder centred at distance r and position / along the line
(0=</s<1L). Thus D - v, =the expected number of objects in volume
ve=2nmrdrdl, and the expected count of these objects is then
g(r) - D - ve. E(n) can now be expressed as

L w w
E(n)=f f g(r)-D'21trdrdl=L-D-f 2nr-g(rdr=L-D nw’ . p,
0 0 0

An estimator of D is

l‘j=+ or D=
w - L-p, L.y,

where
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w
Ly = W - py = J- 2nr - g(r)dr
0

The sample of distances to detected objects is ry, ..., r,. The pdf of
distance r to detected objects is

2mrog) v g()
Hw

fn = -
L r-g(r)dr

This result is identical to that for point transects and can be proven
using the same theory. In fact, slight modifications of point transect
theory suffice as a complete theory for line transect sampling in three
dimensions. In particular,

s 2m-g(r)  2mr-g'(r)
fiin= T

so if g’(0) is finite and g(0) = 1, then f’(0) = 2n/p,. For consistency with
point transects, we use

2n
h(O)=f"(0)=—
0)=/7(0) m

and hence we have

Compare this with the point transect estimator,

~  n-h()
D=
The only difference is that L replaces k.

In fact, all the theory for point transects applies to line transect
sampling in three dimensions if we replace k by L. Thus, estimation of
h(0) or p, could be done using program DISTANCE and treating the
detection distances, r;, as point transect data. The case of objects as
clusters poses no additional problems, giving our general formulation:
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n- l;(O)

-E
2nLeg, =

D=

where c is the fraction of the circle, around the line, in which detections
are recorded (c = ¢/2n for some sector angle ¢ in 0 to 2w). For the
clustered case, all the theory in Section 3.6.6 for point transects applies
to line transects in three dimensions with k replaced by L. We do not
know of any data for three-dimensional line transects as described here;
however, if any such studies are ever done, we note that a complete
theory for their analysis already exists.

Point transect sampling in two dimensions can be extended to three
dimensions. (To people who use the term variable circular plots, such
extension becomes a variable spherical plot.) Now the detection distan-
ces r are embedded in a three-dimensional coordinate system. There is
no existing theory for this type of distance sampling, although theory
derivation methods used for line and point transects are easily adapted
to this new problem, and we present some results here.

In this case, the observer would be at a random point and record
detections in a full (or partial) sphere around that point. For a sphere
of radius w, the volume enclosed about the point is

Given truncation of the data collection process at distance w, the
expected sample size of detections at k random points is

Emy=k-D-v-p,

To derive py, we note that the pdf of radial distance for a randomly
selected object in the sphere is

u(r) = 4rr’
4nw’/3

and p, = E[g(r)] with respect to u(r)

1

h41tw3/3 L 41tr2’~ g(r)dr

po= | " u) - g0y dr =

so that
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E(’l)=k-D-%nw3-p.,=k"D-L anr’ - g(r) dr

An alternative derivation is to consider that the volume, ve, of space
in the shell at distances r to r + dr is 4nr’dr (to a first order approxi-
mation, which is all we need as we let dr — 0). Thus,

E(n)=k-D~JO g(r)~vgdr=k~D-J0 anr’ - g(r)dr

Now define pu,, as

w
Uw = L 4nr’ - g(r) dr

so that

n n

h=—" = ___
k-Wwe k-@nw/3)-py

The pdf of detection distance  is

1) = 4nr’ - g(r)

w

O<r<w

Taking second derivatives, we get

_8m-g(n 16mr-g(n)  4nr’- g"()

4 r
MG L ™ T

Hence, if g(0) = 1 and both g’(0) and g”(0) are finite (preferably zero as
then the estimators have better properties), then

8n
27 0) -
S i
For simplicity of notation, we define d(0) = f”'(0), so that

n - d(0)
8k

D=
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The estimation problem reduces to fitting a pdf f(r) , as given above,
to the detection distances ry, ..., r, based on some model for the
detection function, g(r). This will lead to d(0) and @{d(Q)} by any of
a variety of statistical methods. Because the variance of d(0) is condi-
tional on n,

var(D) = D [[ev(m)F + [cv{d(0)}]]

As with point transects in two dimensions, the theory for three
dimensions can be transformed to look like line transect theory in one
dimension. The transform is from radial distance r to the volume
sampled, 1 =4 nr’, giving the pdf of 1 as

f(ﬂ)=%(£, 0<n<v=§1tw3

3 1/3
fs

Then, if g(0) =1, f(0) = 1/u,. As for two-dimensional point transects,
we do not recommend that analysis be based on such a transformation
(c.f. Buckland 1987a).

The case of objects as clusters with size-biased detection can be
developed for this three-dimensional point transect sampling using the
methods of Section 3.6.6. First, we would have a conditional detection
function, g(r|s), and a distribution of cluster sizes in the entire popula-
tion, n(s). The following result holds for each cluster size:

where

Eln(s)] - d(0]s)

D(s)= 8nk

y

The density of clusters irrespective of size is

_E(n) - d0)
b= 8k

Thus, ‘dividing’ the first by the second of these two formulae, we get

D) _ o - Eln®] dOls) __, = d0O]|s)
D " Ewm a0 ST a0
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where n°(s) is the distribution of detected cluster sizes. Summing both
sides of the above leads to

d©) =3 m*(s) - d0|s)

whereas rearranging the formula and summing produces

1
d0) =

0) o)

d0|s)
where all summations are over s=1, 2, 3, ...

Thus
n(s) = T Es) - d(0]s)
2. (s) - d(O]s)
and

Y s w'(s) - dO]s)

E(s) = "
S (s) - dO0]s)

from which expressions, estimators of n(s) and E(s) are evident.
Straightforward expressions for d(0) and d(0|s) are

d(0) =

d©|s) = 2

. rP. g(rls)dr

Two more formulae are just stated here:
g(r) =X g(rls) - n(s)
2
r- K}
frls =—-81D

5 P g(rls)dr
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Also of interest are conditional distributions of cluster size given detec-
tion distance, r. These distributions are useful for exploring E(s|r),
where now the s is from the size-biased detected sample. The result is

grls) - m(s) _ g(rls) - 7(s)
Y g(rls) - m(s) g(n
This is exactly the same as for either line or point transect results given
in Section 3.6.6.

