Measures of Precision

- Section 3.6 of Buckland et al. (2001) Introduction to Distance Sampling
- Sections 6.3.1.2 and 6.3.2.2 of Buckland et al. (2015) Distance Sampling: Methods and Applications.

Overview

- How to quantify uncertainty
- Components of variation in distance sampling
- Controlling variance
- Estimating variance
 - Analytic
 - Bootstrap
- Confidence Intervals
- Special situation of variance estimation for systematic designs

Consider an artificial population

 $D = 500 \text{ per unit}^2 \text{ (no density gradient)}$

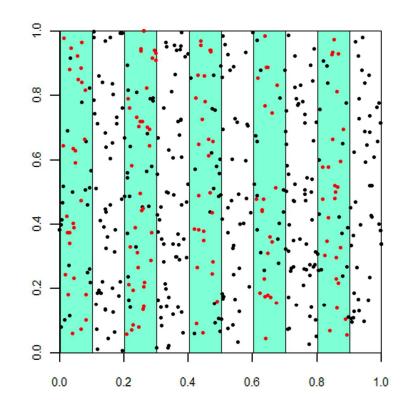
Design: 5 transects equally-spaced (w=0.05)

Results:

$$n = 140$$

$$\hat{f}(0) = 34.6$$

$$\hat{D} = 484.4$$



Consider a duplicate survey

Same population model

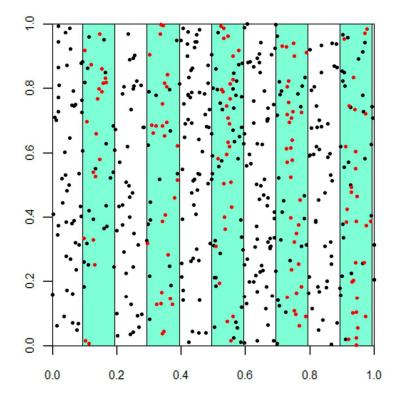
Same survey design (with a new random start point)

Results:

$$n = 139$$

$$\hat{f}(0) = 37.6$$

$$\hat{D}$$
 = 522.1



Imagine repeating this process over and over, using the same survey design and a population drawn from the same density model

Each survey will yield:

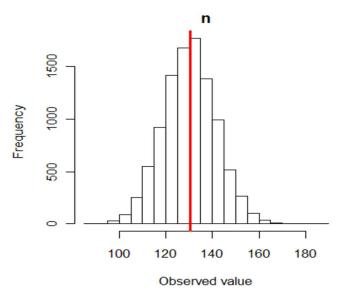
A different value for n

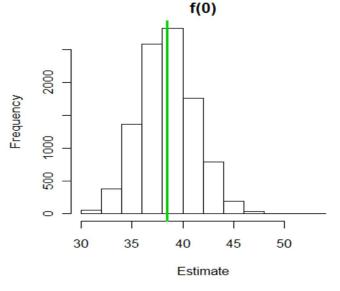
A different value for $\hat{f}(0)$

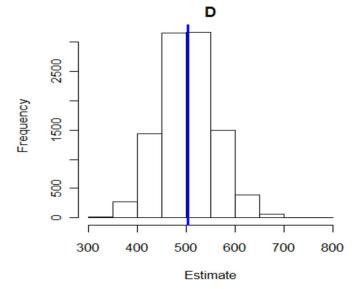
A different value for \hat{D}

What happens if we repeat this simulated survey 10,000 times?

We end up with distributions for n , $\hat{f}(0)$ and \widehat{D}







Note,
$$\hat{f}(0) = \frac{1}{w\hat{P}_a}$$

We are interested in the hypothetical long-run behaviour of our estimator

$$\widehat{D} = \frac{n}{2wL\hat{a}}$$

How variable are the estimates?

E.g. what is the variance of the distribution for \widehat{D} ?

What is the average value of the estimates?

E.g. is the distribution for \widehat{D} centred on the truth?

