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Foreword 

Our environment and natural food resources are continually coming 
under threat so that the monitoring of population trends is essential 
today. Whaling is a good example. Here politics and conservation often 
clash, and over the years more and more restrictions have been applied 
through the efforts of the International Whaling Commission in an 
endeavour to save some of our whale species from extinction. Localized 
fisheries also need to be monitored and quotas set each year. In some 
countries, sports fishing and hunting are popular so that information is 
needed about the populations being exploited in order to determine such 
things as the duration of hunting season and bag limits. Methods of 
estimating animal abundance have been developing steadily since the 
1940s but over the last 20 years activity in this area has intensified and 
the subject has begun to blossom. At the centre of this growth were two 
of the authors of this book, David Anderson and Kenneth Burnham, 
who have widely published in this field. The need for computers in this 
area was soon recognized and David and Ken were joined by Jeffrey 
Laake who, with his computing expertise, helped to develop suitable 
software packages for implementing some of the new techniques. In the 
1980s Stephen Buckland entered the arena and began to make his 
presence felt. Among other contributions, he firmly established the role 
of Monte Carlo and bootstrapping techniques in population estimation 
where the unique role of the computer could be fully exploited. He also 
turned his attention to the difficult problem of monitoring marine 
mammals such as dolphins and whales. Many of the early methods of 
estimating animal abundance involved the tagging of animals. However, 
it has since been found that for such methods to be effective, large 
numbers of animals have to be tagged and high proportions of the 
population need to be caught on each sampling occasion. One area 
where such methods have been particularly successful is bird banding. 
However, for animals like the whale, these so-called capture-recapture 
methods are woefully inadequate and there has been a need for the 
development of alternative methods. 'Distance' methods, the subject of 
this book, based on animal distances from points or lines, provide such 
alternatives. In essence, one proceeds down a randomly chosen path 
called a line transect and measures or estimates the perpendicular 
distances from the line to the animals actually detected. Alternatively, 
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one can choose a point instead and measure the radial distances of the 
animals detected. It is very appropriate that the leading exponents in 
this field have come together to produce an authoritative description on 
'how to do it'. They bring with them many years of experience in this 
research area. This book is a must for all those involved in estimating 
animal abundance as the methods can be used for such a wide variety 
of animal species including birds and marine mammals. The methods 
also apply to clusters of animals such as schools of dolphins and to 
animal signs. The beauty of such methods lies in the fact that not every 
animal has to be seen when a population is investigated. At the heart 
of the methodology is a 'detectability' function which is estimated in 
some robust fashion from the distances to the animals actually seen. 
Many species are not always visible and may be detected by the sounds 
they make or by being flushed out into the open. Clearly animals can 
have widely different behaviour patterns so that different models will 
be needed for different situations. This book provides a tool box of 
such methods with a computer package which helps the researcher to 
select the right tool for each occasion. The authors have a reputation 
for being very thorough and, typically, they endeavour to cover every 
conceivable situation that might be encountered in the field. They bring 
to the book a practical as well as a head knowledge of the subject matter 
so that their book is well laced with real examples. One strength of their 
work is their chapter on experimental design, which looks at each aspect 
of setting up a 'distance' experiment. Sadly, aspects of design are often 
omitted from books on statistical ecology. usually because of the inher~ 
ent difficulty of designing experiments. Such a chapter is refreshing. 
There are eight chapters in all, covering the basic concepts, background, 
and statistical theory, together with separate chapters on line and point 
transects, study design and field methods. A whole chapter is devoted 
to illustrative examples, which is most welcome, and there is a chapter 
looking at extensions and related work. This latter chapter, of perhaps 
less relevance to the practitioner, is important in that it highlights the 
fact that the subject is still developing. We welcome these additional 
insights from those who have spent so much time working in this topic. 
In conclusion I would like to congratulate the authors for all their hard 
work in bringing to the scientific community such a detailed and helpful 
book. 

" 

G. A. F. Seber 
April 1992 



Preface 

This book is about the use of distance sampling to estimate the density 
or abundance of biological populations. Line and point transect samp
ling are the primary distance methods. Here, lines or points are surveyed 
in the field and the observer records a distance to those objects of 
interest that are detected. The sample data are the set of distances of 
detected objects and any relevant covariates; however, many objects may 
remain undetected during the course of the survey. Distance sampling 
provides a way to obtain reliable estimates of density of objects under 
fairly mild assumptions. Distance sampling is an extension of plot 
sampling methods where it is assumed that all objects within sample 
plots are counted. 

The objects of interest are typically various vertebrate species, includ
ing those that exist in coveys or schools, or inanimate objects such as 
bird nests, mammal burrows or dead animals. The range of application 
is quite broad, includes a variety of surveys of terrestrial and aquatic 
species, and several innovative approaches are reviewed. Distance samp
ling oflen provides a practical, cost-effective class of methods for esti
mating population density. For objects distributed sparsely across large 
geographic areas. there are often no competing methods. 

Line and point transect sampling is well named because the important 
focus must be on accurate distance measurements of all objects near the 
line or point. It is the area near the line or point that is critical in nearly 
all aspects. Within this framework, many extensions and special cases 
are developed and illustrated. 

The objective of this book is to provide a comprehensive treatment 
of distance sampling theory and application. Much work has been done 
on this subject since 1976. Development of fundamental new theory has 
diminished recently and it is timely to provide a state-of-the-art treat
ment of the information. Currently, there is no other book or mono
graph that provides a comprehensive synthesis of this material. A 
comprehensive computer software package, called DISTANCE. is also 
introduced. 

This book covers the theory and application of distance sampling with 
emphasis on line and point transects. Specialized applications are noted 
briefly, such as trapping webs and cue counts. General considerations 
are given to the design of distance sampling surveys. Many examples 
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are provided to illustrate the application of the theory. The hook is 
written for both statisticians and biologists and this objective imposed 
a few obvious compromises. 

The book contains eight chapters. Chapters I and 2 are introductory. 
Chapter 3 presents the general theory for both line and point transect 
sampling, including modelling, estimation, testing and inference. Chap
ters 4 and 5 provide insight into the application of the theory for line 
and point transects, respectively. These chapters are meant to stand 
alone, thus there is some duplication of the material. Extensions to the 
theory are given in Chapter 6, along with some new research directions. 
Chapter 7 provides material on the design of studies employing distance 
sampling. The emphasis here is on ways to assure that the key assump
tions are met. Chapter 8 provides several comprehensive examples. Over 
300 references to the published literature are listed. 

The main concepts in this book are not complex; however, some of 
the statistical theory may be difficult for non-statisticians. We hope 
biologists will not be deterred by the quantitative theory chapter and 
hope that statisticians will understand that we are presenting methods 
intended to be useful and usable given all the practicalities a biologist 
faces in field sampling. We assume that the reader has some familiarity 
with basic statistical methods, including point and variance estimation. 
Knowledge of sampling theory would be useful, as would some acquaint
ance with numerical methods. Some experience with likelihood inference 
would be useful. The following guidelines are provided for a first reading 
of the book. 