Perhaps some day three-dimensional point transect data will be taken
in deep space or oceans.

w(s|r) =

6.10 Cue counting

Cue counting (Hiby 1982, 1985; Hiby and Hammond 1989) is a method
developed for estimating whale numbers that has very similar design
considerations as line transect sampling — and in fact is sometimes carried
out simultaneously with line transect sampling — yet theoretically is much
more closely related to point transects. An observer scans a sector ahead
of the viewing platform — usually an airplane or the bow of a ship — and
records the distance to each detected cue. The cue is usually defined to
be a whale blow. Cues are recorded irrespective of whether the whale
was previously detected, and it is not necessary to estimate school
(cluster) size. The method yields estimates of cue density, which can only
be converted into whale density by estimating the cue or blow rate, p,
from separate surveys. Cue density is estimated much as bird density is
estimated from point transect data. The observer records only radial
distances. Perpendicular distances are not needed, and angles only deter-
mine whether a cue is within or outside the observation sector. To
estimate cue rate p, individual whales are followed, and the observed rate
is used as an estimate of the cue rate for the whole population. This is
the main weakness of the approach, as relatively few whales can be
monitored for sufficiently long periods to obtain reasonable cue rate
estimates. Further, these whales may not exhibit typical cue rates; for
example whales with high cue rates are less likely to be ‘lost” before an
estimate can be obtained, and whales monitored over a long time period
may change their cue rate in response to the vessel.

Suppose cues are recorded out to a distance w. For cue counting, as
for point transect sampling, the area of a ring of incremental width
dr at distance r from the observer is proportional to-r. It follows that
f(r)y=2mnrg(r)/v, where v = ZnJ rg(r) dr. Given that a cue occurs in the
sector of area c - a, where ¢ is the sector angle and a = tw’. so that
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¢ = ¢/2m, let the probability that it is seen be P, Then this probability
is v/(nw?). Thus a - P, =v, which holds as w — . Assuming all cues
very close to the observer are seen (go=1), Equation 3.1, with
E(s) = 1, yields the following estimate of cue ‘density’ per unit time (i.e.
the number of cues per unit area per unit time):

[)C _ 21}?1
ovT

where n is the number of cues recorded in time 7. The constant T is
the total time that the observer is searching (i.e. ‘on effort’), and
corresponds to the line transect parameter, L. If the cue rate is estimated
as p cues per unit time per animal, then estimated whale density is

2nn

D=2
ovTp

As for point transects, V = 21t/f1(0), where h(0) = lin})f(r)/r, so that
r—

n - h(0)
oTp

D=

The value of fz(O) may be obtained by modelling the recorded distances
to cues, as if they were distances from a point transect survey. DIS-
TANCE has a cue count option to carry out the above analysis (below).
Because successive cues from the same whale, or cues from more than
one whale in a pod, may be counted, the distances are not independent
observations. This does not invalidate the method, but analytic variances
should not be used. The bootstrap, applied by taking say cruise legs as
the sampling unit, provides valid variance estimation.

Line transect sampling of whale populations is beset with problems
of how to estimate go, especially for aerial surveys, where a whale may
be below the surface while it is in range of the observer, and for species
such as sperm whales, which typically dive for around 40 minutes at a
time. Cue counting does not require that all whales on the centreline
are detected. Instead, it assumes that all cues occurring immediately
ahead of the observer are seen. Thus, of those on the centreline, only
whales that are at the surface when the vessel passes are assumed to be
detected with certainty. In practice, whales may show vessel avoidance,
so that the recorded number of cues very close to the vessel is depressed.
Because the area surveyed close to the vessel is small, the effect of vessel
avoidance might be expected to be small, unless avoidance occurs at

271



EXTENSIONS AND RELATED WORK

@

72
. 42
1.00 25 _\
0.75f 8] \
= 132
S |4
[ =4
.%
4
5 os0l [ \
8 11
3 N
a
0.25 172
0.00 . -
0 0.5 1 15 2 25
Detection distance r (n.m.)
{b)
72
06
05
132
=04 ’ 11
= 42
2
172
So03f
= 29
=)
[}
5 a
a 0.2
8
01t 4
4
0 L .
0.5 1 15 2 2.5

Detection distance r (n.m.)

272




CUE COUNTING

(c)
72
1.00 ﬁ
2042

0.75f
% 132
=
2
2 0.50F
=
% 111
£ N
a

0.25 172

0.00 L .

] 05 1 1.5 2 25 3
Detection distance r (n.m.)
(d)
72
06f []
05F

111

a

T~
/

Probability density f(r)
o
w
bor]
N

o
)

0.1F

0 0.5 1 1.5 2 25
Detection distance r (n.m.)

Fig. 6.7. Histograms of the cue count data. Also shown are the fits of the
hazard-rate model to the data without left-truncation (a and b) and with
left-truncation (c and d). The fitted detection functions are shown in (a) and (c)
and the corresponding density functions in (b) and (d).
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relatively large distances. If avoidance is suspected, the distance data
may be left-truncated. This solution should prove satisfactory provided
the effects of vessel avoidance only occur well within the maximum
distance for which the probability of detecting a cue is close to unity.

If cues immediately ahead of the vessel might be missed, double-counting
methods similar to the independent observer analyses given in Section 6.4
(with d = 0) may be used. This has the advantage over those analyses in
that it is easier to identify whether a single cue is seen from both platforms,
for example by recording exact times of cues, than to identify whether a
single animal or animal cluster is seen by both platforms, since the two
platforms may see different cues from the same animal.

