Analysis of Stratified Surveys

Section 3.7 of Buckland et al. (2001) Section 2.3 of Buckland et al. (2015)

Stratification

- Why stratify?
- Stratification by:
 - Geographic area
 - Survey
 - Species / cluster size
- Decisions during analysis
- Alternatives to stratification

Stratification is used to:

- reduce variance and improve precision
- and for producing estimates in regions of interest

Stratification criteria:

- AREA or GEOGRAPHIC REGION

 the study region is partitioned into smaller regions
- SURVEY
 - used when different surveys cover the same geographic area
- POPULATION/SPECIES/CLUSTER SIZE
 - same geographic region containing different 'sub-stocks'

Types of stratification

Example geographic stratification: SCANS IV (2022) Small Cetaceans in European Atlantic waters and the North Sea

Geographic stratification

- Strata are geographic areas.
- Density estimates are required for each stratum and for the entire study area.

where

- \widehat{D}_i is estimated density for the ith stratum and
- A_i is area of the ith stratum

- Replicate surveys have been conducted; e.g. week-long surveys conducted monthly or concurrently by different platforms.
- Interest lies in the average density across surveys and variability between surveys.

where $L_{i}\xspace$ is effort associated with the $i^{th}\xspace$ survey

Post-stratification (stratification by object class)

• Objects are of different species or sexes.

Î

Î

ÎΓΙ

• Estimates are desired for each object class as well as a total density across classes.

Μ

m=1

 $\widehat{D} = \sum \, \widehat{D}_m$

 $\operatorname{var}(\widehat{D}) = \sum^{M} \operatorname{var}(\widehat{D}_{m})$

 $\overline{m}=1$

Î

ÎÎ

Î

Data organisation hierarchy

Analysis decisions arising from stratification

Example (3 strata):

Full geographic stratification

Select strata and fit detection function to each strata

CREEM Centre for Research into Ecological and Environmental Modelling

Pooled detection across strata

Pooled vs Stratified P_a

Pooled *n*=88

It is a Model Selection Problem

	Pooled	Stratum 1	Stratum 2	Stratum Sum
Log likelihood log _e (L)	-180.490	-72.699	-104.676	-177.375
No. parameters (q)	2	2	2	4
AIC	364.980	149.398	213.352	362.75
	Criterior Fit sepa	n for stratificati rate P_a for each $> \sum_{a}$	on of <i>P_a</i> : n strata if AIC strat	um
CREEM Centre for Research into Ecological and Environmental Modelling	poor	strate	a	University St Andre

Alternatives to stratification

Alternatives to stratification

- Small sample sizes can lead to low precision in stratum-specific estimates
- An alternative approach to reducing bias due to heterogeneity is Multiple Covariates Distance Sampling (MCDS)
 - Covariates, other than distance, are incorporated into the scale parameter of the detection function
- MCDS can be used to fit the detection function at multiple levels e.g. stratum-specific density estimates can be obtained even with insufficient data to fit separate detection functions for each stratum