Everyone should read Chapters I and 2. While statisticians will want 
to study Chapters 3 and 6. Chapters 4 (line transects) and 5 (point 
transects) will be of more interest to biologists. Biologists should study 
Chapter 7 (design) in detail. Everyone might benefit from the illustrative 
examples and case studies in Chapter 8, where readers will find guidance 
on advanced applications involving several data sets. 

Our interest in these subjects dates back to 1966 (ORA), 1974 (KPB), 
1977 (JLL) and 1980 (STB). We have all contributed to the theory, been 
involved with field sampling, and had substantial interaction with the 
analysis of real sample data. Jointly, we have published around 50 
papers in the literature on distance sampling. Computer software pack
ages TRANSECT (now superseded) and DISTANCE have been the 
domain of JLL. 

The contribution of Steve Buckland to this book was partially sup
ported with funds from the Scottish Office Agriculture and Fisheries 
Department, through the Scottish Agricultural Statistics Service. David 
Anderson and Ken Burnham are grateful to the U.S. Fish and Wildlife 
Service for support and freedom in their research. Jeff Laake and the 
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developmenl of DISTANCE were funded by lhe Colorado Division of 
Wildlife and the U.S. National Marine Fisheries Service. Thomas Drum
mer, Eric Rexstad and Tore Schweder provided reviews of an early draft 
of this material and their help and support are gratefully acknowledged. 
David Bowden. Robert Parmenter and George Seber also provided 
review comments. Several biologists generously allowed us to use their 
research data as examples and in this regard we appreciate the contribu
tions of Roger Bergstedt, Colin Bibby, Eric Bollinger, Graeme Coulson, 
Fritz Knopf and Robert Parmenter. We also gratefully acknowledge the 
following organizations for funding research to address the practical 
problems of distance sampling and for allowing us to use their data: 
the Inter-American Tropical Tuna Commission; the International Whal
ing Commission; the Marine Research Institute of Iceland; and the U.S. 
National Marine Fisheries Service. We have all benefited from the use 
of Les Robinette's data sets. David Carlile provided the photo of the 
DELTA II submersible, Fred Lindzey provided photos of aircraft used 
to survey pronghorn in Wyoming, and John Reinhardt allowed the use 
of a photo of the survey aircraft shown in Fig. 7.9. Tom Drummer and 
Charles Gates helped us with their software, SIZETRAN and LINE
TRAN. respectively. David Gilbert provided help with the Monte Vista 
duck nest data. Karen Cattanach carried out some of the analyses in 
the marine mammal examples and generated the corresponding figures. 
Finally, Barb Knopfs assistance in manuscript preparation and Eric 
Rexstad's help with many of the figures is appreciated. 

We plan to continue our work and interest in distance sampling issues. 
We welcome comments and suggestions from those readers who share 
our interests. 

"' 

S. T. Buckland 
D.R. Anderson 
K. P. Burnltam 
J_ L. Laake 
April 1992 



1 
Introductory concepts 

1.1 Introduction 

Ecology is the study of the distribution and abundance of plants and 
animals and their interactions with their environment. Many studies of 
biological populations require estimates of population density (D) or 
size (N), or rate of population change A1 = D1+ 11Dr = N1+ 1IN1• These 
parameters vary in time and over space as well as by species, sex and 
age. Further, population dynamics and hence these parameters often 
depend on environmental factors. 

This book is a synthesis of the state-of-the-art theory and application of 
distance sampling and analysis. The fundamental parameter of interest is 
density (D = number per unit area). Density and population size are related 
as N = D • A where A is area. Thus, attention can be focused on D. 

Consider a population of N objects distributed according to some 
spatial stochastic process, not necessarily Poisson, in a field of size A. 
A traditional approach has been to establish a number of plots or 
quadrats at random (e.g. circular, square or long rectangular) and census 
the population within these plots. Conceptually, if n objects are counted 
within plots of total area a, then an estimator of density, termed b, 1s 

i> = nla 

Under certain reasonable assumptions, b is an estimator of the para
meter D =NIA.This is the finite population sampling approach (Cochran 
1977) and was fully developed for most situations many years ago. This 
approach asks the following question: 

Given a fixed area (i.e. the total area of the sample plots), how 
many objects are in it (Fig. I.I)? 

Distance sampling theory extends the finite population sampling 
approach. Again, consider a population of N objects distributed according 
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to some stochastic process in a field of size A. In distance sampling 
theory. a set of randomly placed lines (Fig. 1.2) or points (Fig. 1.3) is 
established and distances are measured to those objects detected by 
travelling the line or surveying the points. The theory allows for the 
fact that some, perhaps many, of the objects will go undetected. In 
addition, there is a marked tendency for detectability to decrease with 
increasing distance from the transect line or point. The distance sampling 
approach asks the following question: 

Given the detection of n objects, how many objects are estimated 
to be within the sampled area? 

Two differences can be noted in comparing distance sampling theory 
with classical finite population sampling theory: (I) the size of the 
sample area is sometimes unknown, and (2) many objects may not be 
detected for whatever reason. One of the major advantages of distance 
sampling is that objects can remain undetected (i.e. it can he used when 
a census is not possible). As a particular object is detected, its distance 
to the randomly chosen line or point is measured. Thus, distances are 
sampled. Upon completion of a simple survey, n objects have been 

•• 

□ .. 

. . □ . 

D □ . •' . 

Fig. I.I. Finite population sampling approach with five Im square quadrats 
placed at random iq a population containing 100 objects or interest. :Ea; 
,. 5, L n,,. 10, and D,. 2 objects/m2

• In this illustration, the population is 
confined within a well-defined area. 

2 
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. . 

• • 

Fig. 1.2. Line transect sampling approach with a single, randomly placed, line or 
length L. Six objects (n = 6) were detected at distances xi, xi, ... , x6. Those objects 
detecte<i are denoted by a line showing the perpendicular distance measured. In 
practical applications, several lines would be used to sample the population. 

detected and their associated distances y1, y2, •.. , Yn recorded. The 
variable y will be used as a general symbol for a distance measurement, 
while x will denote a perpendicular distance and r will denote a radial 
distance. Unbiased estimates of density can be made from these distance 
data if certain assumptions are met. 

Distance sampling theory includes two main approaches to the estim
ation of density: line transects and point transects. Traditional sampling 
theory may be considered a special case of distance sampling theory. 
An application of point transect theory is the sampling method called 
a trapping web, which is potentially useful in animal trapping studies. 
Cue counting is another application or point transect theory and was 
developed for marine mammal surveys. Nearest neighbour and point
to-object methods are similar in character to point transects, but are 
generally less useful for estimating object density. 

J.J,J Strip transects 

Strip transects are long, narrow plots or quadrats and are typically used 
in conjunction with finite population sampling theory. Viewed differently, 

3 
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.. . 

.. 

. . 

