8

Illustrative examples

8.1 Introduction

Several analyses of real data are presented here to illustrate line and
point transect analysis, and use of program DISTANCE. Units of
measurement of the original study are adhered to, to avoid quoting
cutpoints as ‘every 0.305 m’ instead of ‘every foot’. Five of the examples
are line transect surveys and three are point transect studies. The first
two examples are case studies in which the true density is known. The
first of these is a set of line transects to estimate the number of bricks
that had been placed on the bed of a region of Lake Huron, as part of
a programme to assess the viability of using an underwater video system
to monitor numbers of dead lake trout. This is followed by a reanalysis
of the wooden stake surveys carried out as part of a student project in
sagebrush—grass near Logan, Utah (Laake 1978). The third example is
a comprehensive analysis of the data from annual surveys of duck nest
density that have been carried out for 27 years at the Monte Vista
National Wildlife Refuge in Colorado. An analysis of fin whale data
from ship sightings surveys in the North Atlantic illustrates use of
stratification, and the final line transect example is one for which
sightings data on dolphins are collected by observers placed on board
tuna fishing vessels. Thus, there is no contrel over the cruise track, and
methods must be used that reduce the effects of the potentially strong
biases in the data.

The first point transect example is an illustration of model selection
and stratification on house wren data collected during surveys of ripa-
rian vegetation in South Platte River bottomland in Colorado. The
second example is an analysis of data on the six species most commonly
recorded in songbird surveys of the Arapaho National Wildlife Refuge,
also in Colorado. In the final example, an approach for assessing effects
of habitat on density using point transect sampling is described, and an
analysis of binomial point transect data is carried out in which bird
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density and detectability in restocked forest plantations in Wales are
related to habitat succession.

8.2 Lake Huron brick data

Bergstedt and Anderson (1990) presented the results of 13 independent,
line transect surveys of known populations of bricks placed approx-
imately at random on the floor of portions of Lake Huron. The bricks
were to simulate dead lake trout, and the purpose of the survey was to
explore the feasibility of large-scale surveys of dead lake trout on the
lake bottom. The distance data were taken remotely via a video camera
mounted on an underwater sled and pulled along the lake bottom by a
surface vessel. The data were taken in five distance categories (0, 0.333,
0.667, 1, 1.333, 1.667 m), and these cutpoints were marked on a cathode
ray tube on board the vessel. The relationship between the cutpoints on
the screen and the perpendicular distance on the lake bottom was
defined by calibration studies before the first survey. The true density
in all surveys was 89.8 bricks/ha, and this allows an evaluation of the
utility of line transect sampling theory. Full details of this survey are
given by Bergstedt and Anderson (1990). Our purpose here is to reana-
lyse the data from the 13 surveys using the methods presented in earlier
chapters.

Table 8.1 Summary of density estimates and coefficients of variation for the
Lake Huron brick data under five models of the detection function (data from
Bergstedt and Anderson 1990). True density = 89.8/ha. The final means are
weighted by line length

Survey HN + cos Uni + cos Uni + poly HN + Herm Haz + poly

1 138.5 19.5 1444 157 137.1 19.2 126.8 16.6 104.0 16.2
2 96.4 18.7 92.6 32.5 100.0 15.6 93.1 27.1 88.2 15.6
3 88.8 204 91.4 19.2 86.2 17.0 88.8 204 70.0 17.7
4 84.0 19.7 85.5 159 83.2 19.6 77.1 16.0 63.0 16.2
5 78.3 22.0 81.6 20.0 729 184 78.3 22.0 613 18.9
6 84.5 33.8 93.6 14.6 904 17.7 844 275 759 164
7
8
9
10

80.7 38.2 76.9 26.3 924 193 854 166 71.1 16.0
1224 19.1 107.0 157 104.1 19.2 1224 19.1 86.2 16.7
96.2 19.5 99.6 15.7 95.7 19.2 96.2 19.5 73.6 16.0
72.8 20.2 70.2 26.7 67.7 16.9 67.6 30.0 61.5 16.0
11 89.4 20.9 93.4 19.2 86.1 17.3 89.4 209 70.6 18.0
12 92.7 18.7 83.9 153 81.6 18.0 819 29.2 76.5 18.0
13 56.8 20.7 58.2 20.0 55.1 17.8 56.8 20.7 555 272

Wt. Ave. 88.7 6.2 88.3 6.0 86.5 6.0 86.2 68 724 47

351



ILLUSTRATIVE EXAMPLES

Table 8.1 provides a summary of the estimates of density for each of
the 13 surveys under each of five models: half-normal + cosine, uniform
+ cosine,” uniform + simple polynomial, half-normal + Hermite poly-
nomial, and the hazard-rate model + simple polynomial. Information
related to model selection for the pooled data is presented in Table 8.2.
AIC selects the hazard-rate model with no adjustment terms, and this
model fits the grouped distance data well (p = 0.70). The remaining four
models (half-normal + cosine, uniform + cosine, uniform + polynomial
and half-normal + Hermite polynomial) have similar AIC values, but fit
the data less well (0.09 < p < 0.29).

Table 8.2 Model selection statistics for the pooled Lake Huron brick data

Key function Adjustment Total AIC p-value”
parameters

Half-normal Cosine 4 1671.2 0.09

Uniform Cosine 3 1670.3 0.29

Uniform Polynomial 3 1670.3 0.29

Half-normal Hermite 3 1672.7 0.06

Hazard-rate Polynomial 2 1667.9 0.70

* Goodness of fit test.

Surprisingly, the hazard-rate model provides the poorest estimates of
mean density based on the weighted mean of the estimates (Table 8.1).
The hazard-rate model fitted a very flat shoulder to the pooled data
and produced estimates that were low in 12 of the 13 surveys. Perfor-
mance of the other four estimators is quite good (all were slightly low
due, in part, to the results of survey 13) (Table 8.1). Estimated con-
fidence intervals for mean density covered the true value for all but the
hazard-rate model.

The weighted mean of the estimates was very close to the true
parameter, except for the hazard-rate model (88.7, 88.3, 86.5, 86.2 and
72.4, respectively). Any of the first four models performs well, especially
when one considers that the average sample size per survey was only
45. The hazard-rate key + polynomial adjustment does more poorly in
this example, and is the only model whose 95% confidence interval fails
to cover the true density. Troublesome is the fact that the hazard-rate
model was selected as the best of the five models by AIC in nine of the
13 data sets (surveys).

The reader is encouraged to compare these results with the original
paper by Bergstedt and Anderson (1990), which includes discussion of
various points relating to possible measurement errors, missing bricks
in the first distance category, and potential problems with survey 13.
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Bergstedt and Anderson (1990) note that some bricks were missed near
the centreline, and that the cutpoints drawn on the cathode ray tube,
although accurate in the initial calibration, were perhaps compromised
by the uneven lake bottom.

8.3 Wooden stake data

Laake (1978) set out 150 unpainted wooden stakes (2.5x 5 x 46cm)
within a rectangular area of sagebrush—grass near Logan, Utah, in the
spring of 1978 to examine the performance of the line transect method.

Table 8.3 Summary of stake data taken in 1978 in a sagebrush-grass field near
Logan, Utah (Laake 1978). Density in each of the 11 surveys was 37.5 stakes/ha.
Cosine adjustments were added as required in modelling f(x). For each survey,
L=1000m and w=20m

Survey Key Sample Density cv(%) Log-based 95%
no. function size estimate confidence interval

1 Half-normal 72 37.11 19.3 (25.51, 53.99)

Uniform 30.00 14.5 (22.63, 39.77)

2 Half-normal 48 35.18 19.9 (23.90, 51.78)

Uniform 36.01 20.1 (24.36, 53.23)

3 Half-normal 74 28.76 15.8 (21.16, 39.10)

Uniform 29.26 14.8 (21.92, 39.07)

4 Half-normal 59 38.31 19.1 (26.42, 55.52)

Uniform 33.30 17.5 (23.68, 46.81)

5 Half-normal 59 34.41 19.9 (23.37, 50.66)

Uniform 29.58 19.0 (20.47, 42.76)

6 Half-normal 72 26.38 16.2 (19.24, 36.17)

Uniform 27.08 15.6 (19.98, 36.69)

7 Half-normal 55 34.48 19.9 (23.44, 50.72)

Uniform 34.69 21.1 (23.06, 52.18)

8 Half-normal 61 33.31 20.2 (22.51, 49.30)

Uniform 34.48 21.3 (22.82, 52.09)

9 Half-normal 46 28.32 21.9 (18.51, 43.31)

Uniform 23.52 21.2 (15.60, 35.48)

10 Half-normal 43 34.16 20.1 (23.15, 50.42)

Uniform 32.69 21.1 (21.71, 49.22)

11 Half-normal 53 29.80 17.4 (21.25, 41.80)

Uniform 31.45 17.8 (22.23, 44.50)

Mean Half-normal 642 32.75 3.6 (30.54, 35.11)

Uniform 31.10 3.6 (28.99, 33.36)

Pooled Half-normal 642 34.37 7.2 (29.86, 39.55)

Uniform 34.60 7.5 (29.86, 40.08)
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The stakes were placed in a restricted random spatial pattern such that
the number of stakes was distributed uniformly as a function of distance
from the line. In fact, each 2 m distance category had 15 stakes present.
Stakes were driven in the ground until about 37 cm remained above
ground. One stake was placed about every 7 m of transect and alternated
between left and right sides of the line. Exact placement was generated
randomly within the 7 m section. True density was 37.5 stakes per
hectare.

A single, well-marked line (L = 1000 m, w = 20 m) was traversed by 11
different, independent observers. The observers were carefully instructed
and supervised and fatigue was probably a minor factor as each survey
could be completed by the observer in approximately 2 h. Observers
traversed the line at different times, thus the data for each of the 11
surveys are independent. The number of stakes detected (n) varied from
43 to 74, corresponding to P, ranging from 0.29 to 0.49 (Table 8.3).
Histograms and estimated detection functions (g(x)) differed greatly
among observers. In field studies, the detection function would also be
affected by habitat type and species being surveyed. These factors affect
n and make it, alone, unreliable as an index of density.

Two strategies were used for the analysis of these data. First, the data
were pooled over the 11 surveys (n = 642) and AIC was computed for
five models,

Model AIC

Half-normal + cosine 24129
Uniform + cosine 2415.2
Uniform + polynomial 2417.4
Half-normal + Hermite 2450.8
Hazard-rate + cosine 2416.4

Thus, the half-normal + cosine is selected as the best model. In fact, all
models seem fairly satisfactory for data analysis except the half-normal
+ Hermite polynomial model where the LR test indicated that the
first adjustment term (for kurtosis) was not required (p =0.617).
There are options in DISTANCE, such as SELECT = forward (which
yields AIC = 2415.1 for this model) or LOOKAHEAD =2 (also giving
AIC = 2415.1), that allow the user to avoid such poor model fits (Section
8.7). Estimates of density are shown in Table 8.3 under the two best
models, as suggested by the AIC criterion. The estimates of density are
quite similar between these two models.

While n varied widely, estimates of density varied from only 26.38 to
38.31, using two models for the detection function (half-normal and
uniform key functions with cosine adjustment terms). Confidence inter-
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val coverage cannot be accurately judged from only 11 replicates, but
examination of the intervals in Table 8.3 shows no particular indication
of poor coverage. Estimates of density are low in all cases, except for
survey 4 for the half-normal estimator. Averaging the density estimates
over the 11 surveys indicates a negative bias of approximately 13-17%.
Pooling the data over the 11 surveys provides an approximate estimate
of bias of about — 7 to — 8%. The main reason for the negative bias
seemed to be some lack of model fit near the line. Examination of the
histograms and estimated detection functions seems to indicate that
models commonly fit poorly near zero distance. Some of the negative
bias is due to measurement error for stakes near the line. The exact
location of each stake was known, and errors in measurement could be
assessed. For example, the information for three stakes (i.e. stake
numbers 45, 93 and 103) is shown:

Stake no. 103 45 93
True distance (m) 0.92 5.03 14.96
Ave. distance (x) 0.73 4.77 14.63
sd(x) 0.139 0.151 0.277
100 (sd (x)/X) 18.9 3.2 1.9

This suggests the measurement error is largely due to improper deter-
mination of the centreline. Finally, the negative bias is partially the
result of observers missing about 4% of the stakes in the first metre and
13% of the stakes in the first two metres. However, this is offset by the
tendency to underestimate distances near the line. One observer was
seen actually tripping over a stake on the centreline, but still the stake
was not detected. Stakes do not move and do not respond to the
observer; for field surveys of animals, the relative importance of the
different assumptions may be very different. If this survey was to be
repeated, we would enlarge the study area and lengthen the line such
that E(n) = 80. Also, observers would be shown the evidence that stakes
near the centreline were occasionally missed, and that measurements
were often in error, in the hope that these problems could be lessened.