Cue counting has been used in aerial surveys to estimate fin whale
densities near Iceland (Hiby er al. 1984) and in shipboard surveys to
estimate whale densities in the North Atlantic (Hiby et al. 1989) and
minke whale densities in the Antarctic (Hiby and Ward 1986a, b; Ward
and Hiby 1987). We use here data from Hiby and Ward (1986a) to
illustrate the method. Annual surveys of Southern Hemisphere minke
whales have been carried out since the 1978-79 season. The first attempt
to use cue counting during shipboard surveys occurred on the 1984-85
cruise. Hiby and Ward considered that cues close to the vessel were
under-represented, possibly because whales showed vessel avoidance
behaviour or because blows close to the vessel were under-recorded by
observers. We therefore analysed the data both with no left-truncation
and with left-truncation at 0.4 n.m. (nautical mile). The data were
right-truncated at 3 n.m. Under the hazard-rate model, frequencies at
distances less than 0.4 n.m. are not significantly below expected frequen-
cies, and truncation makes little difference; the only anomaly is the
relatively high frequency at 0.8-1.0 n.m. (Fig. 6.7), which may be chance
fluctuation, or, more likely, preferential rounding to that distance inter-
val. Hiby and Ward (1986a) appear to have interpreted these data too
pessimistically, suggesting that detections close to the vessel are too few
because (1) blows are less visible at short distances, (2) whales show
vessel avoidance behaviour, or (3) observers did not appreciate the need
to record all cues at short distances. Because successive cues are not
independent, goodness of fit tests are likely to give spurious significant
results. If they are carried out regardless for the hazard-rate model, they
are not significant at the 5% level, so Hiby and Ward’s conclusion that
the data cannot be analysed seems pessimistic. Data sets collected more
recently suggest that the method performs adequately.

The fits of the hazard-rate model to the data both with and without
left-truncation are shown in Fig. 6.7. In these-trials, both blows and
sightings of the body of the whale were counted as cues. Hiby and Ward
(1986a) estimated the cue rate at 34.98 cues per whale per hour
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(5¢ = 4.74). Supplying this estimate to DISTANCE, together with an
estimate of time on effort of 35.8 hours (430 n.m. divided by an average
speed of around 12 knots), yields an estimated density of 0.24 whales/
n.m.’ from untruncated data and 0.26 whales/n.m. from the truncated
data. The goodness of fit statistics are x¢ = 11.7 and y3 = 7.3 respectively.
The p-values for the goodness of fit tests are invalidated by the lack of
independence between successive cues from the same animal or animal
cluster. Similarly, the analytic estimates of variance are invalid. Without
the raw data, it is not possible to apply either the bootstrap or the
empirical method to obtain valid variance estimates, because cue counts
are not given by cruise leg in Hiby and Ward. In Fig. 6.8, the fits of
the Fourier series model to these data, with and without left-truncation,
are shown. It yields an estimated density of 0.24 whales/n.m. without
truncation and 0.31 whales/n.m.” with truncation, with respective good-
ness of fit statistics of x7 = 18.9 and x3 = 9.1, indicating a worse fit than
the hazard-rate model. Again the p-values corresponding to these stat-
istics are invalid, and we do not present them. The flatter shoulder of
the hazard-raté model enables it to fit the counts at short distances more
closely. The estimate of density from a line transect survey carried out
at the same time as the cue rate trial was 0.37 whales/n.m”.

6.11 Trapping webs

The estimation of population size (N) from capture data is usually
formulated as a capture-recapture problem (e.g. White er al. 1982).
There, traps are positioned, often at intersections of a rectangular
grid, and animals are captured, marked, and released for possible
recapture on a subsequent trapping occasion. If the trapping grid is
enclosed or the trapped area samples the entire area of interest, then
density = number/area can be estimated. However, the usual case is that
an area surrounding the trapping grid contains animals that are subject
to being captured and thus the effective area being sampled is larger
than the area of the grid. One might naively estimate density as N/Ag,
where A; = the area covered by the trapping grid. However, density is
then overestimated because grid area is smaller than the area actually
sampled by the traps. This problem has been well known for over half
a century (Dice 1938). The use of a trapping web (Anderson et al. 1983)
is an attempt to reformulate the density estimation problem into a
distance sampling framework, where density is estimated directly, rather
than separately estimating population size and effective area (but see
Wilson and Anderson 1985a for an alternative).
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Fig. 6.8. Histograms of the cue count data. Also shown is the one-term Fourier
series fit to the data with no left-truncation (a and b) and the two-term fit to
the left-truncated data (c and d). The fitted detection functions are shown in
(a) and (c) and the corresponding density functions in (b) and (d).
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Trapping webs are a special case of point transect theory useful in
estimating density of animal populations where ‘detection’ is accom-
plished by trapping. Animals are trapped in live, snap-trap or pitfall
traps. Mist nets or other devices can be employed. Such trap devices
are placed in a ‘web’ such that the density of traps is highest near the
centre (Fig. 6.9), thus attempting to assure that g(0) = 1.

The web design consists of m lines of equal length, o, and each of
T traps, radiating from randomly chosen points. A useful rule of thumb
is to ensure that m x T = 200. The traps are located along each of the
m lines, usually (but not necessarily) at some fixed distance interval 0,
starting at distance o, = 6/2. Points b; are defined along each line,
halfway between traps, for i=1,2,..., T, with by = 0 representing the
web centre, and by the boundary of the web beyond the last trap. The
traps are then at distances o; =0(i — 0.5) fori=1, 2, ..., T, and the b,
are at distances i0 for i=0,1,2,..., T.

Thus, traps are placed in rings of increasing radius from the web
centre at equal distances along the m lines (Fig. 6.9). All captures in
the ith ring of traps are considered to be detections of objects at distance
o; from the centre of the web. The distance data are analysed as
grouped data. That is, the total number of captures arising from the
ring of traps at distance o are treated as grouped data over the interval
from distance b;_, to b, The total area of the web out to interval i
is ¢c;=mh; and the area trapped by the ith ring of traps is then
Aj=¢; — ¢;_;. Generally, only first captures (removal data) are recorded
and used in the estimation of density. This procedure reduces the impact
on estimation of heterogeneity in trap response due to trap-happy or
trap-shy animals.