Quantifying uncertainty

Different ways of measuring uncertainty:

Variance = the average squared difference from the mean (the inverse of precision)
 If the estimator for D is unbiased, then

$$Var[\hat{D}] = E[(\hat{D} - D)^2]$$

2. Standard error = the standard deviation of an estimator (i.e. the square root of estimator variance)

$$Se[\hat{D}] = \sqrt{Var[\hat{D}]}$$

Quantifying uncertainty

3. Coefficient of Variation (CV) = the standard error divided by the mean (i.e. a standardised version of the standard error) $C = \hat{C}$

$$CV[\hat{D}] = \frac{Se[\hat{D}]}{E[\hat{D}]}$$

Useful for comparing variances when the scale and/or the units of measurement differ

E.g. consider two variables: X has mean = 100 and variance = 400, Y has mean = 1 and variance = 0.04

$$CV[X] = \frac{\sqrt{400}}{100} = \frac{20}{100} = 0.2 = 20\%$$
 $CV[Y] = \frac{\sqrt{0.04}}{1} = \frac{0.2}{1} = 0.2 = 20\%$

Quantifying uncertainty

4. Confidence Interval (CI) = a range of plausible values for the truth

Calculations are based on variance

Different ways to calculate CIs, depending on the data, e.g.

Normal

Lognormal

Bootstrap

More about CIs later...

Why is variance important?

- In a real survey, we use an estimator and the survey data to produce a single estimate for D
- If the estimator variance is low, then individual estimates are more likely to be close to the truth (assuming low bias)
- If estimator variance is high, then individual estimates are potentially far from the truth
- For reliable results, we want estimators with LOW variance (and low bias!)

Components of variance

Variance by components

We can break down the familiar distance sampling density estimator (for line transects with no clusters) into three components:

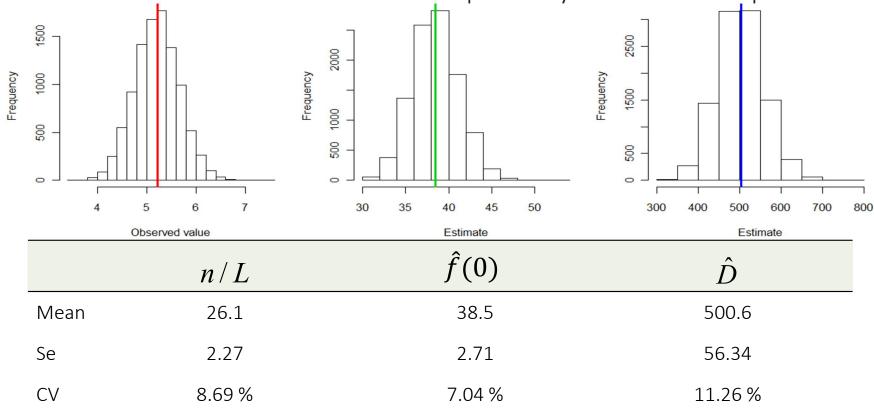
$$\widehat{D} = \frac{n}{2wL\widehat{P}_a} = \frac{1}{2w} \times \frac{n}{L} \times \frac{1}{\widehat{P}_a}$$
Constant (no variance)

Constant (no variance)

Encounter rate

Variance by components

We can calculate variance measures separately for each component



Variance by components

Distance provides several variance measures for each component

```
Estimate
                                       SE
                                                  CV
                     0.3491863 0.02160949 0.06188528
Average p
N in covered region 300.6991117 30.11200030 0.10013997
Summary statistics:
  Region Area CoveredArea Effort n k
                                           ER
                                                  se.ER
                                                            CV.ER
1 Default
                              48 105 12 2.1875 0.3169604 0.1448962
                   3436.8
Abundance:
 Label Estimate
                                             lcl
                                                       ucl
                                                                df
                          se
                                   CV
1 Total 8.749392
                    1.378541 0.1575585 6.270328 12.20859 15.32522
Density:
 Label
         Estimate
                                             lcl
                                                       ucl
                          se
                                                                df
                                   CV
1 Total 0.08749392 0.01378541 0.1575585 0.06270328 0.1220859 15.32522
```


Controlling variance

Controlling variance

- We can use this knowledge of encounter rate variance to help design good surveys
- Three main ways we can reduce encounter rate variance:
 - Use systematic survey designs
 - Run transects parallel to density gradients
 - Use designs with multiple transects

Analytic variance estimation

We can describe the relationship between the variance of \hat{D} and the variance of its components more formally using a useful approximation known as the <code>Delta method</code>

$$\left\{cv(\widehat{D})\right\}^{2} = \left\{cv\left(\frac{n}{L}\right)\right\}^{2} + \left\{cv(\widehat{P}_{a})\right\}^{2}$$

Rule: when two or more components are multiplied together, squared CVs add

	$\frac{n}{L}$	$\hat{f}(0)$	$\widehat{m{D}}$
Mean	26.1	38.5	500.6
Se	2.27	2.71	56.34
CV	8.69 %	7.04 %	11.26 %