A second strategy will be illustrated that is less mechanical, requires
a deeper level of understanding of the theory, and is somewhat more
subjective. The pooled data are displayed as a histogram using 1 m
cutpoints (Fig. 8.1). This information suggests several aspects that
should influence the analysis. First, the distance data have a long tail,
a small mode around 15m, and considerable heaping at 10 m at the
expense of 9 and 11 m. Some heaping at 0, 5 and 15 m is also seen. A
histogram based on 0.5 m cutpoints indicated that detection declined
rapidly near the line. Thus, the data have some of the characteristics
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Fig. 8.1. Histogram of the wooden stake data of Laake (1978) using 1 m
cutpoints. Also shown is a 3-term Fourier series fitted to these grouped data.
Note the heaping at 0, 5 and 10 m, the relatively long tail in the distribution,
and the additional mode near 15-16 m.

illustrated in Fig. 2.1. The modelling of g(x) will require additional terms
to model the extra mode and long tail (Fig. 8.1 shows a model with
three cosine terms, and this still seems to underestimate the data near
the line). Thus, a reasonable approach might be to truncate the data at
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Fig. 8.2. Histogram of the wooden stake data of Laake (1978), truncated at 10
m. The detection function is modelled using a uniform key function and three

cosine adjustment terms.

w = 10 m in the hope of obtaining a better fit near the line and alleviat-
ing problems in the tail of the distribution. ’

At this point, one could choose a robust model for g(x) and proceed;
here we will first use the uniform key and cosine adjustment func-
tion (Fourier series). Fitting these truncated data using a uniform key
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function and a cosine adjustment function still required three terms, but
provided a good fit near the line (Fig. 8.2). Some heaping at 5 m now
shows more clearly. This model of the pooled data provided
D=37.71 (S&(D) + 2.82) with a log-based confidence interval of (32.58,
43.64). These calculations assume var(n) = 0, as the stakes were placed
uniformly. In reality, the value of var(n) in this study would be small
but non-zero; zero was used only for illustration. Now, the data from
each separate survey (i.e. individual person) can be modelled using a
3-term cosing series. The average estimate of density from the 11 surveys
was 36.99 (sd(ﬁ) = 5.04), again close to the true density of 37.5.

Second, having selected a truncation point (w = 10 m), one could select
a model using AIC, based either on the individual data sets or on the
pooled data sets. Here, we will examine only the pooled data. The results
are summarized below.

Model AIC

Half-normal + cosine 2118.7
Uniform + cosine 2112.4
Uniform + polynomial 2114.7
Half-normal + Hermite 2118.7
Hazard-rate + cosine 2126.8

The AIC selects the uniform + cosine model (the Fourier series) as the
best model and, as shown above, provides an excellent estimate of
density. The other models provided estimates that were inferior (half-
normal + cosine = 33.60, uniform + polynomial = 31.47, half-normal
+ Hermite = 33.59, and hazard-rate + cosine = 31.90), and this could
have been judged from the poor model fits near the line (Fig. 8.3).
Likelihood ratio tests chose models with one parameter, except the
hazard-rate model (two parameters) and the uniform + cosine (three
parameters). Only the uniform + cosine model had confidence intervals
that covered the true parameter.

Because the authors knew the value of D during these analyses, we
cannot allege total objectivity in this example, which happened to
provide an excellent estimate. However, the point is that careful review
of the distance data can suggest anomalies (e.g. spiked data, long tails,
heaping, a second mode), and these can suggest analysis approaches that
should be considered equally with the more mechanical approach of
using AIC or only likelihood ratio tests. We advocate some truncation,
especially in cases where there are clear outliers in the distance data.
Poor fit of the model to the data near the line should always be of
concern. Generally the guidelines outlined in Section 2.5 will serve the
analyst well in planning the analysis of distance data.

358



STUDIES OF NEST DENSITY
8.4 Studies of nest density

Studies of duck nest density have been conducted annually since 1964
at the Monte Vista National Wildlife Refuge in Colorado. During the
27 years of these studies, 10 041.6 miles of transect were walked and
4156 duck nests were found. Here we will examine the data for individ-
ual species and years to illustrate various points, approaches and diffi-
culties. No attempt is made here to provide a final, comprehensive
analysis of these data. Further details are found in Gilbert et al. (in
prep.).

Strip transects were originally established on the refuge in a systematic
design, running north-south, with 100 yds between transects and
w = 8.25ft, giving a 5.5% sample of the entire 18.4 square mile refuge.
Each transect centreline was marked by a series of numbered plywood
signs attached to a 2.5 m pole (Burnham ez al. 1980: 32). Only one-half
of the original transects were surveyed during the 1969-90 period, except
in 1971 when only one-quarter of the original transects were run and
in 1977 when no survey was conducted. In 1969-79 w was increased to
12 ft, but this was changed back to 8.25 ft during the 1980-85 period.
Strip width was increased again to 12 ft in 1986-87 and finally changed
back to 8.25 ft during 1988-90. Distances to detected nests were not
recorded during 1964-66 and 1975-79. These erratic changes were often
due to personnel or budget limitations. Transects were searched twice
each year to monitor nest density of both early and later nesting species.
A third search was made in a few years, but few nests were found and
these data are not included in any of the examples given here. The
mallard (Anas platyrhynchos) was the most common nesting duck, but
substantial numbers of northern pintail (4nas acuta), gadwall (4nas
strepera), northern shoveler (Anas clypeata), and teal (Anas cyanoptera,
A. discors, and A. carolinensis) nests were also found. Species identity
could not be determined for many nests; these were classed as ‘unknown’.

The refuge, at an elevation of 7500 ft, is characterized by level terrain
and high desert vegetation in relatively simple communities. The drier,
alkaline sites contain greasewood (Sarcobatus vermiculatus) and rabbit-
brush (Chrysothamnus spp.) on the higher sites, while saltgrass (Distichlis
stricta) dominates the lower sites. The wetter sites are dominated by
baltic rush (Juncus balticus), but other species include cattail (Typha
latifolia), spikerush (Eleocharis macrosachya), bullrush (Scirpus validus),
and sedges (Carex spp.). Water is managed from pumped and artesian
wells and irrigation sources and a system of dikes and borrow pits allow
open water to be interspersed with vegetation cover to create good
waterfowl nesting habitat. This area has one of the highest duck nest
densities of any in North America.
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Fig. 8.3. Histograms of the wooden stake data (Laake 1978) and model fits
for (a) the half-normal + cosine, (b) uniform + polynomial, (c) half-nor-
mal + Hermite, and (d) hazard-rate + cosine model.
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The original design used strip transects, and it was assumed that all
duck nests within the strip were detected. Perpendicular distance data
were collected in 1967 and 1968, and it was clear by 1970 that some
nests near w remained undetected, even with the narrow width of 8.25
ft (Anderson and Pospahala 1970). Perpendicular distances were re-
corded in 1969-74 and 1986-90, primarily as a means to relocate nests
so that the nest fate could be determined. In years when w = 12 ft, it
was likely that more nests remained undetected. Thus, distance sampling
theory is appropriate to obtain estimates of density, account for different
sampling intensities, resolve differences in transect width w, and provide
a basis for correction for undetected nests in years when no distance
measurements were taken.

8.4.1 Spatial distribution of duck nests

On biological grounds it seemed likely that nests were somewhat ran-
domly distributed on the refuge. Thus, one might expect that the
variation among the number of nests (n;) detected by transect line (/)
would be approximately Poisson, so that the variance in total sample
size (n) might be roughly Poisson (i.e. \7a\r(n) = n). The variance of n was
computed empirically for mallard and non-mallard nests for each of 26
years using

i=1 Ii

k 2
Vatm)=L ¥ li[ﬁ—%J/(k— 1

where

and

k = number of replicate lines

Modelling of var(n) as a function of » is common in statistical applica-
tion (Carroll and Ruppert 1988). The ratio b = @(n)/n was computed
for each year for mallard and non-mallard nests (Table 8.4); b is often
called a variance inflation factor. A random spatial distribution of nests
yields b = 1.0. The relationship between »n and \7&1\r(n) can be estimated
by a weighted linear regression through the origin, where the weight is
the sample size. The point estimate under this approach is equivalent
to a ratio estimator. The estimated value of » for mallards was 1.630
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Table 8.4 Sample size (n), estimates of the empirical variance of n (Vz?r(n)), and
their ratio (b) for mallard and non-mallard duck nests

Year Mallards Non-mallards
n @(n) b n Va\r(n) b
1964 142 210.20 1.48 119 201.27 1.69
1965 140 188.79 1.34 72 94.41 1.31
1966 151 238.01 1.58 109 146.69 1.35
1967 150 255.58 1.70 94 156.29 1.66
1968 176 281.84 1.60 139 240.67 1.73
1969 112 168.79 1.51 118 166.61 1.41
1970 103 166.44 1.62 126 225.92 1.79
1971 66 179.61 2.72 48 139.98 2.92
1972 63 99.10 1.57 64 102.08 1.60
1973 102 160.18 1.57 137 450.11 3.28
1974 69 157.18 2.28 40 54.43 1.36
1975 37 45.49 1.23 28 57.86 2.07
1976 49 61.89 1.26 46 72.48 1.58
1978 20 27.61 1.38 35 49.33 1.41
1979 13 9.73 0.74 40 96.06 2.40
1980 34 23.46 0.69 55 82.93 1.51
1981 50 105.63 2.11 54 79.27 1.47
1982 57 125.91 2.21 53 88.53 1.67
1983 79 123.10 1.56 35 48.69 1.39
1984 112 180.20 1.61 38 50.16 1.32
1985 70 112.88 1.61 82 105.49 1.29
1986 114 205.24 1.80 83 105.90 1.27
1987 130 164.00 1.26 132 195.82 1.48
1988 93 182.94 1.97 57 65.66 1.15
1989 74 103.67 1.40 56 58.63 1.05
1990 56 117.97 2.11 32 37.63 1.18
Wt. Ave. 1.630 1.677

(5¢ = 0.068) and 1.677 (8¢ = 0.111) for non-mallards. These estimates are
not significantly different (z =0.36) and, thus, a pooled estimate of b
for all species was computed as b = 1.651 (5¢ = 0.063). This weighted
regression has an adjusted correlation of r*=0.93 (Fig. 8.4), and pro-
vides Var(n) = 1.7n which will be used in the remaining material for this
example. This reflects some contagion in the distribution of duck nests,
related, no doubt, to the variable distribution and quality of nesting
habitat on the refuge. Minor species such as the redhead (Aythya
americana), which nest in specialized habitat types, probably had a very
non-random spatial distribution of nests (i.e. b>>1.0). Note that
var(n) and b can be estimated for all years, even those where perpen-
dicular distances were not recorded.
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8.4.2 Estimation of density

This material focuses primarily on the grouped distance data collected
during 1969-74 and 1986-87, years when w = 12 ft. Histograms of the
distance data are shown in Fig. 8.5 for the mallard, pintail, gadwall,
teal, shoveler and unknown species. The first interval includes nests from
0 to 11 inches, the second interval includes nests detected from 12 to
23 inches, etc. Relatively few pintail nests were recorded within 23 ft
of the centreline, whereas for other species, there appears to have been
preferential heaping of nests close to the transect centreline. In each
case, except the pintail, many nests found in the second interval (12-23
inches) were probably heaped into the first interval and perhaps into
the third interval. Heaping at zero distance is common, and has been
reported several times in distance sampling literature (e.g. Robinette er al.
1974), especially for data taken as sighting distance (r)) and angle (8,
and then the perpendicular distances (x;) computed as x; = r; - sin(8)).
Also, there was a strong tendency to record nests somewhat outside the
transect boundary (w) as exactly 12 ft from the centreline. This latter
form of heaping was right-truncated in all the analyses of the Monte
Vista data in this chapter by setting w to 11.9 ft, thus excluding nests
beyond 12 ft.

Estimated detection functions g(x) are also plotted in Fig 8.5, assum-
ing the half-normal key function with Hermite polynomial adjustments,
if required. The half-normal key function seems quite reasonable for
modelling these data. While there was substantial variation and some
obvious heaping in the counts (n;), the fit appeared fairly good, with
the clear exception of that for the pintail (discussed further in Section
8.4.3). Nests of the mallard seem to be most easily detected, as shown
by the estimated unconditional probability of detection in the surveyed
strip of area a=2wL (P,=0.80,5 = 0.03; Table 8.5). Gadwall nests
were also easy to detect (1‘3,z = 0.76, 5¢ = 0.09), whereas teal, shoveler, and
unknown species nests were less detectable (13‘, = 0.64, s¢ = 0.04;
P,=0.60,§ =0.07; and P,=0.63,5 =0.04, respectively). Pooling all
nests for all species results in an unconditional probability of detecting
a nest within the transect of 0.78, s¢ = 0.02. Mallards (and pintails) nest
early in the season when most vegetation has little new growth and
detection might be easier. Other species tend to nest later and may
experience more concealment in the vegetation.

Estimates of P, for nests of all species combined were higher in
years when w=825ft (P, =0.84, & = 0.07) compared to years when
w=12ft (P, = 0.78, 8¢ = 0.02). In general, P, is a function of w in that
Py = 1/{w - f(0)}; under large sample approximations, cv(P,) = cv{ Sf(0)}.
However, fewer nests were found using the narrower transect. The
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Fig. 8.4. Relationship between the empirical variance in n (i.e. @(n)) and
sample size (n) for (a) mallard nests and (b) non-mallard nests.

narrow transects are inefficient as shown by the mean encounter rate
(e.g. 0.867 and 1.137, respectively, for total nests). The values of w
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Fig. 8.5. Histograms of the distance data for the nests detected at the Monte
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Hermite polynomial adjustments are shown for nests of (a) mallard (n =711),
(b) pintail (n = 136), (c) gadwall (n = 72), (d) teal (n = 195), (e) shoveler (n = 43),
and (f) unknown species (n = 207).
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(either 8.25 or 12 ft) were certainly too large to meet the assumptions
of strip transect sampling and too small for good efficiency in line
transect sampling. Using the data for mallard nests, pooled for the
1969-74 and 1986-87 period, g(8.25) = 0.8, thus the observer undoubted-
ly detected many nests beyond w and could not record them. Detection
near w is still good even for the wider transects [¢(12) = 0.6], thus many
nests were still readily detectable beyond the transect boundary. As only
about 0.58 mallard nests were found per transect mile (Table 8.5), it is
clear that increasing w would allow sample size to increase with little
additional survey effort. Finding a nest is a relatively rare event and if
more nests could be found, little additional time would be required to
take and record the relevant measurements. It would be interesting to
increase w to perhaps 15, 18, or even 20 ft in future surveys to improve
efficiency for both the observers and the estimators. An additional
adjustment term might be required in modelling g(x) but an overall gain
in the estimation process is likely. Observers would have to be cautioned
to emphasize search on and near the centreline and not divert too much
attention near w. Of course, it would be advantageous if heaping could
be lessened and more accurate measurements were taken. Perpendicular
distances might be remeasured as a test of accuracy when the fate of
the nests is checked at a later time.