. . 
Fig. 1.3. Point transect sampling approach with five randomly placed points 
(k = 5), deno1ed by the open circles. Eleven objects were detected and the 11 
sighting distances ri, r2, ... , r11 are shown. 

they represent a very special case of distance sampling theory. Consider 
a strip of length L and of width 2w (the width of the area censused). 
Then, it is ass11med that all objects are detected out to distance w either 
side of the centreline, a complete census of the strip. No distances are 
measured; instead. the strong assumption is made that all objects in the 
strip are detected. Detections beyond w are ignored. Line and point 
transect surveys allow a relaxation of the strong assumptions required 
for strip (i.e. plot or quadrat) sampling (Burnham and Anderson 1984). 
Note the distinction here between a census, in which all objects in an 
area are counted, and a survey, where only some proportion of the 
objects in the sampled area is detected and recorded. 

1.1.2 Line transects 

Line transects are a generalization of strip transects. In strip transect 
sampling one assumes that the entire strip is censused, whereas in line 
transect sampling, one must only assume a narrow strip around the 
centreline is censused; that is, except near the centreline, there is no 
assumption that all objects are detected. A straight line transect is 

4 
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R, • • • • • i, • • • • • • • 
• i. • • • • • • 

• • i. 
• • • • • • • i, • • • 

i, 

Fig. 1.4. A population of objects with a gradient in density is sampled with 
lines parallel to the direction of the gradient. In this case, there are k = 6 lines 
of leng1h /1, /2, ... , h, and I: I;= L. 

Poin1 at which 
observer first 
detects objec'-'.,_ 

' , 

Object A 

Transect line L 

Fig. 1.5. Basic measurements that can be taken m line tramect surveys. Here 
an area of size A is sampled by a single line of length L. If sighting distances 
r are to be iaken in the field, one should also measure the sigh1ing angles 8, to 
allow analysis of perpendicular distances x, calculated as x"' r • sin (9). The 
distance of the object from the observer parallel to the transect at the moment 
of detec1ion is z = r • cos (9). 

5 
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Fig. 1.6. Point transecl surveys are often based on points laid out systematically 
along parallel lines. Alternatively, the poillls could he placed completely at 
random or in a stratified design. Variance eslimation is dependent upon the 
p-0int placement design. 

traversed by an observer and perpendicular distances are measured from 
the line to each detected object (Fig. 1.2). The line is to be placed at 
random and is of known length, L. In practice, a number of lines of 
lengths /1, /2, ... , h are used and their total length is denoted as L (Fig. 
1.4). Objects away from the line·may go undetected and, if distances 
are recorded accurately, reliable estimates of densit}' can be computed. 

It is often convenient to measure the sighting distance r; and sighting 
angle 0,, rather than the perpendicular distance x,, for each of the n 
objects detected (Fig. 1.5). The x, are then found by simple trigonometry: 
x, = r1 • sin (0;). Methods exist to allow estimation of density based 
directly on r; and 0;. They are reviewed by Hayes and Buckland (1983), 
who show that they perfonn poorly relative to methods based on 
perpendicular distances. because they require more restrictive, and 
generally implausible, assumptions. In addition, observations made 
behind the observer (i.e. 0; > 90°) arc problematic for models based on 
sighting distances and angles. 

1.1.3 Point transects 

The term point transect was coined because it may be considered as a 
line transect of zero length (i.e. a point). This analogy is only of limited 

6 
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conceptual use because there are several differences between line and 
point transect theory. Point transects are often termed variable circular 
plots in the ornithological literature, where the points are often placed 
at intervals along straight line transects (Fig. 1.6). We consider a series 
of k points positioned randomly. An observer measures the sighting 
(radial) distance r; from the random point to each of the objects 
detected. Upon completion of the survey of the k points, one has 
distance measurements to the detected objects. Point transects are a 
generalization of traditional circular plot surveys. In circular plot sam
pling, an area of 1tw' is censused, whereas in point transect sampling, 
only the area close to the random point must be fully censused; a 
proportion of objects away from the random point but within the survey 
area remains undetected. 

The area searched in strip and line transect sampling is 2wL, whereas 
the area searched in circular plot and point transect sampling is k1tw 2 

(assuming, for the moment, that w is finite). In strip and traditional 
circular plot sampling, it is assumed that these areas are censused, i.e. 
all objects of interest are detected. In line and point transect sampling, 
only a relatively small percentage of the objects might be detected within 
the searched area (of width 2w for line transects or radius w for point 
transects), possibly as few as 10 30%. Because objects can remain 
undetected, distance sampling methods provide biologists with a power
ful yet practical methodology for estimating density of populations. 

1.1.4 Special applications 

Distance sampling theory has been extended in two ways that deserve 
mention here: trapping webs and cue counts. These important applica
tions are useful in restricted contexts and are direct applications of 
existing distance sampling theory. Two spatial modelling methods some
times termed 'distance sampling' are more familiar to many botanists, 
but have limited use for estimating object density. These methods are 
point-to-object and nearest neighbour methods; they have some simil
arities to distance sampling as defined in this book, but differ in that 
there is no analogy to the detection function g(y). 

(a) Trapping webs Trapping webs (Anderson et al. 1983; Wilson and 
Anderson 1985b) represent a particular applic3tion of distance sampling 
theory and provide a new approach to density estimation for animal 
trapping studies. Traps are placed along lines radiating from randomly 
chosen points (Fig. 1.7); the traditionally used rectangular trapping grid 
cannot be used as a trapping web. Here 'detection' by an observer is 
replaced by animals being caught in traps at a known distance from the 

7 
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centre or a trapping web. Trapping continues for t occasions and only 
the data from the initial capture of each animal are analysed. Trapping 
webs provide an alternative to traditional capture-recapture sampling 
where density is or primary interest. 

(b) Cue counting Cue counting (Hiby 1985) was developed as an 
alternative to line transect sampling for estimating whale abundance 
from sighting surveys. Observers on a ship or aircraft record all sighting 
cues within a sector ahead of the platform and their distance from the 
platform. The cue used depends on species, but might be the blow or a 

-. ·- . ·--. -------

Fig. 1.7. Use of a trapping web to sample small mammal populations is an 
ex1ension of point transect theory. Traps (e.g. live traps, snap traps or pitfall 
traps), represented as □, are placed at the intersec1ions of the radial lines with 
the concentric circles. 

8 



INTRODUCTION 

whale at the surface. The sighting distances are converted into the 
estimated number of cues per unit time per unit area using point transect 
models. The cue rate (usually corresponding to blow rate) is estimated 
from separate experiments, in which individual animals or pods are 
monitored over a period of time. 

(c) Point-Jo-object methods In point transect sampling, the distance 
of each detected object from the point is recorded. In point-to-object 
methods, the distance of the nearest object from the point is recorded 
(Clark and Evans 1954; Eberhardt 1967). The method may be extended, 
so that the distances of the n nearest objects to the point are recorded 
(Holgate 1964; Diggle 1983). Thus the number of detected objects 
from a point is predetermined, and the area around the point must 
be searched exhaustively· to ensure that no objects are missed closer 
to the point than the farthest of the n identified objects. Generally 
the method is inefficient for estimating density, and estimators are prone 
to bias. 

