Introduction to Distance Sampling

Overview of wildlife population assessment methods

Plot sampling

Distance sampling

Basic idea

Types of distance sampling

•How many are there?

- •What are their trends?
- •Why?
- Vital rates (survival, fecundity, etc)
- •What might happen if...?
- Scenario planning
- Risk assessment
- Decision support

Methods of estimating abundance

- Complete census
- Plot sampling
- Distance sampling
- Mark-recapture
- Removal method

Complete census

Let

- *N* = population size (abundance)
- A = size of study region = 5000
- D = animal density = N/A

Method: count everything!

- *N* = 412
- *D* = 412/5000 = 0.0824

Rarely possible in practice!

Plot sampling (or strip transect)

• Let

- k = number of strips = 5
- L = total line length = 50x5 = 250
- w = the strip half-width = 1
- *a* = area of region covered
 - = 2wL = 2x1x250 = 500
- *n* = number of animals counted = 36

Intuitive estimator of abundance

I saw 36 animals

I covered 500/5000 = $1/10^{\text{th}}$ of the study region

So, I estimate there are 36/(1/10) = 36x10 = 360 animals

$$\hat{N} = \frac{n}{a/A} = \frac{nA}{a} = \frac{36 \times 5000}{500} = 360$$

(Hat "^" means an estimate.)

Concept – Plot sampling

Step 1: How many in <u>covered</u> region, N_a ?

Plot sampling: $N_a = n$

Step 2: Given N_a , how many in <u>study</u> region, N If transects placed at random:

$$\hat{N} = \frac{N_a}{a/A}$$

Overall:
$$\hat{N} = \frac{n}{a / A} = \frac{nA}{a} = \frac{nA}{2wL}$$
 for strip transects

Distance (line transect) sampling

- An extension of plot sampling where not all animals in the covered region are detected
- Here

w = 2 (strip can be wider, as don't have to see everything)

a = 1000

n = 68 (more animals seen)

- Let
 - P_a = proportion of animals detected within covered region
- Imagine we know (or can estimate)

Intuitive estimator of abundance

- I saw 68 animals
- The estimated proportion seen was 0.7
- I estimate the true number of animals in the strips was 68/0.7 = 97.1
- I covered $1000/5000 = 1/5^{\text{th}}$ of the study region
- I estimate there are 97.1/(1/5) = 485.7 animals

CREEM Centre for Research into Ecologica and Environmental Modelling

Concept – Distance sampling

Step 1: How many in <u>covered</u> region, N_a ?

Distance sampling:

$$\hat{N}_a = \frac{n}{\hat{P}_a}$$

• How do we estimate P_a ?

How to estimate P_a?

• Record perpendicular distance, *x*, from transect line to each observed object

Therefore

Distance sampling options

- Types of samples
- Types of measurement
- Types of objects detected
- Types of detection methods

Type of sample Line vs. Point

Type of distance measurement 1. Radial vs perpendicular

For line transects, can either measure perpendicular distance from line to object

radial distance and angle

 $x = r\sin(\theta)$

For point transects

measure radial distance from point to object

Type of distance measurement 2. Exact vs Grouped

Exact distance recorded to each object detected

Distances recorded in intervals

Photo: Rich Guenzel

Type of object 1. Individuals vs Clusters

Each object detected is a <u>single individual</u>

Each object detected is a <u>cluster of individuals</u>

- will need to estimate expected cluster size

Photo: Thomas Norris

Type of Object 2. Direct vs Indirect

Objects are animals (or plants) of interest ...

... or something they produce (an "indirect survey")

Another example is a cue count

<image>

Method of detection

Active vs Passive

Observers actively search for animals and record distances

Animals generate their own distances ("passive distance sampling")

Photo: Ullas Karanth

Photo: Steve Dawson

IVIain ideas thus far

Distance sampling is an extension of plot sampling

ullet

In plot sampling, we see everything in the covered region

$$\hat{N} = \frac{n}{a A} = \frac{nA}{a} = \frac{nA}{2wL \cdot 1} \quad \hat{D} = \frac{\hat{N}}{A} = \frac{n}{2wL \cdot 1} \quad \text{strip transects}$$

In distance sampling, we do not see everything, and we estimate the proportion detected, \hat{P}_a

$$\hat{N} = \frac{\hat{n}}{\hat{P}_{a}} = \frac{nA}{a\hat{P}_{a}} = \frac{nA}{2wL\hat{P}_{a}} \qquad \hat{D} = \frac{\hat{N}}{A} = \frac{n}{2wL\hat{P}_{a}} \qquad \text{line transects}$$
How do we estimate P_{a} ?
$$\hat{P}_{a} = \frac{\text{area under curve}}{\text{area under rectangle}}$$
line transects
$$\hat{P}_{a} = \frac{a}{\text{area under rectangle}} \qquad \hat{P}_{a} = \frac{a}{\text{area under rectangle}} \qquad \hat{P}_{a$$