Table 8.5 Summary of statistics and estimates for survey of duck nests at the
Monte Vista National Wildlife Refuge in Colorado during 1969-74 and 1986-87.
See Fig. 8.5 for histograms of these data and estimated detection functions using
the half-normal model and Hermite polynomial adjustment terms. Density is in
nests/mile’

Species n f’a n/L f ) cv{ j:(O)} D cv(D)

(%) %)
All duck 1415 0.77 1.137  0.1079 2.6 323.8 3.7
Mallard 711 0.85 0.580  0.0901 38 149.6 5.4
Teal 195 0.64 0.157 0.1305 6.4 54.0 9.6
Pintail 136 0.78 0.109 0.1063 8.5 30.7 12.1
Gadwall 72 0.76 0.058  0.1094 11.5 16.7 16.5
Shoveler 48 0.60 0.039  0.1388 12.4 14.1 19.0
Unknown 207 0.63 0.166 0.1325 6.1 58.2 9.3

* Assuming@(n) =1.7n

Mallard nests were found in adequate numbers to allow annual
estimates of nest density to be made. Histograms of the distance data
are shown in Fig. 8.6, with estimated detection functions g(x). Although
the annual sample sizes were generally fairly adequate (n; > 60 in every
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Fig. 8.6. Histograms of the annual distance data for mallard nests detected at
the Monte Vista National Wildlife Refuge in Colorado, USA, during 1969-74
and 1986-87. The estimated detection function is also shown. The respective
sample sizes (n) are (a) 103, (b) 91, (c) 64, (d) 64, (e) 96, (f) 70, (g) 102 and (h)
121.
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year), the histograms look ‘rough’ and certainly exhibit heaping and
perhaps some careless measurements. Except in the early years of the
survey, observers generally had little training and were possibly not that
motivated.

Estimation of annual nest density from data such as shown in Fig.
8.6 can be achieved using

Di=n; ~ﬁ(0)/2L,-, where i = year

An attractive alternative exists if one is willing to make the assumption
that the form of g;(x) or fi(x) is the same, or nearly the same, each year.
This assumption seems biologically reasonable as the vegetation is low
and somewhat sparse, nests of the various species do not move in
response to the observer, the transects are rather narrow, and nests
appear somewhat alike (but may vary somewhat depending on the stage
of incubation). These reasons seem fairly compelling, but it is advisable
to test the null hypothesis that the grouped distance data arose from a
common detection function. Here a reasonable strategy of analysis is to
fit the distance data, pooled over the eight years, to several good
candidate models and select the model with the smallest AIC. These
values for the mallard data under five models were:

Model AIC

Half-normal + cosine 3513.8
Uniform + cosine 35139
Uniform + polynomial 35143
Half-normal + Hermite 3513.8
Hazard-rate + cosine 35154

Any of the five models could be used in this case, with little difference
among the models. AIC selects the single-parameter half-normal key
function with no adjustment terms, although the uniform key function
plus a cosine term (i.e. Fourier series) is second best by a trivial margin.
The uniform + polynomial model might also be a satisfactory model,
followed by the 2-term hazard-rate model. For this example, the uniform
+ cosine (Fourier series) model will be used. Then, the eight individual
distance data sets are analysed using the same model (i.e. the number
of adjustment terms fixed) (Fig. 8.6), to give the log-likelihood value
for the model based on the pooled data (log.(¥£,)) and the eight log-
likelihood values for the individual data sets (log.(£)). A likelihood
ratio test may now be used:

X =203 loge(£) — loge(Lp)]
i=1
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where the test statistic is asymptotically distributed as x* with
n-(r—1) degrees of freedom (n=number of model parameters and
r = number of data sets). With the mallard data,

x> = 2[-1753.64 +1755.93]
=4.58

with 1(8 — 1) = 7 df, giving a p-value of 0.711. Thus, use of a common
J(x) for all years seems appropriate. One can pool the distance data over the
eight years to obtain f(0) and its standard error. Then, yearly estimates of
density can be computed using the yearly sample size (»;) and

ﬁi =n; -f(O)/2L,-, where i = year

The estimate of f(0) is specific to a given transect width, i.e. the value
of f(0) for data from a transect with w = 12 ft cannot be used for years
when the transect width was 8.25 ft. This approach seems appropriate
for the mallard data, and it is nearly essential for species such as teal
where yearly sample size would not support a reliable estimate of the
year-specific detection function gi(x) (or, equivalently, fi(x)). Data for
the shoveler (n = 48) and gadwall (» = 72) support only an estimate of
an average f(0) over the eight-year period, but this analysis approach
allows annual estimates of density by using the year-specific sample sizes
n;. This general approach can be used for the analysis of other years of
data where different transect widths were used.

Estimates of density under the five models were quite similar, ranging
from 149.3 to 157.0 mallard nests per square mile. This might have been
expected because the AIC values were all of similar magnitude. Models
for g(x) contained only one parameter (either a key or an adjustment
parameter), except the hazard-rate model, with two parameters. Thus,
two of the five models used only the half-normal key function.

8.4.3 Nest detection in differing habitat types

Despite large sample sizes, well distributed in time and space, the ability
to examine differences in detectability by vegetation type was limited by
the fact that baltic rush and greasewood made up approximately 68%
and 15% of the vegetation on the refuge, respectively. Initially it was
hypothesized that nest detectability would decline more rapidly with
distance from the centreline in the tall, but often sparse, stands of
greasewood when compared to the lower, more dense areas of rush.
Instead, it became clear that the histogram of grouped distance data for
nests found in greasewood indicated a mode well away from the transect
centreline. It was hypothesized that observers would avoid the thorny
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Fig. 8.7. Stand of greasewood with extensive areas of bare ground typify many
upland sites on the Monte Vista National Wildlife Refuge. Observers may tend
to avoid walking through these thorny shrubs, thus biasing the data.

greasewood (see Fig. 8.7) by walking off line and around these shrubs.
Thus, nests at the base of these shrubs tended to go undetected near
the transect centreline. Nests detected at the edge of greasewood clumps
would be detected with near certainty while the observer was temporarily
off the centreline (and thus avoiding the greasewood). Once such a nest
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was found its distance to the centreline was measured and recorded.
Such temporary departures from the transect centreline could explain
the odd distance data for the pintail nests (Fig. 8.5). Perhaps pintail
were common nesters in greasewood types and, thus, many were missed
near the centreline. Indeed, 24.2% of the pintail nests were found in
greasewood; surely this percentage would be still higher if nests near
the centreline in greasewood were all detected. Other species nested in
greasewood types less frequently: mallard 15.6%, gadwall 19.5%, teal
6.9%, and shoveler 2.6%. We tentatively conclude that observers were
reluctant to enter the thorny greasewood type, and this resulted in nests
being missed near the centreline.

An alternative explanation is that the observer measured the distance
from his or her position to the nest and that pintail tended to nest at least
two feet into the greasewood type. Then Fig. 8.5b would arise without
missing any nests near the centreline; instead, the data would arise because
the observer’s path would go through habitat with a low pintail nest
density. In any event, the presence of obstacles such as greasewood on the
line must be dealt with effectively in the field survey or the analysis of the
data can be problematic. We do not always advocate that the observer
plunge through such cover types; instead, extra care in searching must be
taken when an easier path is temporarily followed. For example, the
observer could go around clumps of such vegetation both to the left and
then to the right, searching the centreline more carefully. In any event, the
measurements must be taken from the transect centreline, not to the
observer who may be away from the centreline. ‘

A definitive analysis of data such as those for the pintail nests is not
possible. Approximate analyses that might be useful could be con-
sidered. First, one could fit a monotonically constrained function for
g(x) as is shown in Fig. 8.5b for the half-normal key function with
Hermite polynomial adjustments. This is likely to result in an underes-
timate of density if a substantial number of nests near the centreline
was undetected. However, in this particular case, one knows from several
other, similar species in this survey that the shape of g(x) has a broad
shoulder, so that the procedure might be acceptable.

Second, one could use some arbitrary left-truncation and then estimate
Sf(0) and D using, for example, the uniform + cosine or half-normal +
Hermite model. First, one could decide on a truncation point; 3 ft might
be reasonable for the pintail nest data. Here the grouped distance data
less than 3 ft could be discarded, the remaining data rescaled as if the
third interval was actually the first interval, and proceed to estimate
density in the usual way (Fig. 8.8a). This is likely to be similar to the first
procedure because we have reason to suspect that the detection function
for pintail nests is fairly flat. Still, in this case, some underestimation
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Fig. 8.8. Histograms of the distance data for pintail nests detected at the Monte
Vista National Wildlife Refuge in Colorado, USA, during 1969-74 and 1986-87.
Two estimates of g(x) are shown using alternative ways to left-truncate the data
and minimize the problems observed in the first 3-4 distance categories, Left-

truncation and rescaling are shown in (a), and the Alldredge and Gates (1985)
approach is shown in (b)
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might be expected (unless g(0) = 1.0 but nests close to zero tended to
be recorded at around 3 ft; then overestimation might result).

Third, the left truncation procedure of Alldredge and Gates (1985)
could be employed, using the same truncation point. The result of this
procedure is very dependent upon the model chosen and is often
imprecise (Fig. 8.8b). In this example, where something is known about
the distribution of distances of nests of other species of ducks, it seems
likely that density of pintail nests is overestimated using this approach.
Of course, any left truncation decreases sample size. The results of using
the three approaches for the pintail nest data are summarized below for
the half-normal key function and Hermite polynomial adjustments:

Method n D cv(%)
Full data 136 30.7 12.1
Left-truncate and rescale 97 29.8 14.2
Full left-truncation 97 35.0 17.9

The three estimates seem fairly reasonable for the pintail nest data,
although one might prefer a density estimate near 30-32, rather than 35,
uiiless the observer’s path around greasewood types tended to sample areas
of low pintail nest density. Considerable precision is lost in efforts to
alleviate this problem; this is to be expected given the uncertainty
introduced.

8.4.4 Models for the detection function g(x)

Various combinations of the key and adjustment functions provide
flexibility in modelling the detection function g(x). For data sets exhib-
iting a reasonable shoulder and meeting the other assumptions of

Table 8.6 Summary of density estimates (above) and coefficients of variation
(below) for five models of g(x) and four duck species, 1969-74 and 1986-87

Key function Adjustment Gadwall Teal Shoveler Mallard

function n=72) m=195 ((n=48) ((©=711)
Half-normal Cosine 16.7 63.1 19.0 149.6
16.5 12.4 224 5.4
Half-normal Hermite 16.7 54.0 14.1 149.6
16.5 9.6 19.0 5.4
Uniform Cosine 17.4 54.8 14.0 155.2
16.5 9.0 17.7 5.7
Uniform Polynomial 15.9 61.5 12.2 147.3
15.0 10.9 16.2 5.0
Hazard-rate Cosine 16.2 67.0 17.9 147.6
19.4 18.0 23.1 6.6
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distance sampling, the choice of model, among those recommended here,
is relatively unimportant. Estimates of density and estimated standard
errors are summarized in Table 8.6 for several reasonable models for
nest data on mallard, gadwall, teal and shoveler for the Monte Vista
data. The differences in estimated density are small relative to the
estimated standard errors. The standard errors given relate to the
estimates made from data pooled over eight years.

If the distance data are distributed in a more spiked form, the choice
of model is more difficult and the estimate of density more tenuous.
The models recommended here are likely to perform reasonably well,
except in pathological cases. A model with an appreciably smaller
goodness of fit value, if constrained to be non-increasing, will tend to
be better than other models with the same number of estimated para-
meters. However, in general, goodness of fit tests are of relatively little
help in model selection. In particular, some lack of fit near w is of little
consequence in comparing model fit among several models.

8.5 Fin whale abundance in the North Atlantic

Large-scale line transect surveys of the North Atlantic to assess whale
abundance were carried out in 1987 and 1989 (North Atlantic Sightings
Surveys, NASS-87 and NASS-89). We analyse here the fin whale (Ba-
laenoptera physalus) data from the 1989 survey collected by Icelandic
vessels to illustrate the use of stratification. The analyses are extracted
from Buckland et al. (1992b).

In 1989 four Icelandic vessels surveyed Icelandic and adjacent waters
during July and August. The area covered was mostly within the East
Greenland/Iceland stock boundaries for fin whales, and we consider here
abundance estimation for that stock alone.

Sighting distances and angles were smeared and assigned to perpen-
dicular distance intervals, using smearing method 2 of Buckland and
Anganuzzi (1988a), and the hazard-rate model was fitted to the group
frequencies. Detections were often of more than one animal, so an
analysis of clusters was carried out; average cluster (school) size was
roughly 1.5 whales. Several potential stratification factors were identi-
fied: geographic block, Beaufort (a scale for wind speed, generally
determined from sea state), cloud cover, vessel and school size. Ideally
stratification should be by all of these factors, but sample size consider-
ations preclude this. Variables Beaufort, cloud cover and school size
could be entered as covariates to avoid sample size difficulties, although
it is then necessary to define a linear or generalized linear mode! between
these effects and say effective strip width or encounter rate, and con-
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founding between say Beaufort and geographic location, and hence
between Beaufort and whale density, is inevitable. For analysing minke
whale data, Gunnlaugsson and Sigurjonsson (1990) used generalized
linear modelling to estimate sighting efficiency in different Beaufort
states during NASS-87. This approach also has shortcomings when
Beaufort varies strongly with geographic location, if whale density also
varies geographically. For example, encounter rate may be lower in high
Beaufort simply because a disproportionate amount of rough weather
encountered by survey vessels was in an area with low animal density.
Geographic stratification reduces but does not eliminate this effect. The
problem of estimating fin whale abundance is easier than that of estimat-
ing North Atlantic minke whale abundance since cues are more visible.
We adopt a simpler approach here to determine stratification factors.