(d) Nearest neighbour methods Nearest neighbour methods are closely 
similar to point-to-object methods, but distances are measured from a 
random object, not a random point (Diggle 1983). If objects are ran
domly distributed, the methods are equivalent, whereas if objects are 
aggregated, distances under this method will be smaller on average. 
Diggle (1983) summarizes ad hoc estimators that improve robustness by 
combining data from both methods; if the assumption that objects are 
randomly distributed is violated, biases in the point-to-object and near
est neighbour density estimates tend to be in opposite directions. 

1.1.5 The detection function 

Central to the concept of distance sampling is the detection function 
g(y): 

g(y): the probability of detecting an object, given that it is at distance 
y from the random line or point 

: prob {detection I distance y}. 

The distance y refers to either the perpendicular distance x for line transects 
or the sighting (radial) distance r for point transects. Generally, the 
detection function decreases with increasing distance, but O..;,; g(y) ..;,; 1 
always. In the development to follow we usually assume that g(O) = I, 
i.e. objects on the line or point are seen with certainty (i.e. probability I). 
Typical graphs of g(y) are shown in Fig. 1.8. Often, only a small 

9 
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oL----------------'-------
0 Distance y w 

Fig, 1.8. Some examples of the detection function g(y). Function b is truncated 
at w and thus takes the value zero for ally> w. Functions with shapes similar 
to a, band care common in distance sampling. Function d usually results from 
poor survey design and conduct, and is problematic. 

percentage of the objects of interest are detected in field surveys. 
However, a proper analysis of the associated distances allows reliable 
estimates of true density to be made. The detection function g{y) could 
be written as g(ylv), where vis the collection of variables other than 
distance affecting detection, such as object size. We will not use this 
explicit notation, but it is understood. 

1.1.6 Summury 

Distance sampling is a class of methods that allow the estimation 
of density (D = number per unit area) of biological populations. The 
critical data collected are distances y; from a randomly placed line 
or point to objects of interest. A large proportion of the objects 
may go undetected, but the theory allows accurate estimates of density 
to be made under mild assumptions. Underlying the theory is the 
concept of a detection function g(y) = prob {detection I distance y). 
Detectability usually decreases with increasing distance from the random 
line or point. 

10 
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1.2 Range of applications 

1.2.1 Object.f of intere.,t 

Studies of birds represent a major use of both point and line transect 
studies. Birds are often conspicuous by their bright coloration or 
distinctive song or call, thus making detection possible even in dense 
habitats. Surveys in open habitats often use line transects, whereas 
surveys in more closed habitats with high canopies often use point 
transects. Distance sampling methods have seen use in studying popu
lations of many species of gamebirds, raptors, passcrincs and shorebirds. 

Many terrestrial mammals have been successfully surveyed using dis
tance sampling methods (e.g. pronghorn, feral pigs, fruit bats, mice, and 
several species of deer, rabbits, hares, primates and African ungulates). 
Marine mammals (several species of dolphin, porpoise, seal and whale) 
have been the subject of many surveys reported in the literature. 
Reptiles, amphibians, beetles and wolf spiders have all been the subject 
of distance sampling surveys, and fish (in coral reefs) and red crab 
densities have been estimated from underwater survey data. 

Many inanimate objects have been surveyed using distance sampling, 
including birds' nests, mammal burrows, and dead deer and pigs. Plant 
populations and even plant diseases are candidates for density estima
tion using distance sampling theory. One military application is estima
tion of the number of mines anchored to the seabed in mine fields. 

J,2.2 Method of transect corerage 

Distance sampling methods have found use in many situations. Specific 
applications are still being developed from the existing theory. The 
versatility of the method is partially due to the variety of ways in which 
the transect line can be traversed. Historically, line transects were 
traversed on foot by a trained observer. In recent years, terrestrial 
studies have used trail bikes, all terrain vehicles, or horses. Transect 
surveys have been conducted using fixed wing aircraft and helicopters; 
'ultralight' aircraft are also appropriate in some instances. 

Transect surveys in aquatic environments can be conducted by divers 
with snorkels or scuba gear, or from surface vessels ranging in size from 
small boats to large ships, or various aircraft, or by sleds with mounted 
video units pulled underwater by vessels on the surface. Small sub
marines may have utility in line or point transect surveys if proper 
visibility can be achieved. Remote sensing may find extensive use as the 
technology develops (e.g. acoustic instruments, radar, remotely control
led cameras, multispectral scanners). 

I I 
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In general. the observer can traverse a line transect at a variable speed, 
travelling more slowly to search heavy cover. Th.e observer may leave 
the line and walk an irregular path, keeping within w on each side of the 
line. However, the investigator must ensure that all objects on the line 
are detected, and that the recorded effort L is the length of the line, 
not the total distance the observer travels. Point transects are usually 
surveyed for a fixed time (e.g. 10 minutes per sample point). 

J,1.3 Clustered populations 

Distance sampling is best explained in terms of 'objects of interest', 
rather than a particular species of bird or mammal. Objects of interest 
might be dead deer, birds' nests, jackrabbits. etc. Often, however, 
interest lies in populations whose members are naturally aggregated into 
clusters. Here we will take clusters as a generic term to indicate herds of 
mammals, flocks of birds, coveys of quail, pods of whales, prides of lions, 
schools of fish, etc. A cluster is a relatively tight aggregation of objects 
of interest, as opposed to a loosely clumped spatial distribution of 
objects. More commonly, 'group' is used, but we prefer 'cluster' to avoid 
confusion with the term 'grouped data', defined below. 

Surveying clustered populations differs in a subtle but important way 
between strip transect sampling and line or point transect sampling. In 
strip transect sampling, all individuals inside the strip are censused; 
essentially one ignores the fact that the objects occur in clusters. In 
contrast, in distance sampling with a fixed w, one records al! clusters 
detected if the centre of the cluster is inside the strip (i.e. O to w). If 
the centre of the cluster is inside the strip, then the count of the size of 
the cluster must include all individuals in the cluster, even if some 
individuals are beyond w. On the other hand, if the centre of the cluster 
is outside the strip, then no observation is recorded, even though some 
individuals in the cluster are inside the strip. 

In distance sampling theory, the clusters must be considered to be 
the object of interest and distances should be measured from the 
line or point to the geometric centre of thi.: cluster. Then, estimation of 
the density of clusters is straightforward. The sample size n is th.e 
number of clusters detected during the survey. If a count is also made 
of the number of individuals (s) in each observed cluster, one can 
estimate the average cluster size, E(s). The density of individuals D can 
be computed as a product of the density of clusters D, times the average 
cluster size: 

D = Ds • E(s) 

12 
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A complication arises if detection is a function of cluster size. This 
relationship is evident if most of the clusters detected at a substantial 
distance from the line or point are relatively large in size. Typically, the 
estimator of D, is still unbiased, but using the mean cluster size S to 
estimate E(s) results in a positive bias in the estimator (because the 
smaller clusters tend to go undetected toward w). 