We can check this approximation works using the results of our simulation,

$$\left\{cv(\widehat{D})\right\}^2 = 0.1126^2 = 0.01266$$

$$\left\{cv\left(\frac{n}{L}\right)\right\}^2 + \left\{cv\left(\hat{P}_a\right)\right\}^2 = 0.0869^2 + 0.0704^2 = 0.01251$$

We can rearrange the squared CV to get an estimate of the variance

$$var(\widehat{D}) \approx \widehat{D}^2 \times \{cv(\widehat{D})\}^2$$

- To estimate $var(^n/_L)$ we need to use data from the individual lines (or points)
- A minimum of 20 replicate lines (or points) is recommended for obtaining a reliable estimate of encounter rate variance
- The formula used in Distance:

$$\left\{cv\left(\frac{n}{L}\right)\right\}^{2} = \frac{k}{n^{2}(k-1)} \sum_{i=1}^{k} l_{i}^{2} \left(\frac{n_{i}}{l_{i}} - \frac{n}{L}\right)^{2}$$

$$k = \text{number of lines}$$

$$l_{i} = \text{effort for line i}$$


```
Estimate
Average p
                   0.3491863 0.02160949 0.06188528
N in covered region 300.6991117 30.11200030 0.10013997
Summary statistics:
  Region Area CoveredArea Effort n k ER
                                             se.ER
                                                      CV.ER
1 Default
                 3436.8
                           48 105 12 2.1875 0.3169604 0.1448962
Abundance:
 Label Estimate
                       se
                                CV
                                         lcl ucl
                                                          df
1 Total 8.749392 1.378541 0.1575585 6.270328 12.20859 15.32522
Density:
                                cv lcl
 Label Estimate
                                                 นตไ
                       se
1 Total 0.08749392 0.01378541 0.1575585 0.06270328 0.1220859 15.32522
```

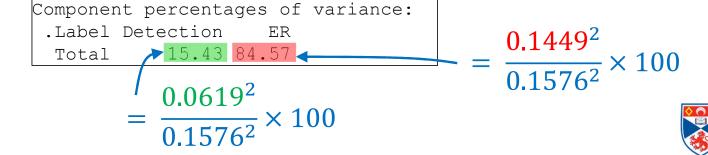
Component percentages of variance:

.Label Detection ER

Total 15.43 84.57

Abundance and Density always have the same CV


```
Estimate
Average p
                  0.3491863 0.02160949 0.06188528
N in covered region 300.6991117 30.11200030 0.10013997
Summary statistics:
  Region Area CoveredArea Effort n k ER
                                            se.ER
                                                     CV.ER
1 Default
                 3436.8 48 105 12 2.1875 0.3169604 0.1448962
Abundance:
 Label Estimate
                       se
                               CV
                                        lcl ucl
                                                         df
1 Total 8.749392 1.378541 0.1575585
                                    6.270328 12.20859 15.32522
Density:
                               cv lcl ucl
 Label Estimate
1 Total 0.08749392 0.01378541 0.1575585 0.06270328 0.1220859 15.32522
```



University of

To find the relative contributions of each component we take the ratio of squared CVs

E.g.
$$100\% \times \frac{\{cv(\widehat{P}_a)\}^2}{\{cv(\widehat{D})\}^2} = \frac{\text{The percentage relative}}{\text{contribution made by } \widehat{P}_a}$$

	Typical values		
Component	Line	Point	
Encounter rate	70-80%	40-50%	
Detection function	<30%	>50%	

Bootstrap for variance estimation

Estimating variance – Bootstrap

- Works well if the original sample is large and representative
- The distribution of density estimates approximates the true distribution that we would (theoretically) get from duplicate surveys
- The variance of the bootstrap estimates can be used as an estimate of the true variance
- In distance sampling we resample the individual transects

Estimating variance – Bootstrap

- For example, consider a survey with 12 replicate lines
 - Bootstrap sample 1:
 - Transects: 5, 12, 1, 7, 6, 11, 7, 6, 9, 7, 11, 2
 - Density estimate = D_1
 - Bootstrap sample 2:
 - Transects: 3, 4, 9, 1, 12, 7, 8, 11, 1, 3, 2, 12
 - Density estimate = D_2
- Do this B times and use the variance of the B density estimates as an estimate of $var(\widehat{D})$

Confidence intervals

Confidence Intervals

- Confidence intervals (CIs) give us a range of plausible values for the truth
- Constructed using data from a single sample
- If we were to carry out multiple surveys and construct 95% CIs from each survey, we would expect 95% of those CIs to contain the true value
- To calculate CIs, it would be beneficial to know the shape of the distribution of estimates