To assess say the effect of Beaufort, average school size, encounter
rate and effective strip width were estimated for each Beaufort (0-6) in
turn, pooling across all other possible stratification factors. Standard
errors were calculated for each estimate, and z-tests carried out to assess
whether there are significant differences in estimates at different Beau-
forts. Standard error for school size was calculated as sample standard
deviation divided by square root of sample size; for encounter rate, the
rate per day was calculated, and the sample variance of these rates,
weighted by daily effort, used as described for the empirical method of
Section 3.7.2; and the standard error for effective strip width was
obtained from likelihood methods, via the information matrix. The
stratification factors are confounded with each other, and the above
approach ignores interactions between them; analyses are supplemented
here by knowledge of likely effects of the different factors on the three
components of estimation to determine an appropriate analysis. Thus
results from z-tests are not used blindly; if a pairwise test indicates that
effective strip width is wider at Beaufort 4 than Beaufort 1, it would be
considered spurious, because it is counter to the knowledge that detec-
tion is easier in low Beaufort, whereas if there was a trend towards
narrower effective strip widths as Beaufort increases, stratification would
be deemed necessary.

Suppose mean size of schools detected during Beaufort 0 is 5, , and
during Beaufort 1, 5. Denote their standard errors by §¢(5%) and $¢(5))
respectively. Then a z-test is carried out by calculating

So— 8

TR EY + RG]

The distribution of z is approximately normal. Thus if z > 1.96 or
z < —1.96, the mean school sizes differ significantly at the 5% level
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Fig. 8.9. Geographic blocks for which abundance of the East Greenland/Iceland
stock of fin whales is estimated from Icelandic 1989 data.

(p < 0.05). Evidence against the null hypothesis that the mean school
size is the same in both sea states is strong if p is small, whereas if p
is large, the data are consistent with the null hypothesis.

No significant differences in encounter rates by sea state (Beaufort
0-6) were found (Table 8.7). Mean school size did not differ significantly
for Beauforts 0-3 or for Beauforts 4-6, but there was strong evidence
that the mean of recorded school sizes in Beaufort = 4 is smaller than for
Beaufort 2 or 3. The effective strip width was significantly smaller for
Beaufort 0 than for all other Beauforts except 5, and significantly larger
for Beaufort 1 than for Beauforts 3, 4, 5 or 6 (p < 0.05). No other
differences were significant at the 5% level, although the effective strip
width was significantly smaller at Beaufort 5 than at Beauforts 2, 3 and
6 at the 10% level. The unexpected result for Beaufort 0 corresponds to
a very small sample size (13); otherwise, there is an indication that
effective strip width decreases with Beaufort, which is what we would
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expect. We estimate densities separately by low Beaufort (0-3) and high
Beaufort (4-6), and average resulting estimates across Beaufort ca-
tegories, weighting by effort. This analysis is valid provided the probability
of detection on the centreline, g(0), is unity for both Beaufort categories;
the effective strip width need not be the same for both categories.

A similar analysis of cloud cover produced no significant differences,
except that the encounter rate at cloud cover 3 was significantly higher
than at cloud cover 2 (p = 0.01), probably because relatively more cloud
cover 3 occurred in areas of high fin whale density. If cloud cover 3
did increase detectability, effective strip width might be expected to
increase, yet no pairwise comparisons provided any evidence of this
(p > 0.2 for all six pairwise tests).

Table 8.7 Number of sightings (after truncation but before smearing), effective
strip width, encounter rate and mean school size by sea state, Icelandic fin whale
data, NASS-89. Standard errors in parentheses. Values in the same column with
different superscript letters differ significantly (p < 0.05)

Beaufort Number of Effective strip Encounter rate Mean school
sightings »  width (n.m.) (schools/100 n.m.) size 5
0 13 0.55 (005) 3.08 (1.90)° 1.69 (0. 24)"”
1 42 2.37 (022) 3.47 (0.54)° 1.48 (015)
2 83 2.00 (023) 419 (1.12)° 1.54 (0. 08)
3 78 1.60 (0.20)° 4.13 (0.47)° 1.63 (011)
4 44 1.17 (0.29)° 2.55 (0.38)° 1.25 (0. 10)
5 33 0.49 (0.19)* 2.42 (0.92)° 1.21 (0. 10)
6 18 1.61 (0.19) 2.51 (1.73)° 1.22 (0.14)°

Table 8.8 Number of sightings (after truncation but before smearing), effective
strip width, encounter rate and mean school size by area, Icelandic fin whale
data, NASS-89. Standard errors in parentheses. Blocks 11 (no sightings) and 26
(one sighting) are ignored. Values in the same column with different superscript
letters differ significantly ( p < 0.05)

Block Number of Effective strip Encounter rate Mean school
sightings n width (n.m.) (schools/100 n.m.) size §
36 54 0.94 (0.51)"’” 4386 (1. 31)“” 1.35 (0.10)%
40 15 1.88 (0. 14) 130 (075  1.13 (0. 14)
50 23 2.07 (0.35)° 2.03 (1. 06)”“’ 1.35 (013)
60 36 1.31 (032)"‘ 326 (1.400%° 136 (010)
70 9 0.68 (018) 1.18 (051)“ 1.11 (012)
88 32 1.68 (044) 2.57 (045) 1.56 (0.13)*¢
93 70 1.87 (018) 16.39 (1.96)° 1.69 (0. 12)
94 66 114 (0.21)% 7.84 (228)‘” 1.53 (0.12)*
95 5 0.75 (0.31)%¢ 024 (0.20)¢ 120 (0.22)%¢
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The geographic blocks defined for Icelandic surveys in 1989 are shown
in Fig. 8.9. Highly significant differences between some blocks in en-
counter rate and mean school size are unsurprising, and we stratify by
block for each of these components of estimation. There are also several
pairwise comparisons between blocks that indicate significant differences
between effective strip widths. Blocks 40, 50 and 93 yield wide estimated
effective strip widths, whereas the estimates for blocks 70 and 95 are
small (Table 8.8). Given adequate sample size, stratification could be
by block, as for encounter rate and mean school size. However, effective
strip width estimation is unreliable for small samples. There were only
nine sightings in block 70 and five in block 95, rendering comparisons
between them and other blocks of little value. Thus just the differences
between block 94 and blocks 40 (p = 0.04), 50 (p=0.03) and 93
(p =0.05) are genuine cause for concern. For estimating effective strip
width, we choose here to stratify the area into two parts: south (blocks
40, 50, 60 and 70) and north, since this also effectively stratifies by
vessel type (below).

Table 8.9 Number of sightings (after truncation but before smearing),
effective strip width, encounter rate and mean school size by vessel,
Icelandic fin whale data, NASS-89. Standard errors in parentheses.
Values in the same column with different superscript letters differ
significantly ( p < 0.05)

Vessel Number of Effective strip  Encounter rate  Mean school

sightings n width (n.m.)  (schools/100 n.m.) size 5
Sk 43 1.09 (0.43)° 1.79 (0.47)° 1.26 (0.08)*
AF 49 1.15 (0.26)° 1.45 (0.21)% 1.31 (0.08)"
Hv8 83 143 (0.33)° 458 (047 143 (0.08)*
Hv9 136 137 (0.17)° 8.02 (246  1.61 (0.08)

The three components of estimation were also considered by vessel
(Table 8.9). Most pairwise comparisons between vessels for encounter
rate were significant, as were many of those for mean school size. These
differences arise largely because vessels operated in different blocks;
there is strong confounding between vessel differences and block dif-
ferences. If vessel differences in encounter rate in particular occurred
because different vessels have different searching efficiencies, significant
differences in effective strip width between vessels might be anticipated,
yet none were close to significance (p > 0.2 in all pairwise tests). Given
the similarity in effective strip widths across vessels, we pool distance
data across vessels prior to analysis. Effective strip widths for the two
research vessels (1.09 n.m. and 1.15 n.m.) were slightly smaller than for
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the whaling vessels (1.43 n.m. and 1.37 n.m.). Although these differences
are not significant, the impact on the analyses of estimating the effective
strip width for research vessels separately from that for whaling vessels
was assessed, and found to be slight. Because all effort in southern
blocks was carried out by research vessels and most effort in the
northern blocks was by whaling vessels, the decision to estimate the
effective strip width separately for the northern and southern blocks,
and to estimate encounter rate and mean school size by individual block,
in effect gives stratification by vessel type.

Effective strip width did not show significant differences by size of
school at the 5% level (Table 8.10), although there was a weak indication
that the effective width was greater for schools of four or more animals
than for single animals ( p = 0.1). Since 68% of sightings were of single
animals, and a further 22% were of pairs, the effect of variation in
detectability due to school size on abundance estimates will be slight.
However, stratification by school size is likely to be more valid and was
adopted. Estimated effective strip width is almost identical for single
animals and for pairs, and very few schools of more than three animals
were detected, so two strata were defined: small schools (one or two
animals) and large schools (three or more). Small sample sizes forced
one modification to the preferred method of analysis: the number of
large schools was too small to allow estimation of effective strip width
separately for high and low Beaufort, so that for large schools only, a
pooled estimate of effective strip width across Beaufort categories was
calculated.

Table 8.10 Number of sightings (after truncation but
before smearing), effective strip width and encounter rate
by school size, Icelandic fin whale data, NASS-89.
Standard errors in parentheses. Values in the same column
with different superscript letters differ significantly

(p < 0.05)

School Number of Effective strip  Encounter rate
size sightings n width (n.m.) (schools/100 n.m.)

1 211 1.27 (0.16° 227 (0.16)°
2 68 125 (0.28° 071 (0.13)°
3 22 1.50 (0.25)°  0.23 (0.05)°
4 8 171 (023  0.09 (0.03)°
>4 2 - -

To assess the impact of the decision to stratify by school size on
estimates, two further analyses were carried out. The first of these
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was exactly as above, except data were not stratified by school size. In
the second, the data were reanalysed with individual animals as the
sighting unit. Thus a school of size three between 0.75 and 1.0 n.m.
perpendicular distance contributes a frequency count of three to that
distance interval (before smearing). This method of analysis is used in
the southern hemisphere minke whale subcommittee of the International
Whaling Commission, so that school size can be estimated as the ratio
of animal density, from this analysis, to school density, estimated
conventionally. We do not recommend this approach in general, al-
though it can be effective, if variances are estimated by robust methods.
When estimates were summed across geographic blocks prior to com-
bining across Beaufort categories, the preferred method of analysis
(stratifying by school size) gave a total estimate of 11054 whales
(8¢ = 1670). Without stratification by school size, the estimate was 11 702
whales (5¢ = 1896). When individual whales were taken as the samp-
ling unit, an estimate of 11758 whales (5¢ =1736) was obtained.
Note that this latter strategy gave a very similar standard error to the
other methods, even though sightings of individual whales were not
independent events, and sample size is thus artificially increased. This
occurs because of the robust method of estimating the variance in
encounter rate, found by calculating the sample variance of the rate per
day, weighted by daily effort, used as described for the empirical method
of Section 3.7.2. Nevertheless, this approach underestimates the variance
in effective strip width, unless it is obtained by resampling methods.

Abundance estimates for the East Greenland/Iceland stock of fin
whales are given by block in Table 8.11. The sum of these estimates
does not equal the corresponding estimate of 11 054 whales given above,
due to the effects of calculating a weighted average of high and low
Beaufort estimates within each block instead of first combining across
blocks. The two estimates would be equal if the proportion of effort at
low Beaufort was the same in every block. Suppose that 50% of effort
occurred at low Beaufort overall, but in a given block, just 5% of effort
occurred at low Beaufort. The method of summing estimates across
blocks before averaging across Beaufort categories would give equal
weight to the low and high Beaufort estimates in this block, whereas
the method of Table 8.11 would give the high Beaufort estimate 19 times
the weight of the low Beaufort estimate. The latter method is more
appropriate, so the final abundance estimate of 10378 whales
(8¢ = 1655) is obtained by weighting the low and high Beaufort estimates
by respective effort in individual blocks.

This example shows that reliable abundance estimates may be obtained
by geographic block even when sample size within a block is very small.
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Table 8.11 Abundance estimates by block, East Greenland/Iceland fin whale
stock, 1989

Number of D (whales/ Size of Abundance
Block  sightings n 10000 n.m.z) 55(13) block (n.m.z) estimate N EE(IQ’)
36 54 270 72 44172 1195 316
40 15 68 39 107 842 735 421
50 23 87 57 99 750 865 569
60 36 158 67 131 458 2071 879
70 9 74 58 88 571 658 517
88 32 129 38 59 848 770 230
93 70 873 220 21761 1900 480
94 66 450 101 46 092 2073 467
95 5 16 14 69 396 111 95
All 323 155 25 668 891 10 378 1655

In two of the blocks of Table 8.11, sample size was under 10, yet analysis
was possible stratifying not only by block but also by school size and
Beaufort category. Of the three components of estimation, only effective
strip width (or equivalently, f(0)) cannot be reliably estimated when
samples are small. If this parameter can be assumed to be constant
across at least some of the stratification categories, small sample size
problems are avoided. The method is far superior to prorating a total
estimate, obtained by pooling data across blocks, between blocks ac-
cording to their respective areas, which requires that density of animals
is uniform across the entire surveyed area. Variance estimation requires
some care, since the individual block estimates are not independent.
Provided the common component ( f(0)) of the respective estimates is
removed when calculating the variance of their sum, then incorporated
in the variance estimate using the delta method for approximating the
variance of a product, as described in Section 3.7.1, valid variance
estimates can be obtained quite simply. For the relatively complex fin
whale analyses, variances are found as follows.
Within a stratum, abundance N is estimated by

< n-f(0)-5-4

N=" 202
2L

with

Gat(n)  Gar /O Gk

n {f(0)}? 3

Vat(N) = N* -

387



ILLUSTRATIVE EXAMPLES

where n = number of sightings within 3 n.m. of the centreline in the
. stratum,
f(0) = estimated probability density of perpendicular distances,
' evaluated at zero,
§ = mean school size,
L = distance covered while on effort,
A = size of the area containing the population of N animals.