A well-developed general theory exists for the analysis of distance 
data from clustered populations. Here the detection probability is 
dependent on both distance from the line or point and cluster size 
(this phenomenon is called size-biased sampling). Several approaches 
are possible: (I) stratify by cluster size and apply the usual methods 
within each stratum, then sum the estimated densities of individuals; 
(2) treat cluster size as a covariate and use parametric models for the 
bivariate distance-cluster size data (Drummer and McDonald 1987); (3) 
truncate the distance data to reduce the correlation between detection 
distance and cluster size and then apply robust semiparametric line 
transect analysis methods; (4) first estimate cluster density, then regress 
cluster size on i(Y) to estimate mean cluster size where detection 
is certain (g(y) = I); (5) attempt an analysis by individual object rather 
than cluster, and use robust Inference methods to allow for failure of 
the assumption of independent detections. Strategy (3) is straightforward 
and generally quite robust; appropriate data truncation after data 
collection can greatly reduce the dependence of detection probability on 
cluster size, and more severe truncation can be used for mean cluster 
size estimation than for fitting the line transect model, thus reducing 
the bias in S further. We have also found strategy (4) to be effective. 

1.3 Types of data 

Distance data can be recorded accurately or grouped. Rounding errors 
in measurements often cause the data to be grouped to some degree, 
but they must then be analysed as if they had been recorded accurately, 
or grouped further, in an attempt to reduce the effects of rounding on 
bias. Distances are often assigned to predetennined distance intervals, 
and must then be analysed using methods developed for the analysis of 
frequency data. 

1,3.I Ungrouped data 

Two types of ungrouped data can be taken in line transect surveys: 
perpendicular distances x1 or sighting distances r; and angles 0;. If 
sighting distances and angles are taken, they should be transformed to 
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perpendicular distances for analysis. Only sighting distances ri are used 
in the estimation of density in point transect:.. Trapping webs use the 
same type of measurement r1• which is then the distance from the centre 
of the web to the trap containing animal i. The cue counting method 
also requires sighting distances r;. although only those within a sector 
ahead of the observer are recorded. Angles (0 to 360° from some 
arbitrary baseline) are potentially useful in testing assumptions in point 
transects and trapping webs, but have not usually been taken. In cue 
counting also. angles (sighting angles 8;) are not usually recorded, except 
to ensure that they fall between ± 4', where 24' is the sector angle. In all 
cases we will assume that n distances f Y1, Yi, .... Yn} are measured 
corresponding to the n detected objects. Of course, n itself is usually a 
random variable, although one could design a survey in which searching 
continues until a pre-specified number of objects n is detected; L is then 
random and the theory is modified slightly (Rao 1984). 

Sample size n should generally be at least 60-80, although for some 
purposes, as few as 40 might be adequate. Formulae are available to 
determine the sample size that one expects to achieve with a given level 
of precision (measured, for example, by the coefficient of variation). A 
pilot survey is valuable in predicting sample sizes required, and will 
usually show that a sample as small as 40 for an entire study is unlikely 
to achieve the desired precision. 

I .3.2 Grouped data 

Data grouping arises in distance sampling in two ways. First, ungrouped 
data y;, i = I, .... n. may be taken in the field, but analysed after 
deliberate grouping into frequency counts n1, i = I, ... , u, where u is the 
number of groups. Such grouping into distance intervals is often done to 
achieve robustness in the analysis of data showing systematic errors such 
as heaping (i.e. rounding errors). Grouping the r; and 81 data by intervals 
in the field or for analysis in line transect surveys is not recommended 
because it complicates calculation of perpendicular distances, although 
techniques (e.g. 'smearing') exist to handle such grouped data. 

Second. the data might be taken in the field only by distance categories 
or intervals. For example, in aerial surveys it may only be practical to 
count the number of objects detected in the following distance intervals: 
0-20. 20 50. 50-100, 100-200, and 200-500 m. Thus, the exact distance 
of an object detected anywhere from O to 20 m from the line or point 
would not be recorded, but only that the object was in the first distance 
category. The resulting data are a set of frequency counts n1 by specified 
distance categories rather than the set of exact distances, and total 
sample size is equal to n = L n;. 

14 
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Distance categories are defined by boundaries called cutpoints c,. For 
u such boundaries, one has cutpoints O < c1 < c2 < ... < cu. By conven
tion, let co= 0 and Cu= w, where w can be finite or infinite (i.e. un
bounded). Typically in line transect sampling the intervals defined by 
the cutpoints will be wider near w and narrower near the centreline. 
However, in point transect sampling, the first interval may be quite wide 
because the area corresponding to it is relatively small. The sum of the 
counts in each distance category equals the total number of detections 
n, which is the sample size. In the example above, u = 5, and the 
cutpoints are O < c1 = 20 < c2 = 50 < C1 = 100 < c4 = 200 < c5 = w = 500. 
Suppose the frequency counts n; are 80, 72, 60, 45 and 25, respectively. 
Then n = 1: n; = 282 detections. 

1.3.3 Data truncation 

In designing a line transect survey, one can establish a distance y = w 
whereby objects at distances greater than w are ignored. In this case, 
the width of the transect to be searched is 2w, and the area searched is 
of size 2wL. In point transects, a radius w can similarly be established, 
giving the total area searched as kn:w 2

• In the general theory, w may be 
assumed to be infinite so that objects may be detected at quite large 
distances. In such cases, the width of the transect or radius around the 
point is unbounded. 

Distance data can be truncated (i.e. discarded) prior to analysis. Data 
can be truncated beyond some distance w to delete outliers that make 
modelling of the detection function g(y) difficult (Fig. 1.9). For example, 
w might be chosen such that fr(w) = 0.15. Such a rule might eliminate 
many detections in some point transect surveys, but only relatively few 
detections in line transect surveys. A simpler rule might be to truncate 
5-10% of the objects detected at the largest distances. If data are 
tr.uncated in the field, further truncation may be carried out at the 
analysis stage if this seems useful. 

General methodology is available for 'left-truncation' (Alldredge and 
Gates 1985). This theory is potentially useful in aerial surveys if visibility 
directly below the aircraft is limited and, thus, g(O) < I. Quang and 
Lanctot (1991) provide an alternative solution to this problem. Selection 
of a model for the distance data is critical under left-truncation because 
estimation may be very model dependent. Other alternatives exist at the 
survey design stage and we hesitate to recommend left-truncation except 
in special circumstances, such as the case where there is evidence of a 
wide shoulder in the detection function. 

15 
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Fig. 1.9. Histogram of the number of eastern grey kangaroos detected as a 
function of distance from a line transect survey on Rotamah Island. Australia 
(redrawn from Coulson and Raines 1985). These data illustrate some heaping 
in the first, third and fifth distance classes, and the need to truncate observations 
beyond about 50 m. 

1.3.4 Units of measurem£nt 

The derivation of the theory assumes that the units of y,, L and D are 
all on the same measurement scale. Thus, if the distances y; are measured 
in metres, then L should be in metres and density will be in numbers 
per square metre. In practice it is a simple but important matter to 
convert the y;, I; or D from any unit of measure into any other; in fact, 
computer software facilitates such conversions (e.g. feet to metres or 
acres to square kilometres or numbers/m2 to numbers/km2). 