Confidence Intervals - Analytic

mean =
$$1$$
, se = 0.5

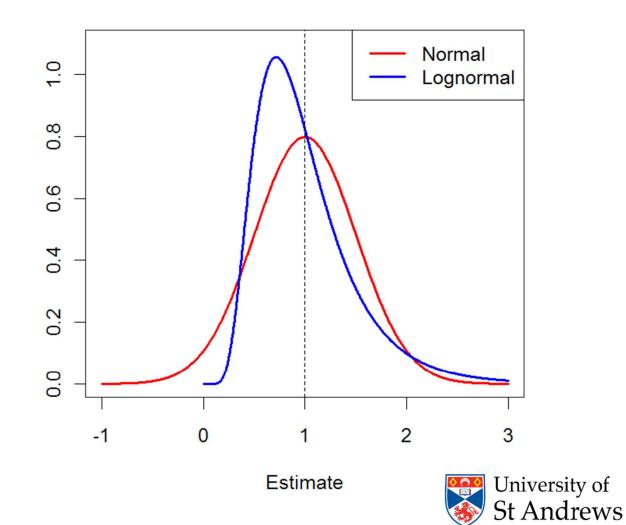
• Two choices:

Normal

- symmetrical
- easy to use
- allows negative values

Lognormal

- asymmetric (skewed)
- trickier to use
- typically higher interval limits
- does not allows negative values



Confidence Intervals - Analytic

Distance uses 95% lognormal Cls

Abundance:

Label Estimate se cv (lcl ucl) df 1 Total 8.749392 1.378541 0.1575585 6.270328 12.20859 15.32522

Density:

Label Estimate se cv lcl ucl df
1 Total 0.08749392 0.01378541 0.1575585 0.06270328 0.1220859 15.32522

$$\left(\frac{\widehat{D}}{C}, \widehat{D} \times C\right) \qquad C = exp\left[t_{\alpha, df}\sqrt{ln\left\{1 + \left(cv(\widehat{D})\right)^{2}\right\}}\right]$$

Confidence Intervals – Bootstrap

The nonparametric option is provided in Distance

Bootstrap results

Boostraps : 999

Successes : 999

Failures :

```
Estimate se lcl ucl cv

N 8.58 1.44 5.94 11.67 0.17 Standard error divided

D 0.09 0.01 0.06 0.12 0.17 by the mean
```

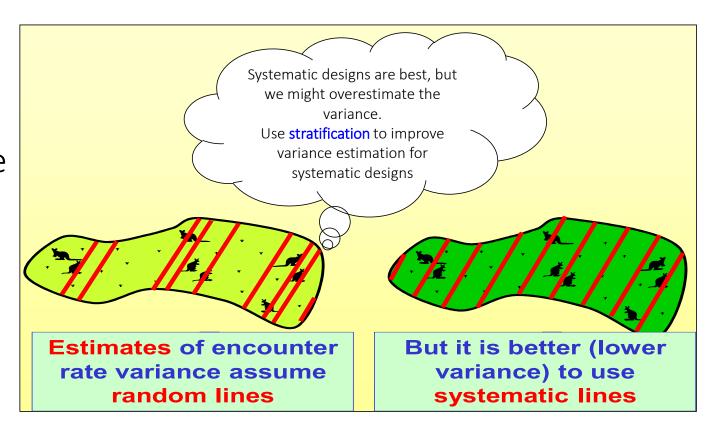

Producing better estimates of variance when systematic samplers are used

• Fewster, RM, Buckland, ST, Burnham, KP, Borchers, DL, Jupp, PE, Laake, JL, and Thomas, L. 2009. Estimating the encounter rate in distance sampling. Biometrics 65: 225-236.

Systematic samples

Problem:

Systematic designs give the best variance, but the worst variance estimation!

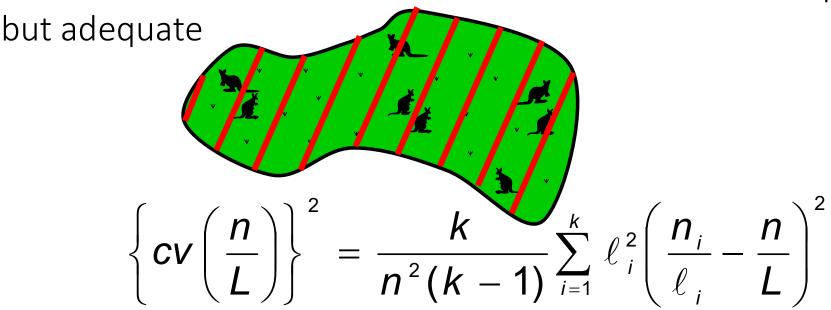


No unbiased estimator exists for estimating variance from a single systematic sample