For a given block, the above yields independent estimates of £(0), and
hence of animal abundance corresponding to small schools in low
Beaufort Nsm, lo» small schools in high Beaufort ]C’s,,,, i» and large schools
N (unstratified by Beaufort). Then an estimate of abundance for animals
in small schools is obtained by taking an average, weighted by effort
carried out at low Beaufort (L;,) and high (Ly):

A‘, _ Lip- Ngm 1o+ Lp; - Nom, hi
o Lip + Ly

and
L%o ' @'(Nsm, Io) + L%li ’ @'(Nsm, hi)
(Lio + Lp)’

An abundance estimate for the block is then

Vat(Ngy) =

Nbl = Nsm + Nla
with
Vat(Ny) = Vat(Nym) + Vat(N)

Within say the northern blocks, for which f(O) estimates are in
common, total abundance is estimated by

Ny =73 Ny
where summation is over all northern blocks. To estimate the variance

of this estimate, note that Ny may be expressed as

~

Llo : Nsm, lo+ Lhi . Nsm, hi

Nor = Lig + Ly;

+ N]a

- Llo 'f’.:vm, 10(0) . Msm, lo + Lhi . _f:sm, hi(O) : Msm, hi

Llo + Lhi +ﬁa(0) : Mla

= llo ‘f;’m, 10(0) : Msm, ot lhi ‘f;m, hi(o) . Ms 3 hi+ﬁa(0) * Mia
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where
Iy = L
0 =
Lj, + Lp;
Ly
hi=4——7F
Llo + Lhi
M o = Asm, lo * Esm,lo - A
sm, lo 2L

evaluated for that block, and similarly for Msm, s and My,
The component f(0) is common across blocks, whereas the other com-
ponents of the abundance estimate are not. Thus

Ny = fom, 1000) - 3 U0 - Mam, 10] + fom, #0) - 3 Uhi - M, 1l + fia(0) - ¥, Mig

where summation is over blocks. Denote the three terms in this expres-
sion by T; i=1, 2, 3; these three terms are independent. Consider the
final term,

T; = £u(0) - ¥, Mia
This has variance

Gt fuo)y | Z VXM
0y (3 M)

Var(Ty) = T? -

where

Var(ma)  var(si)
: la) | — 2"' evaluated in each block
i, Sla

\{a\r(MIa) = M%a . [
Similarly,

@{fb‘m, 10(0)} + 2 1120 ’ @(Msm, Io)
{fsm, 10(0)}2 {2 o - Msm, Io}2

Van(r) = Tt -

and likewise for Var(7T%)
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n 3
Finally, Vat(Ny) = 3, Var(T})

i=1

If total abundance in the southern blocks is estimated by Ny, it and
its variance are estimated in the same way as.for Ny . Total abundance
over the whole area is then the sum of these estimates, with variance
equal to the sum of the respective variances, since f(0) is estimated
independently in the two areas. Applying the above methods, we obtain
an abundance estimate of 10 378 fin whales, with standard error 1655.
Assuming N is lognormal, the estimated 95% confidence interval for N
is (7607, 14 158) animals (Section 3.7.1).

8.6 Use of tuna vessel observer data to assess trends in
abundance of dolphins

In some circumstances, the scientist has little control over the design of
line transect surveys, so that robust analysis techniques must be used
to cope with potentially biased data. An example is the extensive
database gathered by observers placed on board tuna vessels in the
eastern tropical Pacific. Large tuna, and in particular the yellowfin tuna
(Thunnus albacares), associate with dolphin schools in this region, and
fishermen use speed boats to herd dolphins into large purse-seine nets
to catch the tuna under them. Although most dolphins are released
again, high mortality, largely through entanglement, can occur. To
estimate this mortality, and to assess its impact on dolphin stock size,
the observers record data on many variables, including sighting angles
and distances to detected schools. We use these data for one of the
affected stocks, the northern offshore stock of spotted dolphin (Stenella
attenuata), to illustrate the techniques of Buckland and Anganuzzi
(1988b) and Anganuzzi and Buckland (1989), which attempt to estimate
trends in abundance that are robust to the many biases inherent in
sightings data from fishing vessels. This had been attempted earlier,
notably by Hammond and Laake (1983).

The database comprises hundreds of cruises and thousands of detec-
tions of dolphin schools, which have accumulated annually since 1975.
Thus, the analyst can concentrate on reducing the effects of biases in
the data, to yield smoother trends in relative abundance estimates, at
the expense of precision.

Equation 3.4 gave the general formula for estimating animal density from
line transect data. For tuna vessel dolphin sightings data, the constant
¢ =1, and g, may be assumed to be unity, since school sizes are large and
the sighting cue is continuous. Thus density may be expressed as

390



USE OF TUNA VESSEL OBSERVER DATA

_E® - f(0) - EGs)
2L

D

If the stock area is of size A4, the stock size may be expressed as

_Em

N
L

O E® -4 (8.1)

The first term in this expression is the encounter rate, the second term
is the density function evaluated at zero, which is the reciprocal of the
effective strip width, the third term is the true mean school size for the
stock, and the remainder is a known constant. Thus there are three
components to estimate. Because tuna vessel search effort is concen-
trated where captains expect to catch tuna, correction is required to
adjust for search effort. Since the methods described here are to monitor
changes in abundance, absolute abundance estimates are not required,
but we must assume that bias in the relative abundance estimates is
consistent between years, i.e. percentage relative bias should be constant.
However, in a year of abundance of yellowfin tuna, effort is concen-
trated on dolphin schools, whereas in a year of scarcity, it becomes
more economic to catch tuna too small to associate with dolphins. Thus
if search effort is not corrected for, we cannot expect bias to be
consistent. We correct for search effort in the following way.

Suppose for a random point in the ocean we can estimate the expec-
tation of each of the three components, encounter rate, f(0) and school
size. Then their product, multiplied by the stock area divided by two,
provides an estimate of abundance. The estimates need not be inde-
pendent, provided variance estimation allows for correlation. We can
therefore reduce the estimation problem to three simpler problems, each
comprising a single parameter. Note that it is the expectation of each
component for a random point in the ocean that is required. Thus an
estimate of the true mean school size of the stock is inappropriate, since
in areas of high school density, average school size may also be high.
Such estimation would not be problematic if each component showed
very little variation through the stock area. In practice variation is large,
but if strata are defined such that the variation in a component within
each stratum is small relative to variation between strata, the component
can be estimated within each stratum, and averaged across strata,
weighting by the area of each stratum. A method of stratifying the area
is therefore required. The stratification can be different for each com-
ponent. (Another option is to stratify by search effort, and estimate all
three components from this single stratification. However, the low effort
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stratum proves to be very heterogeneous, and typically contains a high
proportion of the stock, and the method lacks robustness.)

The stock area is post-stratified using the tuna vessel data. For each
component, a variable that correlates well with that component must be
identified. We use crude encounter rate, average school size and average
sighting distance, calculated by degree square, as variables that should
correlate well with encounter rate, school size and JS(0) (or effective strip
width, 1/£(0)). If these values are used unsmoothed, post-stratification leads
to substantial bias, and no estimates are available for degree squares in
which there was no effort. It is therefore necessary to use a smoothing
routine on each of these variables. This implicitly assumes that each
component of Equation 8.1 varies smoothly throughout the stock area.
For a given component, the smoothed values for each degree square are
ordered from smallest to largest, the number of strata is determined as a
function of sample size, and the ordered list divided so that the sample
size in each stratum is as equal as possible. The relevant component is then
estimated within each stratum, and an average of the stratum estimates,
weighted for stratum areas, is calculated. Strata are then determined for
the next component, and the process is repeated. Once all component
estimates are calculated, they are combined using Equation 8.1. To estimate
f(0) within each stratum, the hazard-rate model was assumed, and data
were truncated at five nautical miles.

Criteria were set up and data failing to meet them were discarded.
Many complete cruises and substantial parts of many more were deleted
in this way, to reduce sensitivity of the methods to bias. Full details are
given by Buckland and Anganuzzi (1988) and by Anganuzzi and Buck-
land (1989). The bootstrap was used to generate robust precision esti-
mates. The bootstrapping unit was taken to be a cruise, to take account
of variation between different observers, crews and vessels, while main-
taining a fair degree of independence between units. Estimates for
1975-89 for the northern offshore stock of spotted dolphins, taken from
Anganuzzi and Buckland (1989) and Anganuzzi et al. (1991), are given
in Table 8.12.

Buckland et al. (1992a) estimated the underlying trends in dolphin
abundance by smoothing the estimates of Table 8.12. They considered
various smoothing methods such as moving averages, running medians
and polynomial regression. Their chosen method was a compound
running median known as 4253H, twice (Velleman and Hoaglin 1981).

Suppose that {X(#)}, =1, ..., N, is a time series of length N, and let
{Si(n} be a smoothed version of it, found by calculating an i-period
running median. We can construct compound smoothing methods such
as {S;(#)}, which is simply {S;(Si(¢))}. Thus, a 4253 running median
method smooths a time series using a 4-period running median, which
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Table 8.12 Estimates of relative abundance and related parameters
for the northern offshore stock of spotted dolphin. [] indicate that
the 1977 estimate was used. Bootstrap standard errors (estimated from
B =179 replicates) are given in parentheses n = number of sightings
after deletion and truncation; i = 1/£(0) (nautical miles); n/L =
estimated encounter rate (schools/1000 n.m.); E(s) = estlmated
average school size for a random point in the stock area; Ny =
estimated number of schools in stock (thousands); Nd—estlmated
number of dolphins in stock (millions)

~

Year n 1) n/L f?(s) Ns 1\701
1975 761 [2.74] 9.00 634 6.23 395
(0.30) (1.28) (71) (1.14) (1.00)
1976 876 [2.74] 7.40 830 5.13 425
(0.30) (0.92) 92) (0.88) 0.91)
1977 1700 2.74 6.46 855 448 3.83
(0.30) (0.52) (73) (0.69) (0.75)
1978 720 2.65 6.58 680 4.72 3.21
(0.23) (0.53) (69) (0.55) (0.54)
1979 516 2.36 7.03 521 5.66 2.95
(0.32) 0.67) (54) (0.92) (0.56)
1980 1460 2.37 6.36 654 5.10 3.34
(0.28) 0.39) (80) (0.71) (0.58)
1981 1593 2.62 6.39 547 4.63 2.54
0.24) 0.37) (44) (0.56) (0.44)
1982 1383 2.37 6.32 503 5.07 2.55
0.57) (0.39) (54) (1.34) (0.56)
1983 731 2.92 5.94 316 3.86 1.22
0.37) (0.64) (44) (0.53) (0.25)
1984 636 3.19 8.81 411 5.25 2.16
(0.34) (0.78) (51) (0.74) (0.36)
1985 1976 2.78 8.96 471 6.12 2.88
(0.18) (0.63) 41) (0.56) (0.35)
1986 2197 2.76 9.11 504 6.28 3.16
.17 - (0.41) (30) (0.50) (0.30)
1987 3529 2.85 8.82 502 5.89 2.95
(0.13) 0.41) (36) (0.42) (0.29)
1988 2259 3.15 8.10 550 4.89 2.69
(0.16) (0.62) (35) (0.45) 0.33)
1989 3569 342 8.39 624 4.66 291

(0.18) (0.30) (40) (0.32) (0.28)

is in turn smoothed by a 2-period running median, smoothed again by
a 5-period running median, and then by a 3-period running median (i.e.
{Sa2s3()} = {S3(S5(52(S4(1)))}). Near the endpoints, where there are not
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enough values surrounding a point to be smoothed using the specified
running median, a shorter period running median may be used. The
endpoints of the resultant time series are calculated by estimating
X(0) and X(N + 1), the ‘observed’ values at t =0 and t = N + 1, and then
calculating

Sas3(1) = median {X’(O), X(1), Sis3(2)}

and Sesy(N) = median {Sus(N — 1), X(N), X(N + 1)}

X(0) is found by extrapolating from the straight line which passes
through the smoothed values at t=2 and =3, ie. X(0)=
3 - S4253(2) — 2 Sar53(3); similarly,

X(N+1)=3 Sps(N = 1) =2 - Siss(N - 2)

The H in 4253H, twice denotes a linear smoothing method commonly
used with running medians, which is known as Hanning. It is a 3-period
weighted moving average for t=2,..., N - 1, with weights {0.25, 0.5,
0.25}. The endpoints remain unchanged.