1.3.5 Ancillary data 

In some cases, there is interest in age or sex ratios of animals detected. 
in which case these ancillary data must be recorded. Cluster size is a 
type of ancillary data. Size of the animal, its reproductive state (e.g. 
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kangaroos carrying young in the pouch), or presence of a marker or 
radio transmitter are other examples of ancillary data collected during 
a survey. Such ancillary information can be incorporated in a variety 
of ways. If probability of detection is a function of the ancillary variable, 
then it might be used to stratify the data. or it might enter the analysis 
as a covariate, to improve estimation. 

1.4 Known constants and parameters 

1.4.l Known constants 

Several known constants are used in this book and their notation is 
given below: 

A = area occupied by the population of interest; 

k = number of lines or points surveyed; 

I;= length of the ith transect line, i =I, ... , k; 

L = total line length = I: !,; 

and w = the width of the area searched on each side of the line 
transect, or the radius searched around a point transect, or 
the truncation point beyond which data are not used in .the 
analysis. 

1.4.2 Parameters 

In line and point transect surveys there are only a few unknown 
parameters of interest. These are defined below: 

D = density (number per unit area); 

N = population size in the study area; 

E(s) = mean cluster size in the population (not the same as, but 
often estimated by, the sample mean S of detected 
objects); 

f(O) = the probability density function of distances from the line, 
evaluated at zero distance; 

h(O) = the slope of the probability density function of distances 
from the point, evaluated at zero distance; 

17 
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and g(O) = probability of detection on the line or point, usually 
assumed to be I. For some applications (e.g. species of 
whale which spend substantial periods underwater and thus 
avoid detection, even on the line or point), this parameter 
must be estimated from other types of information. 

Density D may be used in preference to population size N in cases 
where the size of the area is not well defined. Often an encounter rate 
nl L is computed as an index for sample size considerations or even as 
a crude relative density index. 

1.5 Assumptions 

Statistical inference in distance sampling rests on the validity of several 
assumptions. First, the survey must be competently designed and con
ducted. No analysis or inference theory can make up for fundamental 
flaws in survey procedure. Second. the physical setting is idealized: 

I. Objects are spatially distributed in the area to be sampled according 
to some stochastic process with rate parameter D (= number per unit 
area). 

2. Randomly placed lines or points are surveyed and a sample of n 
objects is detected, measured and recorded. 

It is not necessary that the objects be randomly (i.e. Poisson) dis
tributed. Rather, it is critical that the line or point be placed randomly 
with respect to the distribution of objects. Random line or point 
placement ensures a representative sample of the relevant distances and 
hence a valid density estimate. The use of transects along trails or roads 
does not constitute a random sample and represents poor survey practice. 
In practice, a systematic grid of lines or points, randomly placed in the 
study area, suffices. 

Three assumptions are essential for reliable estimation of density from 
line or point transect sampling. These assumptions are given in order 
from most to least critical: 

I. Objects directly on the line or point are always detected (i.e. they 
are detected with probability I, or g(O) = I). 

2. Objects are detected at their initial location, prior to any movement 
in response to the observer. 

3. Distances (and angles where relevant) are measured accurately (un
grouped data) or objects are correctly counted in the proper distance 
category (grouped data). 
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Some investigators include the assumption that one musl be able to 
identify the object of interest correctly. In rich communities of song
birds, this problem is often substantial. Marine mammals often occur 
in mixed schools, so it is necessary both lo identify all species present 
and to count the number of each species separately. In rigorous theoret
ical developments, assumption (2) is taken to be that objects are im
mobile. However, slow movement relative to the speed of the observer 
causes few problems in line transects. In contrast, responsive movement 
of animals to the approaching observer can create serious problems. In 
point transects, undetected movement of animals is always problematic 
because the observer is stationary. 

The effects of partial failure of these assumptions will be covered at 
length in later sections, including the condition g(O) < I; estimation in 
this circumstance is one of the main areas of current methodological 
development. All of these assumptions can be relaxed under certain 
circumstances. These extensions are covered in the following chapters. 
We note that no assumption is made regarding symmetry of g(y) on the 
two sides of the line or around the point, although extreme asymmetry 
would be problematic. Generally, we believe that asymmetry near the 
line or point will seldom be large, although topography may sometimes 
cause difficulty. If data are pooled to give a reasonable sample size, 
such problems can probably be ignored. 

1.6 Fundamental concept 

It may seem counterintuitive that a survey be conducted, fail to detect 
perhaps 60-90¾ of the objects of interest in the survey plots (strips of 
dimension L by 2w or circular plots of size n:w2

), and still obtain accurate 
estimates of population density. The following two sections provide insights 
into how distances are the key to the estimation of density when some of 
the objects remain undetected. We will illustrate the intuitive ideas for the 
case of line transect sampling; those for point transects are similar. 

Consider an arbitrary area of size A with objects of interest distributed 
according to some random process. Assume a randomly placed line and 
grouped data taken in each of eight I-foot distance intervals from the 
line on either side, so that w = 8. If all objects were detected, we would 
expect, on average, a histogram of the observations to be uniform as 
in Fig. 1. IOa. In other words, on average, one would not expect many 
more or fewer observations to fall, say, within the seventh interval than 
the first interval, or any other interval. 

In contrast, distance data from a survey of duck (Anus and Ayrhya 
spp.) nests at the Monte Vista National Wildlife Refuge in Colorado. 

19 



100 

0 

100 

0 

INTRODUCTORY CONCEPTS 

2 3 4 5 

2 3 4 5 

Frequency= 77.05 - 0.409 x 2 

P= 0.888 
Correctiori., 1.126 

la) 

6 7 8 

(b) 

6 7 8 

(c) 

,---;,---,---,,---,.---,.----,---,----
2345678 

Distance (fl) 

Fig. 1.10. Conceptual basis for line transect sampling: (a) the expected number 
of objects detected in eight distance classes if no objects were left undetected; 
(b) real data where a tendency to detect fewer objects at greater distances from 
the line can be noticed: (c) simple methods can be used to estimate the proportion 
of the objects left undetected (shaded area). The proportion detected, P, can be 
estimated from the distance data. 
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USA (Anderson and Pospahala 1970) are shown in Fig. I.IOb as a 
histogram. Approximately 10 000 acres of the refuge were surveyed using 
L = 1600 miles of transect, and an area w = 8 feet on each side of the 
transect was searched. A total of 534 nests was found during 1967 and 
1968 and the distance data were grouped for analysis into I-foot 
intervals. Clearly there is evidence from this large survey that some nests 
went undetected in the outer three feet of the area searched. Visual 
inspection might suggest that about 10% of the nests were missed during 
the survey. Note that the intuitive evidence that nests were missed is 
contained in the distances, here plotted as a histogram. 