Traps can be placed easily by trained technicians using a stake driven
in the ground at the web centre and a rope with knots tied to indicate
trap spacing (the o). Disturbance of the site should be minimized while
traps are being placed in the sampled area. Several trapping webs would
be required to sample an area of interest adequately. If only initial
captures are of interest, then captured animals can be given a batch
mark, to indicate that they have been ‘removed’, and released back into
the population. Sampling is carried out on ¢ occasions (often consecutive
days or nights), where typically ¢ is between three and eight.

6.11.1 Assumptions

Analytic theory for the trapping web is an application of point transect
sampling theory and the general assumptions apply. The three major
assumptions of distance sampling are slightly restated here for the

trapping web:
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Fig. 6.9. Trapping web with 16 lines (m = 16), each of equal length o7 and 20
traps per line (T =20), giving in total 320 traps. The traps are at distances
@, ..., oy from the centre of the web. The points along each line, halfway
between traps, are denoted by b;, i=0,..., T, where by=0 is the centre and
bris the boundary of the web, just beyond the last trap. Captures in the eleventh
ring of tgaps are assigned to the shaded ring A,;, which has area ¢i1 — C1o, Where
Ci=T- b,‘.

1. All animals at the centre of the web are captured at least once during
the # occasions. That is, trapping continues until evidence exists that
no new animals are being caught near the centre of the web.

2. During the trapping period, animals move over distances that are small
relative to the size of each web. Thus, migration through the web is
not allowed. Trap spacing i$ an important consideration and is species-
dependent, taking account of the size of home ranges or ‘territories’.

3. Distances from the centre of the web to each trap are measured
accurately. This assumption is trivial if the trap spacing has been
carefully laid out.
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Assumption 1 is critical but can be monitored by examining the
number of new individuals trapped near the web centre over trapping
occasions. Animals near the centre should be captured with probability
one. However, if substantial movement occurs over the ¢ occasions
(assumption 2), animals that are initially away from the centre of a web
may move, eventually to be caught where the trap density is highest.
This situation is analogous to point transect sampling where the obser-
vation period is long and birds move around the study area. Such
movement causes detections near the point to increase and leads to
positive bias in the estimator. Bias is worse if animals are attracted to
the point or web centre.

6.11.2 Estimation of density

The basic data are the number of first captures in traps in ring j of web
i on trapping occasion /, ny, where i=1,2,...,k,j=1,2,..., T and
[=1,2,...,t Pooling the data over ¢ occasions, the data can be
summarized as n;, where

nig=nj + Rzt .o+ R

Hence n; is the number of animals trapped in the jth ring of the ith
web. Let the total sample size be n=733Yn; Then density can be
estimated by i

where the estimate fz(O) is obtained through standard point transect
methods (Chapter 5). The estimator of the sampling variance is

7arD) = D - [{cvm) + {evh )]

If the population is distributed randomly (i.e. Poisson), then Wilson and
Anderson recommend [cv(n)]’ = 1/n. Generally, some degree of spatial
aggregation can be expected, and [cv(n)]’ =2/n or 3/n might then be
more appropriate. If the number of replicate webs, k, is sufficient, it is
preferable to estimate the sampling variance of » empirically (Section
3.7.2).

Data analysis is similar to the general theory for point transects,
including model selection and inference issues. The challenge with the
trapping web is to collect trapping data that mimic the assumptions of
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point transect sampling and analysis theory. In particular, trap spacing
must be related to average home range size or average distance moved
and there are presently few guidelines for this decision.

Excessive animal movement near the web centre is problematic. The
density of traps near the web centre is high relative to that near the
edge of the web. Thus, even if animal movement is random, there is a
tendency to trap animals near the web centre, regardless of their original
location. If the trap spacing is too small, the problem is made worse
and overestimation will likely result. If the animals tend to move in
home ranges that are small relative to the size of the web and the trap
spacing, then the trapping web may perform well. Alternatively, if
animals move somewhat randomly over wide areas in relation to the
size of the web and the trap interval chosen, then overestimation may
be substantial (see the darkling beetle example, below).

6.11.3 Monte Carlo simulations

Wilson and Anderson (1985b) performed a Monte Carlo study to
investigate the robustness of density estimation from trapping web data.
Their simulations mimicked small mammal populations whose members
were allowed to move in defined home ranges. Home range was simu-
lated from bivariate normal, bivariate uniform and bivariate U-shaped
distributions, and from a ‘random excursion’ model. More details are
given by Wilson and Anderson (1985b). A 4 ha area was simulated, 320
traps were positioned in a two-dimensional plane, and animal density was
set at two levels, 100/ha and 25/ha. Home range centres were allowed
to be spatially random (Poisson), or clumped at three levels of aggre-
gation. Three average probabilities of first capture were simulated at
0.09, 0.16 and 0.24, and these probabilities were allowed to vary by time
(trapping occasion), behaviour (trap-shy or trap-happy) and heteroge-
neity (individual variability); this is model M, in Otis et al. (1978: 43).
Trapping was simulated for six, eight and ten occasions.

The Monte Carlo results indicated that the combination of a trapping
web design and a point transect estimator of density was quite robust.
The procedure had typically low bias under a wide variety of realistic
situations. Confidence interval coverage was lower than the nominal
level, due in part to the use of the Fourier series estimator (Buckland
1987a). The method was recommended in cases where the capture
probability was > 0.16 and the number of trapping occasions was at
least six. In some extreme situations (e.g. the random excursion model,
with low capture probabilities and a clumped spatial distribution), the
bias was in the 20-30% range, which might still be substantially less
than traditional capture-recapture estimators.
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The trapping web does not make any assumptions about geographic
closure and is easy to implement in the field. No unique marks or tags are
required, and several different types of trap can be used. The results of
Wilson and Anderson (1985b) indicated that the trapping web was very
promising as an alternative to standard capture-recapture methods. The
work of Parmenter ef al. (1989), summarized in Section 6.11.5, was
carried out as a field test of the method where the true density was known.