The pattern of the time series may be recovered be calculating the
residuals of the series (i.e. the differences between the smoothed and
unsmoothed estimates), smoothing the residual series by the same
method as the time series was smoothed by, and then adding
the smoothed values of the residuals to the smoothed values of
the series. This is known as smoothing ‘twice’. For example, if we
define the residuals of the time series smoothed by 4253H to be
{E@®)} = {X(t) — Sps3(f)}, then the values of the times series smoothed
by 4253H, twice can be defined by

{Sa2s3n, twice(D} = {Sazs3u(?) + Sessu(E))}

Thus, the 4253H, twice running median method uses a 4253 running
median to smooth the time series, estimates the endpoints of the
smoothed series and then smooths the resultant series by Hanning. The
residuals of the series are calculated and are also smoothed, using the
same method as above. The smoothed values of the residuals are then
added to the smoothed values of the time series to produce a time series
smoothed by 4253H, twice. The advantage of using running medians is
that the magnitude of an extreme estimate does not affect the resultant
smoothed time series.

To assess changes in abundance over time, the bootstrap was again
used, and 85% confidence intervals for relative abundance in each year
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Fig. 8.10. Smoothed trends in abundance of the northern offshore stock of
spotted dolphin. The broken lines indicate approximate 85% confidence limits.
The horizontal lines correspond to 85% confidence limits for the 1988 estimate.
If these limits both lie above the upper limit for an earlier year, abundance has
increased significantly between that year and 1988 ( p < 0.05); if the limits both
lie below the lower limit for an earlier year, abundance has decreased signifi-
cantly.

were estimated using the percentile method. The rationale for the choice
of confidence level is that if two 85% confidence intervals do not
overlap, the difference between the corresponding relative abundance
estimates is significant at roughly the 5% level ( p < 0.05), whereas if
they do, the difference is not significant (p > 0.05). One bootstrap
replication was carried out for each year, and the bootstrap estimates
were smoothed using the running median routine. This process was
repeated 79 times, and for each year, the sixth smallest and sixth largest
smoothed estimates were taken as approximate 85% confidence limits.
The median of the smoothed bootstrap estimates (i.e. the 40th estimate
of each ordered set of 79) was used as the ‘best’ estimate of trend. Figure
8.10 shows the estimates of underlying trend for the northern offshore
stock of spotted dolphins. The broken horizontal lines correspond to the
upper and lower 85% confidence limits for the 1988 relative abundance
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estimate. Years for which the entire confidence interval lies outside the
region between the broken horizontal lines show a significantly different
relative abundance from that for 1988. The estimated trend is down-
wards until around 1983. Estimated abundance in 1976 was significantly
higher than in 1988 (p < 0.05), but there is some evidence of a recovery
between 1983 and 1988 (p =0.05. Thus northern offshore spotted
dolphins appeared to decrease through the 1970s and early 1980s, with
numbers remaining stable or increasing since.

8.7 House wren densities in South Platte River bottomland

We use data on house wrens (Troglodytes aedon) to illustrate model
selection. The data were collected from 155 points, with between 14 and
16 points in each of ten 16 ha study blocks. The blocks were established
in riparian vegetation along 30 km of South Platte River bottomland near
Crook, Colorado. The study was described by Knopf (1986) and Sedgwick
and Knopf (1987). The house wren was the most frequently recorded bird,
and sample sizes were sufficient to allow estimation by block as well as
across blocks. Thus, the option to stratify can also be examined.

The following models were tried: Fourier series (uniform key and up
to four cosine adjustments); Hermite polynomial (half-normal key and
up to four Hermite polynomial adjustments); half-normal and up to four
cosine adjustments; and hazard-rate with at most two simple polynomial
adjustments. Terms were tested for inclusion using the likelihood ratio
test with a p-value of 0.05 and DISTANCE option LOOKAHEAD set
to two. Intervals for goodness of fit tests were set at 0.0, 7.5, 12.5, 17.5,
22.5, 27.5, 32.5, 42.5, 62.5 and 92.5m. The largest detection distances
were at 90 m. To assess the impact of truncation, the last two intervals
were discarded. Thus, the truncation point was 42.5 m, corresponding
to 10% truncation of observations. The intervals were chosen to avoid
possible favoured rounding distances, such as 10 m or 25 m. We recom-
mend that goodness of fit is not used for model selection, but if it is,
we recommend strongly that intervals are set using the option GOF
within the ESTIMATE procedure of DISTANCE. The default intervals
used by DISTANCE do not take account of rounding to favoured
values, and may frequently give spurious significant test statistics.

A summary of results is given in Table 8.13. Note that the log-likeli-
hood and the Akaike Information Criterion (AIC) are of no use ‘for
determining whether data should be truncated; values for different
models are only comparable if the same truncation point is selected.
Density estimates from untruncated data in Table 8.13 are mostly
smaller and more precise than those from truncated data. They are
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probably also more biased given that fits to the untruncated data are
less good. The exception is the Hermite polynomial model, which
provides the best of the four fits to the untruncated data, and the worst
fit to the truncated data. The Fourier series and hazard-rate models
perform particularly poorly on the untruncated data. The Fourier series
model is not robust to poor choice of truncation point for both line
and point transects, whereas the hazard-rate model appears to be robust
when data are untruncated for line transects but not for point transects
(Buckland 1985, 1987a). The fit of all but the Hermite polynomial model
is improved by truncation, and density estimates are more similar under
different models for truncated data. We therefore select the model that
gives the largest log-likelihood and the smallest AIC value when applied
to truncated data for further analyses. This model is the hazard-rate
with simple polynomial adjustments.

Table 8.13 Summary of results from fitting different models to house wren data.
FS = Fourier series model (uniform key and cosine adjustments); HP = Hermite
polynomial model (half-normal key and Hermite polynomial adjustments);
HC = half normal key and cosine adjustments; Hz = hazard-rate key and simple
polynomial adjustments. The truncation distance of w = 92.5 m is larger than the
largest recorded distance, so no data are truncated, and the value w =42.5m
corresponds to truncation of 10% of detection distances

Model  Number of Log- x2 p-value AIC D Log-based 95%
adjustments likelihood statistic (df) confidence interval

Data untruncated (w = 92.5m)

FS 4 -33127 188 (3) <0.001 6633.4 6.72 (5.95, 7.58)

HP 3 -33084 108 4) 0.03 6624.8 8.28 (6.98, 9.82)

HC 3 -33084 10.7 @) 0.03 6629.9 8.47 (7.24, 9.91)

Hz 1 -3329.7 393 (4) <0.001 66655 6.05 (5.28, 6.93)

Data truncated at w =42.5m

FS 3 —-2760.0 70 (3) 0.07 55260 9.05 (7.48, 10.95)
HP 1 -27620 121 4 0.02 5528.0 7.84 6.77, 9.07)
HC 1 - 2760.4 7.6 (4) 0.11 55248 9.01 (7.43, 10.92)
Hz 1 - 2758.9 7.1 3 0.07 5523.8 8.14 (6.44, 10.30)

Estimates stratified by block and by observer are shown in Table 8.14.
Goodness of fit tests indicate that fits to eight of the ten blocks are
very good, although the data from blocks 0 and 6 are less well modelled.
The effective detection radius is high for blocks 0 and 5, but is similar
for all other blocks, at around 20 m. Densities vary appreciably between
blocks. The final abundance estimate from the analysis stratified by
block is very similar to that obtained from an unstratified analysis
(Table 8.13, last row). The confidence interval is rather wider, reflecting
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Table 8.14 Analyses of house wren data using the hazard-rate model with
truncation at 42.5m. Standard errors are given in parentheses; confidence
intervals were calculated assuming a log-normal distribution for D, and the
Satterthwaite correction was not applied. *Estimated density found as the
average of the block estimates; the corresponding standard error is found as
(square root of the sum of squared standard errors for each block) divided by
the number of blocks

Observer Block Effective Encounter Estimated Log-based Goodness
detection rate wk  density 95% confidence of fit test

radius p interval p-value
All 0 304 0.64 2.21 (1.41, 347 0.01
(1.3) 0.14)  (0.52)
All 1 21.0 1.88 13.60 (7.28, 2541 0.42
(3.2) 024)  (4.45)
All 2 22.7 2.17 13.35 (8.81, 20.24) 0.52
2.1 (0.24) (2.87)
All 3 19.1 1.05 9.10 (1.52, 54.46) 0.46
(10.8) (0.14)  (10.40)
All 4 20.4 1.71 13.05 (7.89, 21.61) 0.35
2.2) 025  (3.41)
All 5 31.1 1.20 3.96 (2.64, 5.94) 0.39
(1.9) 0.20)  (0.83)
All 6 23.5 1.22 7.00 (4.66, 10.51) 0.01
(2.0) (0.15) (1.47)
All 7 234 1.15 6.70 (2.86, 15.72) 0.35
(5.1) 0.16)  (3.06)
All 8 23.5 1.16 6.69 (3.98, 11.25) 0.97
2.7) 0.17) (1.80)
All 9 19.3 1.38 11.76 (4.44, 31.15) 0.31
4.9) (0.22) (6.22)
All All 8.38*  (5.94, 11.83)
(1.48)
1 All 21.8 1.26 8.44 (5.28, 1349) <0.001
(2.6) 0.08)  (2.05)
2 All 18.8 1.06 9.56 (6.42, 14.24) 0.84
(1.8) (0.08) (1.96)
3 All 19.7 1.12 9.16 (6.43, 13.07) 0.15
(1.6) 0.09)  (1.67)
4 All 33.0 1.40 4.11 (3.19, 5.30) 0.27
(1.8) 0.10)  (0.53)
2 and 3 All 19.3 1.09 9.30 (7.10, 12.18) 0.31
(1.2) 0.07)  (1.28)
1-3 All 20.1 1.15 9.06 (6.96, 11.79) < 0.001
(1.3) 0.06)  (1.22)
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the larger number of parameters that have been estimated. There seems
little advantage here to stratification, unless estimates are required by
block; this is likely to be true generally when effort per unit area, is the
same in all strata.

Of more interest is the stratification by observer. Data from observers
1, 2 and 3 vyield remarkably similar estimates. However, the first
observer’s data are modelled poorly. Inspection of the data and output
from DISTANCE shows that observer 1 preferentially rounded distances
around, or rather over, 10 m to exactly 10 m, and distances between 25 m
and 40 m were predominantly recorded as, or close to,- 30 m. Such
rounding generally generates little bias, but intervals for goodness of fit
testing need to be widened and reduced in number to obtain a reliable
test when it is present. More serious is the apparent bias in the data of
observer 4. The number of detections per point is rather greater than
for the other observers, which is consistent with the higher effective
detection radius, yet density is estimated to be well under half of that
estimated from the data of each of the other observers. It is possible
that observer 4 concentrated on detecting birds at greater distances, at
the expense of missing many birds close to the point. More likely
perhaps is that the effective detection radius was similar to that for the
other observers, but that distances were overestimated by observer 4 by
roughly 50%. This would be sufficient to explain the large difference in
density estimates between observer 4 and the others. Whatever the cause,
it seems clear that the data for observer 4 should be viewed with
suspicion, whereas those for observers 2 and 3 appear to be most
reliable. Our preferred analyses for these data use the hazard-rate model
with up to two simple polynomial adjustments and truncation at 42.5
m, are unstratified by block, and discard data from observer 4. If there
is concern about the poor fit of this model, the data of observer 1 should
also be deleted. The resulting estimates with and without the data of
observer 1 are shown in Table 8.14.

We have shown that poor model fits can be improved by truncating
data. We now use the untruncated data to illustrate other strategies for
improving the fit of a model. Other than truncation, the user of
DISTANCE has several options. First, the analyst has control over how
many adjustment terms are tested before DISTANCE concludes that no
significant improvement in the fit has been obtained. It is not uncommon
that a single adjustment term does not improve the fit of a model
significantly, whereas the combined effect of it and a further term does
yield a significant improvement. If LOOKAHEAD is set equal to one,
the better model will not be found, whereas LOOKAHEAD =2 will
allow DISTANCE to select it, at the expense of slower run times.
Second, the user can change the method by which DISTANCE selects
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models using SELECT. For SELECT = sequential (the default), it fits
the lowest order term first, then adds successively higher order terms
sequentially. If SELECT = forward is specified, DISTANCE will test for
inclusion of each term not yet in the model. If the term that gives the
largest increase in the value of the likelihood yields a significant im-
provement in the fit, it is included, and DISTANCE tests for inclusion
of another term. This is analogous to a forward stepwise procedure in
multiple regression. SELECT = all allows all possible combinations of
adjustment terms to be tested, and that giving the minimum Akaike
Information Criterion value is selected. Third, the key function (half-
normal, hazard-rate, uniform or negative exponential) may be changed,
and fourth, a different type of adjustment term (simple or Hermite poly-
nomial, or cosine) can be selected. The combinations of these options
that were applied to the house wren data are listed in Table 8.15. The

Table 8.15 Models and model options used for fitting house wren data.
Distance data were pooled across observers and blocks, and were untruncated
(w=92.5m)

Model LOOK- Selection Key Adjustment
AHEAD method function terms
1 1 Sequential Hazard-rate Cosine
2 2 Sequential Hazard-rate Cosine
3 1 Forward Hazard-rate Cosine
4 ~ All Hazard-rate Cosine
5 1 Sequential Hazard-rate Simple polynomial
6 2 Sequential Hazard-rate Simple polynomial
7 1 Forward Hazard-rate Simple polynomial
8 - All Hazard-rate Simple polynomial
9 1 Sequential Uniform Cosine
10 2 Sequential Uniform Cosine
11 1 Forward Uniform Cosine
12 - All Uniform Cosine
13 1 Sequential Uniform Simple polynomial
14 2 Sequential Uniform Simple polynomial
15 1 Forward Uniform Simple polynomial
16 - All Uniform Simple polynomial
17 1 Sequential Half-normal  Cosine
18 2 Sequential Half-normal  Cosine
19 1 Forward Half-normal  Cosine
20 - All Half-normal  Cosine
21 1 Sequential Half-normal ~ Hermite polynomial
22 2 Sequential Half-normal =~ Hermite polynomial
23 1 Forward Half-normal =~ Hermite polynomial
24 - All Half-normal = Hermite polynomial
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user may also specify the p-value for selecting between fits in likelihood
ratio tests. For the runs considered in this example, only PVALUE =
0.05 was used, but if this tended to fit too few terms, a larger. value
(e.g. 0.15) might be preferred.