Examination of such a histogram suggests that a 'correction factor', 
based on the distance data, is needed to correct for undetected objects. 
Note that such a correction factor would be impossible if the distances 
(or some other ancillary information) were not recorded. Anderson and 
Pospahala (1970) fitted a simple quadratic equation to the midpoints of 
each histogram class to obtain an objective estimate of the number of 
nests not detected (Fig. l .lOc). Their equation, fitted by least squares, 
was 

frequency= 77.05 - 0.4039x2 

The proportion ( P) of nests detected was computed as the unshaded 
area in Fig. l.lOc divided by the total area (shaded+ unshaded). (The 
areas were computed using calculus, but several simpler approximations 
could be used.) The estimated proportion of nests detected from O to 8 
feet can be computed to be 0.888, suggesting a correction factor of 1.126 
("" 1/0.888) be applied to the total count of n = 534. Thus, the estimated 
number of nests within eight feet of the sample transects was nlP = 601, 
and because the transects sampled 5.5% of the refuge, the estimate of the 
total number of nests on the refuge during the 2-year period was 
601/0.055= 10927. This procedure provides the intuition that distances 
are important in reliable density estimates even if most of the objects 
are not detected. The Anderson-Pospahala method is no longer recom
mended since superior analysis methods are now available, but it illus
trates the principle underlying the theory. The next two chapters will 
put this intuitive argument on a more formal basis. 

1. 7 Detection 

When a survey has been conducted, n objects will have been detected. 
Considerable confusion regarding the meaning of n exists in the literature. 
Here an attempt is made to factor n into its fundamental components. 
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Burnham et al. (1981), Dawson (1981) and Morgan (1986: 9-25) give a 
discussion of these issues. Ramsey ( 1981) provides an infonnative example. 

The number detected, n, is a confounding of true density and prob
ability of detection. The latter is a function of many factors, including 
cue production by, or characteristics of, the object of interest, observer 
effectiveness, and the environment. Of these factors, one could hope 
that only the first, density, influences the count. While this might be 
ideal, it is rarely true. 

1.7.J Cue production 

The object of interest often provides cues that lead to its detection by 
the survey observer. Obvious cues may be a loud or distinctive song or 
call. A splash made by a marine mammal or flock of sea birds above 
a school of dolphins are other examples of cues. Large size, bright or 
contrasting colouring, movement or other behaviour may be causes for 
detection. These cues are frequently species-specific and may vary by 
age or sex of the animal, time of day, or season of the year. Thus, the 
total count n can vary for reasons unrelated to density (Mayfield 1981; 
Richards 1981; Bollinger et al. 1988). Most often, the probability of 
detection of objects based on some cue diminishes as distance from the 
observer increases. 

1.7.1 Obseri,er effutfreness 

Observer variability is we11 known in the literature on biological surveys. 
Interest in the survey, training and experience are among the dominant 
reasons why observers vary widely in their ability to detect objects of 
interest. However, both vision and hearing acuity may be major vari
ables which are often age-specific (Ramsey and Scott 1981a; Scott, et al. 
1981). Fatigue is a factor on long or difficult surveys. Even differing 
heights of observers may be important for surveys carried out on foot, 
with tall observers detecting objects at a higher rate. Generally, the 
detection of objects decreases with increasing distance due to observer 
effectiveness. 

1.7.3 Environment 

Environmental variables often innuence the number of objects detected 
(Best 1981; Ralph 1981; Verner 1985). The habitat type and its pheno
logy are clearly important (Bibby and Buckland 1987). Physical condi
tions often inhibit detection: wind, precipitation, darkness, sun angle, 
etc. Cue production varies by time of day, which can have a tenfold 

22 



HISTORY OF METHODS 

effect in the detectability of some avian species (Robbins 1981; Skirvin 
1981). Often, these variables interact to cause further variability in 
detection and the count n. 

Distance sampling provides a general and comprehensive approach to 
the estimation of population density. The distances y1 allow reliable 
estimates of density in the face of variability in detection due to factors 
such as cue production, observer effectiveness and environmental dif
ferences. The specific reasons why an object was not detected are 
unimportant. Furthermore, it seems unnecessary to research the in
fluence of these environmental variables or to standardize survey proto
col for them, if distances are taken properly and appropriate analysis 
carried out. Distance sampling methods fully allow for the fact that 
many objects will remain undetected, as long as they are not on the line 
or point. For example, in Laake's stake surveys (Burnham et al. 1980) 
only 27----67% of the stakes present were detected and recorded by various 
surveyors traversing the line. Still, accurate estimates or stake density 
were made using distance sampling theory. 

1.8 History of methods 

J .8.1 Line transects 

In the 1930s, R.T. King recognized that not all animals were seen on 
strip transect surveys and presumably tried to estimate an effective width 
of the transect. He recognized that distances were useful and used the 
average sighting distance ;: as the effective width surveyed (Leopold 
1933; Gates 1979). The early literature tried to conceptualize the idea 
of effective area sampled. Finally, Gates {1979) provided a formal 
definition for the effective strip width(µ): the distance for which unseen 
animals located closer to the line than µ equals the number of animals 
seen at distances greater thanµ. Then, D = n!A', where A'= 2µL and is 
the estimated area 'effectively' sampled. Note that µ is actually one-half 
the effective strip width, i.e. only one side of the line. 

Kelker (1945) took an alternative approach that is still sometimes 
used. Instead of trying to retain the total sample of n distances and 
estimate the 'area' effectively sampled, Kelker determined a strip width 
L'. on each side of the transect centreline, within which all animals were 
probably seen. The value of .6. was judged subjectively from an inspec
tion of the histogram of the perpendicular distance data. Once 6 was 
chosen, density was estimated as a strip transect with W = 6 and n the 
number of objects detected from O to 6 on each side of the line transect. 
Distance data exceeding 6 were not used further. 
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No attempts were made to formulate a firm conceptual and mathematical 
foundation for line transects until Hayne's paper in 1949. All estimators 
then in use were ad hoc and generally based on either the concept of the 
effective strip width or the related idea of determining a strip width narrow 
enough such that no animals were undetected in that strip. Variations of 
these approaches are still being used and sometimes 'rediscovered' today. 
even though better methods have existed for many years. 

Hayne (1949) provided the first estimator that has a rigorous justifi
cation in statistical theory. While Hayne's method rests on only the use 
of sighting distances r;, the critical assumption made can only be tested 
using the sighting angles 0,-. Hayne's (1949) method is poor if 0 is not 
approximately 32.7° and may not perform well even if 0 falls close to 
this value, i.e. not a robust method. 

After Hayne's (1949) paper, almost no significant theoretical advances 
appeared until 1968. During that 20 year period, line transect sampling 
was used frequently, and on a variety of species. The assumptions behind 
the method were sharpened in the wildlife literature and some evalu
ations of the method were presented (e.g. Robinette et al. 1956). 

In 1968, two important papers were published in which some of the 
basic ideas and conceptual approaches to line transect sampling finally 
appeared (Eberhardt 1968; Gates et al. 1968). Gates et al. (1968) 
published the first truly rigorous statistical development of a line tran
sect estimator, applicable only to untruncated and ungrouped perpen
dicular distance data. They proposed that f(x) be a negative exponential 
form, /(x) =a· exp(- ax), where a is an unknown parameter to be 
estimated. Under that model. /(0) = a. Gates el al. (1968) developed the 
op1imal estimator of a based on a sample of perpendicular distances 
and provided an estimator of the sampling variance. For the first time, 
rigorous consideration was given to questions such as optimal estimation 
under the model, construction of confidence intervals, and tests of 
assumptions. The one weakness was that because the assumed detection 
function was very restrictive and might easily be inappropriate, the 
resulting estimate of density could be severely biased. 