6.11.4 A simple example

Anderson et al. (1983) presented an example of trapping web data from
a 4.8 km area south of Los Alamos, New Mexico, where Peromyscus
spp. were trapped for ¢ = 4 nights on a web very similar to that of Fig.
6.9, with trap separation of 8 = 3m. The mice were captured in baited
live traps and marked using a monel metal tag placed in one ear. Only
initial captures were used in the analysis; animals were thus ‘removed
by marking’. No unmarked mice were caught in the inner area (out to
ring 7) on the fourth night and only two new captures were made in
this area on the third night. This was taken as evidence that the
probability of capture near the web centre was one. A plot of the
histogram indicated that mice from beyond the web were being attracted
to the baited traps in the web, as the number of captures in rings 19
and 20 (i.e. njo and ny) was somewhat higher than expected. Thus, the
distance data were truncated to exclude the two outer rings. This left
76 ‘detections’ in 18 distance groups for analysis; frequencies were 1, 1,
0,6,2,2,32,417,4,5,8,6,7, 6,7 and 5, respectively (Anderson et
al. 1983). Note the lower frequencies in the inner rings, where the area
sampled is small relative to that in the outer rings.

Two models were fit to these data: half-normal and hazard-rate, each
with cosine adjustment parameters. No adjustment parameters were
required and the AIC values were similar for the two models (424.18 and
425.76, respectively). Both models fit the data well as judged by the ¥’
goodness of fit tests (x* = 13.2 with 16 df and 13.6 with 15 df, respectively).
Density is estimated at 97.8 mice/ha (S¢ = 21.3) under the half-normal
model and 86.1 mice/ha (S¢ = 12.7) under the hazard-rate model. These
estimates compare with 76 animals trapped on the web of area 0.97 ha,
suggesting that most animals were caught. Only one web was sampled,
hence no inference to a larger area is justified in this simple example.

6.11.5 Darkling beetle surveys

Populations of two species of ground-dwelling darkling beetles were
studied in a shrub-steppe ecosystem in southwestern Wyoming to field
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test the validity of the trapping web on a series of known populations
(Parmenter et al. 1989). These beetles (10-30 mm body length) attain
natural densities so great (> 2000 beetles/ha) that relatively small plots
could be surveyed and still have test populations of reasonable size.
These beetles are wingless and could be contained by low metal fences.
They are easily marked on their elytra with coloured enamel paint, and
are relatively long-lived, allowing longer periods of trapping and in-
creased capture success. Pitfall traps were made from small metal cans
(80-110 mm), and the web was surrounded by a metal enclosure wall.
Traps were placed along 12 lines, each 11 m long, with 1 m trap spacing
along the lines. Nine additional traps were placed at the centre of the
web, giving 141 in total.

Beetles were captured, marked with enamel and released. These
marked beetles constituted the population of known size that was
subsequently sampled using the trapping web design. Surveys were done
in two different years and different colours were used to denote the
year. Several subpopulations, each of known size, were released, allow-
ing analyses to be carried out both separately and in combination, to
test the method on a wide range of densities. Additional details were
given in Parmenter er al. (1989).

Overall the method performed quite well, yielding a correlation co-
efficient between D and D of at least 0.97 for each of four models for
g(r). The negative exponential model performed better than the Fourier
series, exponential power series and half-normal models. The data
exhibited a spike near the web centre, almost certainly caused by
considerable movement of beetles and by trap spacing that was too
small. All models were fitted after transforming the distance data to
areas, a procedure that is no longer recommended. In summary, the
results of these field tests were certainly encouraging.

Reanalysis of the darkling beetle data using current theory and
program DISTANCE provided a less optimistic impression in that
density was substantially overestimated, leading to important insights.
The first is that traps were too closely spaced along the lines; trap
spacing should have been greater to compensate for the wide area over
which beetles of this species move. Second, the beetles had no ‘home
range’ and thus tended to wander widely in relation to the size of the
web, which is a function of trap spacing. The trapping web design was
envisioned for use with animals that have some form of home range or
‘territory’. Third, it is clear that some random movement may result in
too many animals being trapped near the web centre. The problem can
also arise in bird surveys where some random movement results in the
detection of too many birds near the point. This condition leads to a
spiked distribution and overestimation of density. Clearly, the additional
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nine traps placed near the web centre aggravated this problem. Thus,
we do not recommend that traps be concentrated at the centre. Research
is needed to understand the relationship between spacing and density
of traps and the nature of the movement.

If the data are spiked, one might analyse the distance data using some
left truncation to eliminate the high numbers trapped near the web
centre. Alternatively, one could constrain g(r) to be a low order, slowly
decreasing function that does not track the spiked nature of the data,
but this solution is rather arbitrary and may be ineffective. More
experience is needed with sampling from populations of known size to
understand better trap spacing and appropriate modelling. Still, this
application of point transect sampling has many advantages over cap-
ture-recapture. Further studies on populations of known size, using live,
snap or pitfall traps or mist nets, could lead to additional insights.

6.12 Migration counts

The main theme of this book is estimation of population abundance by
modelling distance data. Counts from migration watch points may be
converted into estimates of population size using similar techniques, but
by modelling time instead of distance. Typically there will be regular,
perhaps daily, counts of numbers of animals passing a watch point. If
the animals pass in clusters, then the sampling unit will be the cluster.
The basic data are start and end times of watch periods and number of
animals or clusters passing during each watch period. Thus the data are
in frequency form, being grouped by watch period. There will be gaps
between watch periods, corresponding to night or to poor weather. For
the basic method, animals are assumed to migrate at the same rate
during unwatched periods as during watches. If no migration occurs at
night, then time should be defined to end at dusk and start again at
dawn. If migration occurs at night, but possibly at a different rate, the
rate should be estimated by another method, for example by sonar
(active or passive) or radar, or by radio-tagging animals. To model
migration time, as distinct from distances in line transect sampling, the
following changes are needed to the methodology. First, in line transect
sampling the density function is assumed to be symmetric about the
line, so only even functions (cosines for the Fourier series model and
even powers for polynomial models) are used. For migration counts,
odd functions are also needed. Related to this, the key function requires
both a location and a scale parameter, whereas only a scale parameter
is necessary for line transect sampling, because if sightings to the left
of the line are recorded as negative, and distances to the right as
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positive, the expected distance from the transect is zero under the
assumption that the density function is symmetric about the line. Third,
allowance must be made for a large number of counts, equal to the
number of separate watch periods, whereas in a grouped analysis of line
transect data, the number of groups for perpendicular distances seldom
exceeds a dozen or so. Finally, having fitted the density to migration
times, abundance is estimated by taking the ratio of the area under the
entire density to the combined area corresponding to watch periods
alone, and multiplying this ratio by the total number of animals counted
during watches. Thus, different software is needed to obtain the abun-
dance estimate and its standard error.