Table 8.16 Summary of results from fitting different models to house wren data.
The models are defined in Table 8.15

2

Model Number of Log- X (df) p-value AIC D Log-based 95%
adjustments likelihood confidence interval

1 0 -3337.1 61.2 (6) <0.001 6678.3 556 (4.89, 6.32)

2 3 - 3305.9 82 (3) 0.04 66219 8.58 (7.33, 10.03)

3 and 4 1 - 3306.7 94 (5 0.10 6619.3 8.74 (7.48, 10.22)
5and 6 2 -3321.4 30.1 (4) <0.001 66508 6.72 (579, 17.79)
7 and 8 3 -3309.8 157 (3) 0.001 6629.9 7.51 (6.31, 8.93)
9 3 -33320 599 (5 <0001 6670.0 528 (4.75, *5.88)
10-12 5 —-3308.1 13.2 (3) 0.004 66263 7.46 (6.52, 8.54)
13 3 -3529.3 5011 (5) <0.001 7064.6 2.65 (2.34, 3.00)

14 5 -3510.3 3062 (3) <0.001 7030.7 3.24 (2.93, 3.58)

15 3 -3582.8 5159 (5 <0.001 7171.5 2.56 (2.32, 2.82)

16 4 —-3456.8 2715 (4) <0.001 6921.7 3.39 (3.00, 3.82)

17 and 18 1 -3313.0 138 (6) 0.03 6630.1 7.33 (6.48, 8.30)
19 2 -33104 112 (5) 0.05 6626.7 8.38 (7.13, 9.84)

20 3 -3308.6 108 (4 0.03 6625.2 8.47 (7.24, 9.92)

21 and 23 0 -33273 396 (7) <0.001 6658.5 6.16 (5.51, 6.89)
22 and 24 2 -33128 139 (5) 002 6631.7 7.33 (6.39, 8.40)

The results of Table 8.16 indicate a clear ‘winner’ among the models.
The hazard-rate model with cosine adjustments and using selection
methods forward and all both lead to a hazard-rate model with a single
cosine adjustment of order 4. Only this model yields a goodness of fit
statistic that is not significant at the 5% level, and its Akaike Informa-
tion Criterion value is 2.6 lower than the next best model. The density
estimate is rather higher than that obtained from the favoured model
on truncated data from above. Figure 8.11 shows that the fitted detec-
tion function has only a very narrow shoulder. For these data, use of
cosine adjustment terms leads generally to a narrow shoulder, whereas
polynomial adjustments to the hazard-rate model tend to preserve a
wider shoulder. In Fig. 8.12, the fitted detection function obtained by
making simple polynomial adjustments to the hazard-rate key, together
with selection option forward or all, is shown. Although this model fits
the data less well, its wider shoulder may be a better reflection of reality.
It yields a density estimate rather lower than that from the favoured
method for truncated data from above.
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8.8 Songbird surveys in Arapaho National Wildlife Refuge

For this example, we use data supplied by F.L. Knopf from extensive
songbird surveys of parts of the Arapaho National Wildlife Refuge.
Colorado (Knopf et al. 1988). We consider counts carried out in June
of 1980 and 1981, and analyse the six most numerous species, namely
the yellow warbler (Dendroica petechia), brown-headed cowbird (Molo-
thrus ater), savannah sparrow (Passerculus sandwichensis). song sparrow
(Melospiza melodia), red-winged blackbird (Agelaius phoeniceus: and
American robin (Turdus migratorius). In 1980, three pastures, labelled
Pastures 1, 2 and 3, were surveyed bt one visit to each of 124, 126 and
123 points respectively. In 1981, four pastures, 0, 1, 2 and 3, were
surveyed during one visit to each of 100 points per pasture. All birds
detected within 100 m of the point were noted and their ocations were
flagged. so that their distances could be measured to the nearest 10 cm.
Although pastures varied in size, for the purposes of illustration, we
assume that each was the same size
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Fig. 8.11. The detection function obtained by fitting the hazard-rate key with
cosine adjustments to untruncated house wren data.
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Fig. 8.12. The detection function obtained by fitting the hazard-rate key with
simple polynomial adjustments to untruncated house wren data.

Analyses were carried out adopting the half-normal key with cosine
adjustments. This model combines the key of the Hermite polynomial
model with the adjustments of the Fourier series model. It is computa-
tionally more efficient than the former model, and uses a more plausible
key function than the latter. For yellow warbler. savannah sparrow and
song sparrow, some fits were found to be poor. so the detection
distances were truncated at 52.5 m. Other analyses are untruncated. The
variance of the number of detections was found using the empirical
option within DISTANCE.

Yellow warbler analyses are summarized in Table 8.17. Separate
estimates were obtained by stratum (pasture). In all, 205 detections were
made in 1980 and 342 in 1981. Analyses of the brown-headed cowbird
counts (Table 8.18) are less straightforward. First. count frequencies by
distance from the point were highly variable in some pastures. Examina-
tion of the data showed that this was caused by detections of groups
of birds. If more than one bird was recorded at exactly the same distance
from the same point. we assume here that the birds comprised a single
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flock (cluster). In the analyses of Table 8.18, the option OBJECT =
cluster was selected. For the first analyses, detection distance data were
pooled across pastures, and a single set of estimates per year determined.
The second set of analyses are by pasture. The estimates of h(0) (or
equivalently, of the effective radius of detection p) are imprecise,
because the number of detections (as distinct from individual birds) per
pasture was low, ranging from 21 (Pasture 1, 1980) to 50 (Pasture 3,
1980). Potentially more serious, bias may be high, as there is little
information from which to select an appropriate model when sample
size is small. Indeed, the effective radii for 1981 (Table 8.18) indicate
appreciably more variability between pastures than can be explained by
the standard errors. Either detectability of brown-headed cowbirds
varied substantially between pastures or sample size was inadequate at
least in some pastures for estimating the effective detection radius with
low bias. If the latter explanation is more likely, then pasture estimates
with higher precision and lower bias may be obtained by estimating the

Table 8.17 Analyses of yellow warbler point transect data, Arapaho National
Wildlife Refuge. Standard errors are given in parentheses. Estimated density for
category ‘all’ is found as the average of the pasture estimates; the corresponding
standard error is found as (square root of the sum of squared standard errors
for each pasture) divided by the number of pastures

Year Pasture Effective Encounter Estimated Log-based Goodness
detection rate n/k density 95% confidence of fit test

radius p interval p-value
1980 1 26.2 0.73 3.40 (1.97, 5.87) 0.67
3.5 (0.06) 0.97)
2 27.1 0.45 1.96 (1.38, 2.79) 0.42
(1.7) (0.06) (0.36)
3 17.0 0.37 4.02 (2.42, 6.67) 0.80
(1.6) (0.07) (1.06)
All 312 (230, 4.23)
(0.49)
1981 0 17.7 0.71 7.18 (4.87, 10.58) 0.60
(1.4) (0.09) (1.44)
1 20.8 0.98 7.22 (4.52, 11.54) 0.07
(2.4) (0.08) (1.75)
2 26.0 0.69 325 (236, 447) 013
(1.5) (0.08) (0.53)
3 16.4 0.62 7.34 (5.03, 10.71) 0.19
(1.2) (0.08) (1.43)
All 6.25 (5.05, 7.74)
(0.68)
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effective radius from data pooled across pastures (first section of Table
8.18), and estimating other parameters individually by pasture (second
section of Table 8.18). This assumes that detectability does not vary
with pasture, and utilizes the fact that average cluster size and expected

Table 8.18 Analyses of brown-headed cowbird point transect data, Arapaho
National Wildlife Refuge. The first set of results was obtained by carrying out
an unstratified analysis, the second set by stratifying by pasture, the third set
by estimating 4(0) from unstratified distance data and other components separ-
ately by pasture, the fourth set by stratifying by cluster size, and the fifth set
by correcting for size bias in mean cluster size. Standard errors are given in
parentheses

Year Pasture Effective Encounter Mean Estimated  Log-based Goodness

detection rate cluster density  95% confidence of fit test
radius p  n/k size s interval p-value
Unstratified
1980 All 38.2 0.26 1.72 0.99 0.73, 1.35) 0.44
2.0)  (0.03) 0.11) (0.16)
1981 All 348 0.35 1.73 1.59 (1.18, 2.13) 0.44

(1.9)  (0.03) 0.11) (0.24)
Stratified by pasture

1980 1 36.6 0.17 1.71 0.69 (0.34, 1.41) 0.46
(5.0 (0.04) 0.21) (0.26)
2 38.7 0.21 2.04 0.93 (0.50, 1.70) 0.60
42) (0.04) (0.28) (0.29)
3 38.5 0.41 1.56 1.36 (0.92, 2.02) 0.55
2.5) (0.06) 0.12) (0.28)
All 0.99 0.72, 1.36)
(0.16)
1981 0 25.5 0.28 1.39 1.91 (1.03, 3.54) 0.23
3.2) (0.05) 0.14) (0.62)
1 56.9 0.33 2.03 0.66 (0.38, 1.14) 0.59
5.1) (0.06) 0.26) (0.19)
2 42.1 0.42 1.76 1.33 (0.86, 2.06) 0.44
2.8) (0.06) 0.18) (0.30)
3 249 0.36 1.69 312 (1.64, 5.94) 0.66
3.4) (0.05) 0.25) (1.05)
All 1.75 (1.23, 2.49)
: (0.32)
Stratified by pasture, except for A(0)
1980 1 0.63 0.39, 1.13)
0.18)
2 0.95 (0.61, 1.59)
(0.24)
3 1.39 0.97, 2.00)
(0.26)
All 0.99 0.73, 1.35)
(0.16)
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Table 8.18 (Contd.)

Year Pasture Effective Encounter Mean Estimated  Log-based Goodness

detection rate cluster density 95% confidence of fit test
radius p nlk size s interval p-value
1981 0 1.03 (0.67, 1.68)
(0.25)
1 1.76 (1.11, 2.90)
(0.44)
2 1.95 (1.28, 2.98)
(0.43)
3 1.61 (1.07, 2.63)
(0.38)
All 1.59 (1.18, 2.13)
0.24)

Stratified by cluster size
Single birds

1980 All 36.5 0.16 1.00 0.37 (0.25, 0.56) 0.07
(2.9) (0.02) (0.08)
1981 All 32.5 0.22 1.00 0.65 (0.47, 0.90) 0.19
2.1 0.02) 0.11)
Clusters (= two birds)
1980 All 40.5 0.11 2.78 0.58 (0.37, 0.89) 0.49
3.0) (0.02) (0.15) (0.13)
1981 All 39.4 0.13 2.92 0.80 (0.48, 1.32) 0.30
4.3) (0.02) (0.20) 0.21)
All birds
1980 All 0.95 (0.70, 1.29)
(0.15)
1981 All 1.44 (1.05, 1.97)
(0.23)
Mean cluster size corrected for size bias
1980 All 38.2 0.26 1.68 0.97 (0.71, 1.33) 0.44
(2.0) (0.03) (0.10) (0.16)
1981 All 34.8 0.35 1.49 1.36 (1.02, 1.81) 0.44

(1.9)  (0.03) 0.07) (0.20)

number of detections can be estimated with low bias from small samples,
whereas the effective radius often cannot. The approach is described in
Section 3.8. Note that care must be taken when estimating variances.
The third section of Table 8.18 shows the estimates obtained from the
above approach, assuming the pastures were equal in area. Note how
much some of the pasture estimates differ from those found by estimat-
ing the effective radius of detection within each pasture. Note also that
the estimates for all pastures combined are the same as those for which
all data were pooled (first section of Table 8.18). If exactly the same
effort (points per unit area) is expended in each stratum, the two
methods are equivalent. However, the current method (1) allows separate
estimates by stratum, (2) is still valid if effort differs by stratum, and
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(3) is preferable to the fully stratified analysis if sample sizes are too
small to estimate effective detection radii reliably by stratum, although
it assumes that detectability does not vary across strata.

The fourth section of Table 8.18 shows another method of analysing
these data. In this case, data were stratified by cluster size (Quinn 1979,
1985). Detections were divided into two categories: single birds and at
least two birds. The results suggest that clusters are more detectable
than single birds, although the overall estimates of density differ very
little from those obtained above.

The final section of Table 8.18 shows adjusted mean cluster size,
estimated by regressing logarithm of cluster size on probability of detection,
and from this regression, estimating mean cluster size when probability
of detection is one. For each cluster, its probability of detection was
estimated by substituting its detection distance into the fitted detection
function from the analyses of the first section of Table 8.18. The
correlation between log cluster size and detection probability was not
significant for 1980 (r =- 0.022,df =96, p > 0.1), and estimation was
barely affected. For 1981, the correlation was significant (r = — 0.193,
df =137, p < 0.05), and estimated cluster size was reduced (1.49 birds
per cluster, compared with 1.73 birds per cluster for the detected clusters).