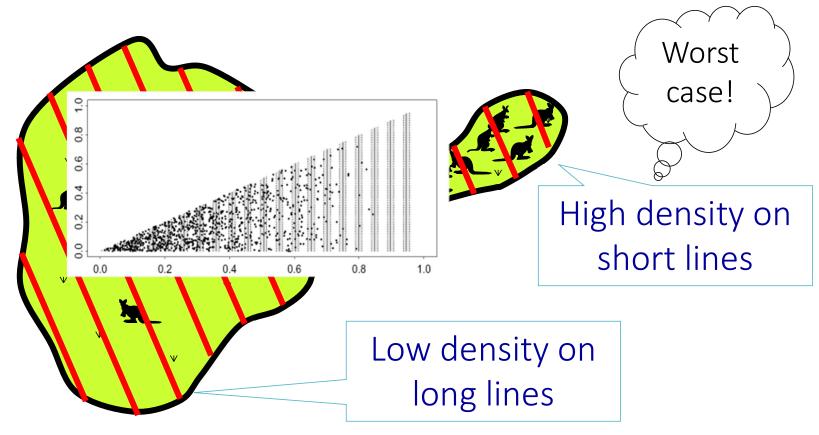
Systematic samples advice

Usually, do nothing!

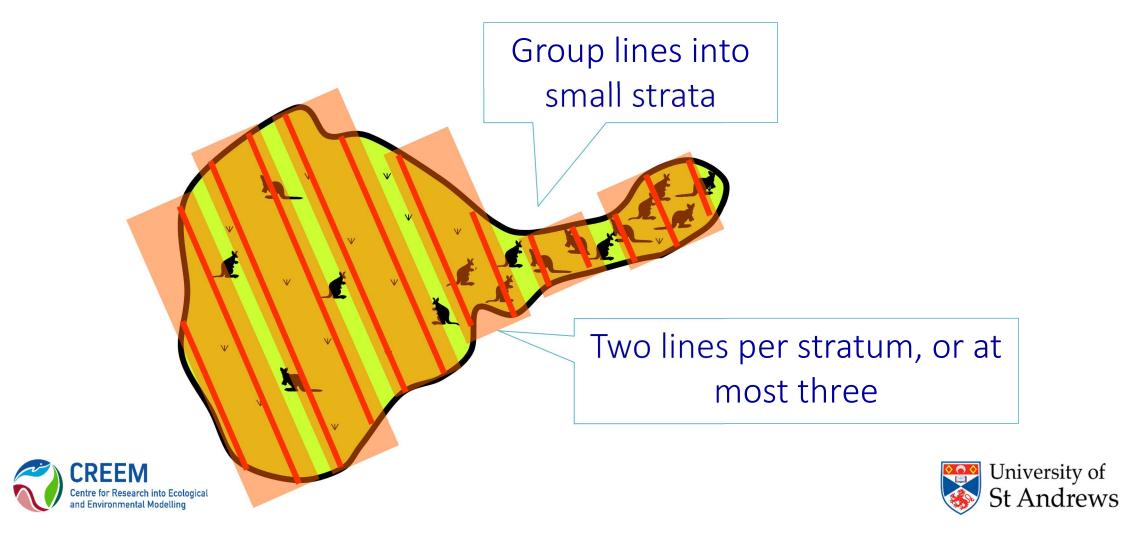
Variance estimation based on random lines will not be perfect,



If there are strong trends, variance might be significantly overestimated



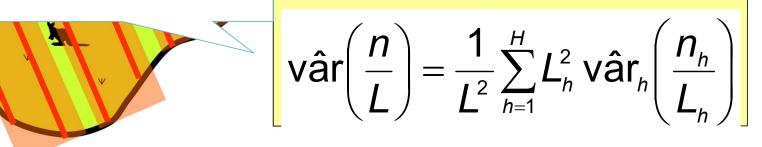
Post-stratification can give much better variance estimates



Post-stratification can give much better <u>estimates</u> of variance

Pool by-stratum
variance estimates
together, weighted by
Total Effort in Stratum

Trends within strata are minor; Estimate encounter rate variance separately for each stratum



Overlapping strata are even better, as you get a larger sample size of post-strata

Can also be applied to point transect survey data