We use here as an example the California grey whale census data
collected at Monterey, California. The California stock of grey whales
migrates from feeding grounds in the Bering and Chukchi Seas to
calving areas in Mexican waters every winter, returning north in spring.
Aerial and ship surveys confirm that almost the entire population passes
close inshore at several points. Counts at coastal migration watch points
can therefore be used to estimate population size. Counts at Monterey
were annual from 1967-68 through to 1979-80, and further surveys were
carried out in 1984-85, 1985-86 and 1987-88. Reilly et al. (1980, 1983)
gave more information on these surveys, and Buckland and Breiwick
(in press) provided abundance estimates corresponding’ to all surveys.
We use analyses of the grey whale count data for 1987-88, extracted
from Breiwick et al. (unpublished) and Buckland et al. (in press), to
illustrate analysis of migration count data. In that year, counts were
made from two stations (north and south) a few yards apart, to allow
estimation of numbers of pods missed during watch periods. The data
analysed were numbers of pods passing within each count period, so
that the data are grouped, the group endpoints being the start and end
of each watch period. Information on duplicate detections was used to
reduce the data sets from both stations to a single set of counts of the
number of pods detected by at least one station in each watch period.
Pods detected travelling north were excluded from the analyses.

The key function selected for fitting the counts was, apart from a
scaling factor, the normal density:

wrent 2]

where y corresponds to time, measured in days from a predetermined
date. Adjustments to the fit of the key were made by adding Hermite
polynomial terms sequentially, adjusting the fit first for skewness, then
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kurtosis, and so on. Four adjustment terms were fitted to the data sets,
and likelihood ratios were used to determine which fit was ‘best’. If a
one-term fit was found to offer no significant improvement over no
terms, but a two-term fit gave a significant improvement over no terms
at the 5% level, the two-term fit was favoured over both the one-term
and the zero-term fits. A three-term (i.e. five-parameter) fit was selected,
and this fit is shown in Fig. 6.10. To convert the fitted density to an
estimate of population size, it is necessary to evaluate the proportion
of the entire untruncated density that corresponds to watch periods. To
ensure that the Hermite polynomial fits were sensible in the tails of the
migration, zero counts were added for 1 December 1987, before the
migration started, and 29 February 1988, after it ended. This had little
effect for 1987-88, when counts took place throughout the main migra-
tion period (Fig. 6.10), but for some earlier surveys, many pods had
passed before the first or after the last count of the season, making the
addition of zero counts necessary (Buckland and Breiwick, in press).
In total, and excluding pods travelling north, n = 3593 pods were seen
from at least one station. The %’ goodness of fit statistic corresponding
to Fig. 6.10 was x1,s = 334.55. This value is more indicative of overdis-
persion of counts than of intrinsic lack of fit of the Hermite polynomial
model; in other words, counts in successive watches show greater than

NumpDer ot pods per nour

M Lo ”

Days since 1st December 1987

40 50 60 70 80

Fig. 6.10. Histogram of number of California grey whale pods sighted, adjusted
for watch length, by date, 1987-88 survey. Also shown is the Hermite polynomial
fit to the histogram.
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Poisson variation. The overdispersion was compensated for by multi-
plying the Poisson variance on the total count by the dispersion par-
ameter, estimated as the y’ statistic divided by its degrees of freedom;
this multiplicative correction is sometimes termed a variance inflation
factor (Cox and Snell 1989). Thus the dispersion parameter estimate is
334.55/125 = 2.676, giving §&(n) = V(3593 - 2.676) = 98.1 pods. The fit of
the Hermite polynomial model to the counts yields a_ multiplicative
correction for animals passing outside watch periods of f; = 2.4178 with
standard error 0.0068.

Swartz et al. (1987) reported on experiments in which whales were
radio-tagged in 1985 and 1986. Of these, 15 were recorded both at night
and in daylight. An unpaired t-test on the difference in log day and
night speeds revealed no significant difference between Monterey and
the Channel Islands (¢, = — 1.495; p > 0.1). After pooling the data from
both locations, a paired -test revealed a significant difference in log
speeds between day and night (1,4 = 2.284; p < 0.05). A back-transforma-
tion with bias correction gave a multiplicative correction factor for
hours of darkness of 1.100 (§¢ = 0.045); thus it is estimated that rate of
passage is 10% higher at night, and thus night counts, if they were
feasible, would generate counts 10% higher. Counts were carried out for
ten hours each day. On average, it is reasonable to add an hour to each
end of the day, giving roughly 12 hours of daylight (including twilight)
per 24 hours. Thus the multiplicative correction applies approximately
to one half of the total number of whales estimated, giving a multipli-
cative correction factor of f, = 1.050 (s¢ = 0.023). Swartz (personal com-
munication) notes that the behaviour of the animals off the Channel
Islands is very different from when they pass Monterey. If a correction
factor is calculated as above from the nine radio-tagged whales off
Monterey that were recorded both during the day and at night, we
obtain f, = 1.020 (5¢ = 0.023). Although this does not differ significantly
from one, we apply it, so that the variance of the abundance estimate
correctly reflects the uncertainty in information on this potentially
important parameter.