Table 8.19 Analyses of savannah sparrow point transect data, Arapaho National
Wildlife Refuge. Standard errors are given in parentheses

Year Pasture Effective Encounter Estimated Log-based Goodness
detection rate n/k  density 95% confidence of fit test

radius p interval p-value
1980 1 334 0.48 1.36 (0.89, 2.06) 0.02
(2.6) (0.07) (0.29)
2 27.1 0.95 4.12 (3.14, 5.40) 0.17
(1.3) (0.10) 0.57)
3 31.2 0.72 2.37 (1.73, 3.26) 0.86
(2.0 (0.07) (0.39)
All 2.62 (2.18, 3.17)
(0.25)
1981 0 27.0 0.31 1.36 (0.80, 2.29) 0.87
2.8) ©0.05)  (0.37)
1 47.0 0.32 0.46 (0.24, 0.89) 0.12
(6.8) 0.06)  (0.16)
2 31.6 0.51 1.63 (1.02, 2.58) 0.96
2.8) ©0.08)  (0.39)
3 34.6 0.48 1.27 0.77, 2.11) 0.66
(3.7 (0.07) (0.33)
All 1.18 (0.90, 1.54)
(0.16)
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The analyses for savannah and song sparrows presented no special
difficulties, and the estimates are given in Tables 8.19 and 8.20, respect-
ively. For red-winged blackbirds (Table 8.21), it was again necessary to
analyse the detections as clusters, although average cluster size was
small, so bias arising from possible greater detectability of groups of
two or more birds would be small. Data were insufficient to stratify,
either by pasture or by cluster size.

The final analyses from this example are of American robin (Table
8.22). Again, sample sizes were too small to stratify, but the data
presented no additional problems. A single cosine adjustment to the

Table 8.20 Analyses of song sparrow point transect data, Arapaho National
Wildlife Refuge. Standard errors are given in parentheses

Year Pasture Effective Encounter Estimated Log-based Goodness
detection rate density 95% confidence of fit test
radius p nlk interval p-value

1980 1 27.0 0.38 1.66 (1.12, 2.45) 0.79

(1.9) (0.05) (0.33)
2 23.7 0.40 2.29 (1.51, 347) 0.56
(1.8) (0.06) (0.49)
3 23.8 0.41 2.34 (1.59, 3.42) 0.04
(1.6) (0.06) (0.46)
All 2.10 (1.66, 2.65)
(0.25)
1981 0 31.5 0.43 1.38 (0.83, 2.30) 0.23
(3.4 (0.06) (0.36)
1 32.1 0.47 1.45 0.94, 2.25) 0.99
(2.8) 0.07) (0.33)
2 24.6 0.39 2.05 (1.26, 3.32) 0.12
(2.5) (0.06) (0.51)
3 23.9 0.29 1.62 (0.98, 2.67) 0.16
(2.2) (0.05) (0.42)
All 1.63 (1.27, 2.08)
0.21)

Table 8.21 Analyses of red-winged blackbird point transect data, Arapaho
National Wildlife Refuge. Standard errors are given in parentheses
Year Pasture Effective Encounter  Mean Estimated Log-based  Goodness
detection rate n/k cluster density  95% confidence of fit test
radius p size 5 interval p-value
1980 All 27.9 0.18 1.29 0.93 (0.63, 1.37) 0.38
(1.6) (0.03) (0.09) (0.19)
1981 All 329 0.17 1.20 0.61 (0.39, 0.97) 0.39
3.2) 0.02) (0.07) (0.14)
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half-normal fit was selected for both the 1980 and the 1981 data. To
show the effects of allowing for estimation of the number of adjustments
required on the confidence interval for density, both years’ data were
reanalysed selecting the bootstrap option for estimating the variance of
h(0). The resulting confidence intervals were (0.15, 0.58) and (0.18, 0.64)
respectively, wider than the intervals of Table 8.22, as might be expected.

The density estimates of Tables 8.17-8.22 are consistently higher than
those of Knopf et al. (1988). They used the Fourier series model on
squared distances, as recommended by Burnham et al. (1980). We no
longer recommend this approach, as it can lead to underestimation of
density (Buckland 1987a), so the differences between their estimates and
those given here might be anticipated.

Table 8.22 Analyses of American robin point transect data, Arapaho National
Wildlife Refuge. Standard errors are given in parentheses

Year Pasture Effective Encounter Estimated Log-based Goodness
detection rate density 95% confidence of fit test
radius p nlk interval p-value

1980 Al 30.2 0.09 0.30 (0.18, 0.50) 0.22

2.8) (0.02) (0.08)
1981 All 36.1 0.14 0.34 (0.22, 0.52) 0.87
3.2) (0.02) (0.08)

8.9 Assessing the effects of habitat on density

The design of line and point transect surveys was discussed in Chapter 7.
Suppose estimates of object density are required by habitat. The study area
should first be stratified by habitat type. Surveys may then be designed
within each stratum as described in Chapter 7. A belt of width w, where
w corresponds to the distance within which say 85-90% of detections are
expected to lie, might be defined just within the border of each stratum.
If line or point transects are constrained so that they do not lie within the
belt, then differences in density between habitats will be easier to detect.
If such provision is not made, density will be underestimated in habitat
types holding high densities, and overestimated in habitats with low den-
sities. Often, comparisons of density between uniform blocks of habitat
and habitat edge are of interest. Point transects are more suited to such
comparisons than line transects. As before, habitat edges should be deter-
mined by stratifying the area by habitat categories. Points should then be
positioned randomly, or systematically (say every 200 m) with a random
starting point, along each edge; this may be achieved by envisaging all the
edges placed end-to-end and allocating the points along the entire length,
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before mapping these points back to the actual edges. Detections at
these edge points should be recorded according to which side of the
edge (i.e. which habitat type) they are in, to allow edge versus centre
comparisons within the same habitat type. Thus there would be two
analyses of edge points, each taking the fraction of the circle surveyed
to be one half. Alternatively, data from each side can be pooled to
obtain an estimate of ‘edge’ density to compare with densities in either
or both habitat types, found as described above.

Note that density at a distance w from the edge may be appreciably
different from that at the edge itself. This will not invalidate the above
analysis, unless the trend in density is very great, although the estimated
detection function will be biased. Provided the assumption g0) =1
holds, the method will give a valid estimate of density at the edge. For
similar reasons, points from which density away from the edge is
estimated could be taken to be at least a distance w from the edge,
rather than say at least 2w, although a larger value might be preferred
for other reasons; for example, a value equal to the maximum likely
territory diameter could be chosen.

In reality, habitat may be too patchy and heterogeneous to divide a
study area into a small number of strata. In this case, density might be
better considered as a function of habitat characteristics. One approach
to this would be to include habitat information as covariates, as de-
scribed in Chapter 3, so that the surface representing object density is
modelled. We use as an example a different approach. The following is
summarized from Bibby and Buckland (1987).

We consider here binomial count data collected during 1983 for a
study into bird populations of recently restocked conifer plantations
throughout north Wales. In total, 326 points were covered, divided
among 62 forestry plots that had been restocked between 1972 and 1981.
Further details are given by Bibby et al. (1985).

Each detected bird was recorded as to whether it was within or beyond
30 m of the point. The half-normal binomial model of Section 6.2.1 was
applied to these data, together with a linear model, for which analytic
results are also available, and a single parameter hazard-rate model,
with power parameter b set equal to 3.3, fitted by numerical methods
(Buckland 1987a). Table 8.23 (reproduced from Buckland 1987a) shows
that the linear model consistently yields higher estimates of densities
than does the half-normal model, which in turn yields higher estimates
than the hazard-rate model in most cases. Standard errors of these
estimates are similar for all three models. Note that all three models
give very similar relative densities between species. For example, the
ratio of willow warbler density to wren density is estimated as 2.15, 2.13
and 2.19 under the half-normal, linear and hazard-rate models, respect-
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ively. Indeed, all three models give exactly the same ranking of species
by density. This suggests that binomial counts may be effective for
estimating relative density, but yield potentially biased estimates of
absolute density. Total counts, which fail to take account of variability
in detectability between species or between habitats, give a markedly

Table 8.23 Analyses of binomial count data on songbirds from Welsh restocked
conifer plantations under three models. Standard errors are given below
estimates. n, is the number of birds detected within ¢; = 30 m of the point, and
n, is the number beyond 30 m. Scientific names are given in Appendix A

Species ny ny Linear model Half-normal model Hazard-rate model

D nn p D rnn p D rn p
Willow warbler 421 504 6.09 32.1 38.5 6.65 319 36.8 5.23 322 433
0.37 08 1.0 038 0.7 09 034 10 13

Wren 208 347 2.83 364 438 312 36.1 41.7 239 373 50.1
022 13 15 023 12 14 018 14 19
Goldcrest 108 57 190 242 29.1 196 248 286 199 21.7 29.1
026 12 15 025 1.1 12 038 19 25
Tree pipit 127 235 1.70 38.0 456 188 37.6 433 144 390 523
018 17 20 019 16 19 015 18 25
Robin 78 89 1.14 31.5 37.8 124 314 362 098 31.5 424
016 1.8 22 016 17 20 015 22 30
Chaffinch 73 141 097 387 464 1.07 382 44.1 0.82 397 533

013 23 27 015 22 25 011 24 33
Garden warbler 58 87 0.80 349 42.0 0.88 346 400 0.68 356 478
013 23 28 013 22 26 011 26 35
Siskin 36 74 047 397 476 052 392 453 040 407 547

010 33 40 o011 32 37 008 35 47
Whitethroat 33 48 046 345 415 051 342 395 039 351 47.2
010 30 37 010 29 33 008 35 46
Coal tit 29 38 041 332 398 045 330 381 035 336 45.1
010 31 37 010 29 34 009 37 49
Dunnock 28 32 041 31.5 378 045 314 363 035 316 424
010 30 36 010 28 33 009 37 49
Song thrush 27 79 0.34 461 553 038 455 525 0.30 474 63.6

008 44 53 008 44 51 006 46 6.1
Long-tailed tit 18 12 030 261 313 031 265 305 029 244 328
010 32 38 010 28 33 012 46 62
Blackbird 15 40 0.19 443 532 021 437 504 0.16 455 6l.1

006 57 69 006 56 65 004 59 79
Blackcap 10 6 0.17 252 303 0.8 257 29.7 0.17 232 3lL.1
007 41 50 007 37 42 0.10 62 83
Redpoll 12 20 0.16 364 438 0.18 36.1 41.6 0.14 373 500
007 53 64 008 51 59 006 58 78
Chiffchaff 9 27 0.11 46.6 559 0.12 46.0 53.1 0.10 479 643
004 78 94 005 77 89 003 80 108
Mistle thrush 6 41 0.07 67.6 812 008 67.1 77.5 0.06 709 952

0.03 138 16.6 0.04 140 162 003 165 22.1
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different ordering of species. Counts of birds within 30 m of the point
give a better indication of relative densities, although the ordering of
goldcrest (Regulus regulus) and tree pipit (Anthus trivialis), and of
blackcap (Sylvia atricapilla) and redpoll (Carduelis flammea), is reversed
relative to the density estimates.

Table 8.23 shows that estimates of r;,, agree remarkably well under
the three models, considering their widely differing shapes, indicating
that the estimates provide a useful guide to the relative detectability of
species. Variation within a species in values of p suggests that estimation
of p may be less robust than that of ry,.
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100 100
90 90
80 80
70 70
E 60 £ 6o
S [ 8
<< 50 <~ 50
40 40
30 30
20«4 20#
—-4.0-3.0—2.0-1.0 0.0 1.0 2.0 3.0 4.0 -4.0-3.0-2.0-1.0 0.0 1.0 2.0 3.0 4.0
1st principal component score 1st principal component score
(succession) (succession)
© _ (d)
100 100
90 90
80 80
70 ( 7
E eof £ w0
§ R
<« 80| | ~ 50
40 40
30 30
20% 20#
-4.0-3.0-20-1.00.0 1.0 20 30 40 -40-3.0-20-1.000 1.0 2.0 3.0 40
1st principal component score 1st principal component score
(succession) (succession)

Fig. 8.13. Variation in detectability of (a) tree pipit, (b) wren, (c) willow warbler
and (d) all species (pooled data) with habitat succession in conifer p]antatlons
aged between 2 and 11 years.
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Various aspects of the habitat within a 30 m radius of each point were
recorded, and a principal components analysis carried out. The first
component was identified as succession. The plantations had been
restocked between two and eleven years previously, so the environment
ranged from open to very dense. Birds of each species were recorded
according to whether they were within or beyond 30 m of the point.
The binomial half-normal model for the detection function was assumed,
and ry),, the distance at which probability of detection is one half, was
used as a measure of detectability. Three species, the tree pipit, wren
(Troglodytes troglodytes) and willow warbler (Phylloscopus trochilus)
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Fig. 8.14. Variation in density of (a) tree pipit, (b) wren, (c) willow warbler and

(d) all species (pooled data) with habitat succession in conifer plantations aged
between 2 and 11 years.
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were present in sufficient numbers at each stage of development to
examine their change in detectability and density with succession in
habitat. Figure 8.13 shows the estimated change in detectability with
succession for these three species, and for all species combined. Both
the wren and the willow warbler appear to be more detectable in the
very early stages of succession. The pattern for the tree pipit is less
clear. Analyses of the combined data set show a similar pattern to those
for wren and willow warbler.

To measure trends in bird density with succession, it is therefore
necessary to adjust for greater detectability in more open habitats. In
Fig. 8.14 estimated change in density with succession is shown for the
same three species and for all species combined. Both the wren and the
willow warbler show a trend to higher densities in the older plantations.
The plot for all species combined shows roughly a fivefold increase in
density for eleven year old restocks relative to two year old. If unad-
Jjusted counts of birds are used as measures of relative abundance, this
increase is estimated to be just 1.4-fold, indicating the importance of
adjusting counts for detectability.

Principal components analysis was used in the above because it proved
effective at reducing the dimensionality of the habitat variables. The
second component represented a trend from a more diverse habitat, with
herbaceous plants and regenerating broadleaf trees, through to pure
coniferous stand with little undergrowth. If the only aspects of interest
were variation in detectability and density with succession, the analysis
could have been simplified by replacing the first principal component
by stand age.
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