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Formal definition

The detection function describes the relationship between distance
and the probability of detection

Formally denoted by g(x) (usually referred to as ‘g of x’)

g(x) = the probability of detecting an animal, given that it is at distance x
from the line

Key to the concept of distance sampling
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Modelling g(x)

g(x) represents the underlying relationship between detection
probability and distance

However, the true form of g(x) is unknown to us
We need to estimate g(x) by fitting a model to our data

i.e., we need to find a curve that will approximate the underlying
relationship
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Criteria for robust estimation

Four main criteria for a good model:
1. Model robustness — use a model that will fit a wide variety of plausible shapes for g(x)

2. Shape criterion — use a model with a ‘shoulder’ —i.e. g'(0)=0

3. Pooling robustness — use a model for the average detection function, even when many
factors affect detectability

4. Estimator efficiency — use a model that will lead to a precise estimator of density
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Key functions
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Key functions

The first step in constructing a model for g(x) is to choose a key function
This determines the basic model shape

Three key functions available in distance sampling software:

e Uniform
e Half normal

e Hazard rate
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Key functions (cont.)
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Hazard rate (sigma = 0.3)
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Adjustment terms
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Adjustment terms

Models can be made more robust by adding a series of adjustment terms
(also called series expansion or series adjustment) to the key function

Key function % (1 + Series)
Series = a,Xterm, + a,Xterm, + ..... etc.

The o, parameters must be estimated

The number of adjustment terms needs to be chosen
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Adjustment terms

Distance allows the selection of three types of series (one type per model)

Uniform* Cosine™
Half normal’ Hermite polynomial
Hazard rate Simple polynomial
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Half normal key, single cosine adjustment term
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X,

Half normal key, two cosine adjustment terms
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X

Adjustment terms —how many?
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Note: There is a monotonicity constraint in Distance that is switched on by default to prevent detection functions from

increasing. The constraint had to be turned off to produce the third plot. The third plot is for demonstration only — it would
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Bias vs variance tradeoff
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How many parameters?

* Models with too few parameters will not be flexible enough to describe
the underlying relationship

* Adding parameters will improve the fit

* But models with too many parameters will be too flexible and will also
describe the random noise in the dataé

* We generally seek models with an intermediate number of parameters
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This problem can also be expressed as a
trade-off between bias and variance

Models with too few parameters tend to |

produce estimates with low variance and
high bias

. aouelep

Bias

Models with too many parameters tend
to produce estimates with low bias and
high variance (note the increasing CV for
the estimate of P, on the earlier slide) Fow Number of parameters in model

Many
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Data truncation prior to
model fitting
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Truncation
nA

2wLP,

Need to choose the value of w (right truncation)

N =

Detections at large distances contribute little to estimating the shape of g(x) at small
distances (i.e. the shoulder) and may lead to poor fit and high variance

Typically, we might truncate around 5% of observation for line transects (perhaps nearer
10% for point transects)

Can also use estimated values of g(x) from fitted model as truncation criterion; truncate at
w when g(w)=0.15
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Alternative derivations
for understanding
detectability
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1. The detection function, g(x)

g(x) = probability of detecting an animal, given that it is at distance x from the line
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a strip transect out to some distance .

Instead of a line transect out to w, where proportion P, objects are seen, think of

The ESW, , is the distance at which as many objects
are detected beyond p as are missed within p

Line transect outtow  Strip transect out to p
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f(x)dx = probability of observing an animal between distance x and x+dx, given

it was observed somewhere in (O,w)

f(x) is called the probability density function (pdf) of the observed distances

Because observations are between 0 and w, the area under f(x) is 1.0

jOW F(x)dx =1
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Area under f(x) is 1

AN

Histogram bars are scaled so that

area under histogram is 1.
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Why is f(x) useful?
1. Useful for point transects, as it gives the expected distribution of detection distances

Line transect Point transect
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2. Gives another way to estimate P,
Lots of statistical machinery to fit pdfs
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Three ways to think about line transects

1. Proportion seen or average probability of detection in covered region, P,
" hA L n
N=—— D = ~
2wLP, 2WLP,
2. Effective strip (half-)width, ESW, L. F, = %
" hA L n
N=— D=_—
211l 2L
3. Pdf of observed distances, f{x), evaluated at O distance f(0) = %1
-~ nf(0)A - nf(0
o _ nf(o) 5 ()
2L 2L
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Notation
(knowns and unknowns)
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Notation —line transects

Known constants and data:
k = number of lines
[ =length of /! line, j=1,...,k
L =2/, =total line length
n = number of animals or clusters detected
x; = distance of /" detected animal or cluster from the line, i=1,...,n
w = truncation distance for x
A = size of region of interest
a = area of “covered” region = 2wl

s. = size of /" detected cluster, i=1,...,n
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Notation —line transects

Parameters and functions:
N = population size / abundance of animals
N, = abundance of clusters
D = density = animals per unit area = N/A
D, = density of clusters
g(x) = detection function
fix

flO
L = effective strip (half-)width

= probability density function (pdf) of observed distances

= f(x) evaluated at O distance

P_ = probability of detecting an animal or cluster given it is in the covered area a

E(s) = mean size of clusters in the population
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