During the 1987-88 season, counts were carried out independently by
observers in identical sheds, 5m apart. Buckland er al. (in press)
analysed these double count data using the approach of Huggins (1989,
1991) and Alho (1990), which incorporates covariates to allow for
heterogeneity in mark-recapture experiments. We summarize the method
here. The procedures for matching detections from the two stations are
described by Breiwick et al. (unpublished). We assume the matches are
made without error.

Assuming that the probability of detection of a pod from one station
is independent of whether it is detected from the other, and independent
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of whether other pods are detected by either station, the full likelihood
for all pods passing Monterey during watch periods is

* M 2 5:‘ 1-9;
L'=K-Tl TpY (1-pp' %
i=1 j=1

where M = total number of pods passing during count periods,
pij = probability that pod i is detected from station Li=l ..., M,
j=12,

1, pod i is detected from station j,
8;=10 otherwise,

and K depends on M, but not on the parameters that define PDij-
Huggins (1989) shows that inference can be based on the conditional
likelihood,

noo2
8

L=T Mn) (1-my %

i=1 j=1
where n = number of pods detected from at least one station,

and T = &

H

2
with p;=1-T1 (1 — pij) = probability that pod 7 is detected from at
j=1
least one station.

Thus m; is the probability that pod i is detected from station J given
that it is detected from at least one station.

Both Huggins (1989, 1991) and Alho (1990) model the p;; using logistic
regression. Algebra yields:

T

log, i = log, i Py _ loge pir, where j =3 -

U )

Hence logistic regression for the pij can be obtained simply by carrying
out logistic regression for the conditional probabilities m;, and setting
an offset variable, equal to — log.pi7, for each observation. In the first
iteration, the offset variable is set to zero (corresponding to normal
logistic regression for m;). Estimates p; are then calculated from the
ft,-j , from which the offset variable is estimated. The model is refitted,
and the process is repeated until convergence is achieved. Model fitting
was carried out using Genstat (Genstat 5 Committee, 1987).
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Potential covariates were date, Beaufort, components of wind direc-
tion parallel and perpendicular to the coast, visibility code, distance
offshore, pod size and rate of passage (pods per hour), observer station
and watch period were entered as factors. Estimates p; and p; were
calculated from the final iteration, from which M was estimated as

'E>|»—A

with

@OD=T = (1-5)

i=1

Thus a correction factor for pods missed by both stations is given by

];m = M
n
with
~, 5 V/a}‘ M
S(fulm = TEED

Probability of detection of a pod was adequately modelled as a
function of five covariates: pod size; rate of passage; migration date;
visibility code; and the component of wind direction parallel to the
coast. None of the factors (observer, watch period, station) explained a
S1gmflcant amount of variation. Probability of detection increased with
pod size (p < 0.001), with rate of passage (p < 0.001) and with migration

date (p < 0.05), and decreased with visibility code (p < 0.05). It was also
greater when the wind was parallel to the coast from 330° (slightly west
of north), and smaller when from 150° (east of south). The correction
factor f,, was estimated by fm = 1.0632, with standard error 0.00447.

The number of whales passing Monterey is equal to the number of
pods multiplied by the average pod size, which was estimated by the
average size of pods detected (excluding those moving north). This gave
§=1.959 (¢ = 0.020). A correction factor for mean pod size was calcu-
lated using data from Reilly et al. (1980), comparing recorded pod sizes
with actual pod sizes, determined by observers in an aircraft. For pods
of size one, an additive correction of 0.350, with standard error
0.6812/4225 = 0.0454, was used. The correction for pods of size two was
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0.178 (5€ =10.9316/Y101 = 0.0927), for pods of size three, 0.035
(5¢ = 1.290/N28 = 0.244), and for pods of size four or greater, the cor-
rection was 0.333 (§¢ = 0.7825V27 = 0.151). A multiplicative correction
factor for mean pod size was then found as:

; 0.350n, + 0.178n, + 0.035n; + 0.333n,,

fi=1+ 2 = 1.131
n-s

with
S8(fs|n) = V[(0.0454n,)* + (0.09271)° + (0.2438n5)* + (0.15061,.)"
+0.6812°n; +0.9316°n; + 1.290%n; + 0.7825%n,,]/(n - 5) = 0.026

where n = total number of pods recorded,
n; = number of pods of size i,i=1, 2, 3,
and n, = number of pods of size four or more.

The revised abundance estimate was thus found as follows. Counts of
numbers of pods by watch period were combined across the two stations,
so that each pod detected by at least one station contributed a frequency
of one. The Hermite polynomial model was applied to these counts, to
obtain a multiplicative correction factor f; to the number of pods
detected for whales passing at night or during poor weather. The
correction for different rate of passage at night f, was then made. Next,
the multiplicative correction f,, was applied, to allow for pods passing
undetected during watch periods. The estimated number of pods was
then multiplied by the mean pod size, and by the correction factor I
for underestimation of pod size, to obtain the estimate of the number

Table 6.7 Estimates of abundance and of intermediate parameters, California
grey whales, 1987-88

Std % contribution 95% confidence

Parameter Estimate error to var(N) interval
E(Number of pods seen by at least 3593 98 39 (3406, 3790)
one station) = E(n)

Correction for pods passing outside 2.418  0.007 0 (2.405, 2.431)
watch periods, f;

Correction for night passage rate, f, 1.020  0.023 27 (0.976, 1.066)
Correction for pods missed during 1.063  0.004 1 (1.054, 1.072)
watch periods, fn,

Total number of pods passing 9419 337 (8781, 10104)
Monterey

Mean recorded pod size 1.959  0.020 5 (1.920, 1.999)
Correction for bias in recorded pod 1.131  0.026 28 (1.081, 1.183)
size, f

Total number of whales passing 20 869 913 (19 156, 22 736)
Monterey
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Table 6.8 Estimated number of pods, pod size and number of whales by year.
(Standard errors in parentheses.) For any given fit, the number of parameters
is two greater than the number of terms, corresponding to the two parameters
of the normal key

Sample Estimated Estimated Relative Absolute

Year No. of X size no. of average abundance abundance
terms [df] ( pods) pods pod size estimate estimate
1967-68 4 83.0 903 4051 2.438 9878 12921
[45] (253) (0.063) (667) (964)
1968-69 0 70.6 1079 4321 2.135 9227 12070
[61] (134) (0.046) (348) (594)
1969-70 1 104.5 1245 4526 2.128 9630 12597
[67} (155) (0.043) (383) (640)
1970-71 2 116.2 1458 4051 2.021 8185 10707
[90] (115) (0.033) (267) (487)
1971-72 0 71.3 857 3403 2.193 7461 9760
[56] (127) (0.048) (323) (524)
1972-73 4 91.5 1539 5279 2.187 11543 15099
[711 (152) (0.034) (378) (688)
1973-74 4 133.7 1496 5356 2.098 11235 14696
[66] (186) (0.034) (431) (731)
1974-75 0 159.2 1508 4868 2.034 9904 12955
[74) (174) (0.035) (394) 659)
1975-76 2 101.1 1187 5354 2.073 11100 14520
[47] (218) (0.039) 497) (796)
1976-77 0 139.7 1991 5701 2.052 11700 15304
[87] (153) (0.028) (353) (669)
1977-78 0 50.2 657 7001 1.843 12904 16879
: [31] (356) (0.046) (731) (1095)
1978-79 4 1529 1730 4970 2.016 10018 13104
[84} (159) (0.034) (361) (629)
1979-80 4 109.3 1451 6051 2.068 12510 16364
[55] (220) (0.033) (498) (832)
1984-85 3 105.2 1756 7159 2.290 16393 21443
[49] (301) (0.038) (740) (1182)
1985-86 1 1414 1796 6873 2.237 15376 20113
[104]} (191) (0.042) (515) 927)
1987-88N 3 205.9 2426 7756 2.040 15825
[92] 221 (0.027) 497)
1987-88S 3 152.8 2404 7642 2.104 16082
[91] (194) (0.029) (464)
1987-88 15954 20869
(average) (481) 913)

of whales passing Monterey during the 1987-88 migration. Thus the
abundance estimate for 1987-88 is given by

A ~ ~ A~

N=”l'ft‘fn'fm'§‘

>

w

with
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V() = V{[cvm] + [eV( /)T + [ev(F + [V + V)P + [ev( AP}

Table 6.7 shows the different components to the estimate N. Combining
them, estimated abundance is 20 869 whales, with cv(1\7) = (0.0437 and
approximate 95% confidence interval (19 200, 22 700).

Buckland and Breiwick (in press) scaled their relative abundance
estimates for the period 1967-68 to 1987-88 to pass through an absolute
abundance estimate for 1987-88. Rescaling them to pass through the
revised estimate above yields the estimates of Table 6.8. Figure 6.11 plots
the absolute abundance estimates and shows the estimated increase in
abundance assuming an exponential model with non-zero asymptote. The
estimated mean annual rate of increase is 3.3% per annum (5 = 0.4%).

6.13 Point-to-object and nearest neighbour methods

The term ‘distance sampling’ has been used by botanists in particular
to describe methods in which a random point or object is selected, and
distances from it to the nearest object(s) are measured. A discussion of
these methods was given by Diggle (1983: 42-4). In the simplest case,
the distance y to the nearest object is measured; y is a random variable
with a pdf, say f(y). However, there is no detection function; the nearest
object will be detected with probability one. This is very different from
the distance sampling from which this book takes its title, for which
there is also a sample of distances y with pdf f(y). The two pdf’s can
be very similar mathematically, but they are conceptually very different.
It is the concept of a detection function that distinguishes the distance
sampling of this book. Hence we do not describe point-to-object and
nearest neighbour methods in detail here.

For point-to-object and nearest neighbour methods, if the distribution
of objects is random, then object density is estimated by

kn

k n 5
nY Yry
j=1i=1

D=

where k£ = number of random points or objects,
n = number of point/object-to-object distances measured at each
point or object,
rij = distance of ith nearest object to the jth random point or
object, i=1,...,n; j=1,..., k.
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Fig. 6.11. Estimates of abundance by year of California grey whales, and
predicted abundance from a weighted exponential regression of abundance
estimates on year. Year 1967 signifies winter 1967-68, etc.

When the distribution of objects is overdispersed (i.e. aggregated),
density is underestimated if distances are measured from a random
point, and overestimated if distances are measured from a random object.
An average of the two therefore tends to have lower bias than either
on its own. Diggle (1983) listed three ad hoc estimators of this type.

Some authors have used point-to-object distances only, together with
a correction factor for non-Poisson distribution (Batcheler 1975; Cox
1976; Warren and Batcheler 1979), although Byth (1982) showed by
simulation that the approach can perform poorly.

Nearest neighbour and point-to-object methods have been used prim-
arily to measure spatial aggregation of objects, and to test the assump-
tion that the spatial distribution is Poisson. Their sensitivity to
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departures from the Poisson distribution is useful in this context, but
renders the methods bias-prone when estimating object density. Except
in special cases, such as estimating the density of forest stands (Cox
1976), we do not recommend these methods for density estimation. Their
disadvantages are:

1. All objects out to the nth nearest to the selected point or object must
be detected. In areas of low density, this may require considerable
search effort.

2. It can be time-consuming to identify which are the n nearest objects,
and at lower densities it may prove impractical or impossible to
determine them.

3. The effective area surveyed cannot be easily predicted in advance,
and is highly correlated with object density; a greater area is covered
in regions of low object density. By contrast, good design practice
in line and point transect surveys ensures that area covered is
independent of object density within strata, leading to more robust
estimation of average object density.

Point transects and point-to-object methods may both be considered
as generalizations of quadrat counts. In both cases, the quadrat may be
viewed as circular. For point transects, the area searched, a = kntw?, is
fixed (and possibly infinite), but the observer is not required to detect
all objects in that area. For point-to-object methods, the number of
objects n to be detected from each point is fixed, but the radius about
each point is variable; all objects within that radius must be detected.
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