In contrast. Eberhardt (1968) conceptualized a fairly general model in 
which the probabilities of detection decreased with increasing perpen
dicular distance. He reflected on the shape of the detection function 
g(x), and suggested both that there was a lack of information about the 
appropriate shape and that the shape might change from survey to 
survey. Consequently, he suggested that the appropriate approach would 
be to adopt a family of curves to model g(x). He suggested two such 
families, a power series and a modified logistic, both of which are fairly 
flexible parametric functions. His statistical development of these models 
was limited, but important considerations had been advanced. 
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Since 1968, line transect sampling has been developed along rigorous 
statistical inference principles. Parametric approaches to modelling g(x) 
were predominant, with the notable exception of Anderson and Pospa
hala ( 1970), who rather inadvertently introduced some of the basic ideas 
that underlie a non-parametric or semiparametric approach to the 
analysis of line transect data. Emlen (1971) proposed an ad hoc method 
that found use in avian studies. 

A general model structure for line transect sampling based on perpen
dicular distances was presented by Seber (1973: 28-30). For an arbitrary 
detection function, Seber gave the probability distribution of the distan
ces X1, .... Xn and the general form of the estimator of animal density 
D. This development was left at the conceptual stage and not pursued 
to the final step of a workable general approach for deriving line 
transect estimators, and the approach was still based on the concept of 
an effective strip width. 

More work on sighting distance estimators appeared (Gates 1969; 
Overton and Davis 1969). There was a tendency to think of approaches 
based on perpendicular distances as appropriate for inanimate or non
responsive objects, whereas methods for flushing animals were to be 
based on sighting distances and angles (Eberhardt 1968, 1978a). This 
artificial distinction tended to prevent the development of a unified 
theory for line transect sampling. By the mid-1970s. line transect sam
pling remained a relatively unexplored methodology for the estimation 
of animal density. Robinette et al. (1974) reported on a series of field 
evaluations of various line transect methods. Their field results were 
influential in the development of the general theory. 

Burnham and Anderson (1976) pursued the general formulation of 
line transect sampling and gave a basis for the general construction 
of line transect estimators. They developed the general result 
b = n • i(0)/2L. wherein the parameter /(0) is a well-defined function of 
the distance data. The key problem of line transect data analysis was 
seen to be the modelling of g(x) or /(x) and the subsequent estimation 
of f(O). The nature of the specific data (grouped or ungrouped, truncated 
or untruncated) is irrelevant lo the basic estimation problem. Conse
quently, their formulation is applicable for the development of any 
parametric or semiparametric line transect estimator. Further, the 
general theory is applicable to point transect sampling with some modi
fication (Buckland 1987a). 

Burnham and Anderson's (1976) paper heralded a period of new 
statistical theory. Major contributions published during the 1976-80 
period include Schweder (1977), Crain et al. (1978, 1979), Pollock (1978), 
Patil et al. (1979b). Quinn (1979), Ramsey (1979), Seber (1979) and 
Quinn and Gallucci (1980). Other papers developing methodology during 
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this short period include Anderson et al. (1978, 1979, 1980), Eberhardt 
(1978a, b, 1979), Sen et al. (1978), Burnham et al. (1979), Patil et al. 
(1979a) and Smith (1979). Anderson et al. (1979) provided guidelines 
for field sampling, including practical considerations. Burdick (1979) 
produced an advanced method to estimate spatial patterns of abundance 
from line transect sampling where there are major gradients in popula
tion density. Laake et al. (1979) and Gates (1980) produced compre
hensive computer software packages, TRANSECT and LINETRAN 
respectively, for the analysis of line transect data. 

Gates (1979) provided a readable summary of line transect sampling 
theory and Ramsey's (1979) paper presents a more mathematical treat
ment of parametric approaches. Hayes (1977) gave an excellent summary 
of methodology and provided many useful insights at that time. 

Burnham et al. (1980) published a major monograph on line transect 
sampling theory and application. This work provided a review of pre
vious methods, gave guidelines for field use, and identified a small class 
of estimators that seemed generally useful. Usefulness was based on four 
criteria: model robustness, pooling robustness, a shape criterion, and 
estimator efficiency. Theoretical and Monte Carlo studies led them to 
suggest the use of estimators based on the Fourier series (Crain et al. 
1978, 1979), the exponential power series (Pollock 1978), and the ex
ponential quadratic model. 

Since 1980, more theory has been developed on a wide variety of 
issues. Seber (1986) and Ramsey et al. (1988) give brief reviews. Major 
contributions during the 1980s include Butterworth (1982a, b), Patil et 
al. (1982), Hayes and Buckland (1983), Buckland (1985), Burnham et 
al. (1985), Johnson and Routledge (1985), Quinn (1985), Drummer and 
McDonald (1987), Ramsey et al. (1987), Thompson and Ramsey (1987) 
and Zahl (1989). Other papers during the decade include Buckland 
(1982), Stoyan (1982), Burnham and Anderson (1984), Anderson et al. 
(1985a, b) and Gates et al. (1985). Several interesting field evaluations 
where density was known have appeared since 1980, including Burnham 
et al. (1981), Hone (1986, 1988), White et al. (1989), Bergstedt and 
Anderson (1990) and Otto and Pollock (1990). In addition, other field 
evaluations where the true density was not known have been published, 
but these results are difficult to interpret. 

A great deal of statistical theory has been developed since 1976, but 
new theory may have started to decrease by the late 1980s. Field studies 
using line transect sampling have increa~d and new applications have 
appeared in the !iternture. No attempt to discuss all of the recent 
developments will be given in this chapter. At the present time, there 
are several good models for fitting g(x). There now exist sound ap
proaches for analysing grouped or ungrouped data with truncated or 
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untruncated transect widths, under various extensions (e.g. clustered 
populations). Estimation based on sighting distances and angles has been 
shown to be problematic and we recommend transforming such data to 
perpendicular distances prior to analysis. Current areas of development 
include estimation when g(O) < L when responsive movement to the 
observer occurs, when the objects occur in clusters, leading to size-biased 
sampling, and when there is covariate information on factors such as 
sighting conditions or habitat. 

I ,8.2 Point transects 

Point transect sampling has had a much shorter history. The method 
can be traced to the paper by Wiens and Nussbaum (1975) and their 
application of what they called a variable circular plot census. They drew 
heavily on the paper on line transects by Emlen (1971). Ramsey and 
Scott (1979) provided a statistical formalism for the general method 
and noted several close relationships to line transect sampling. Following 
the 'effective area' thinking, they noted 'The methods are similar in spirit 
to line transect methods, in that the total number of detections divided 
by an estimate of the area surveyed is the estimate of the population 
density.' Ramsey and Scott (1979) provided a summary of the assump
tions and derived a general theory for density estimation, including 
sampling variances. This represented a landmark paper at the time. 

Reynolds et al. (1980) presented additional information on the variable 
circular plot method. Burnham et al. (1980) and Buckland (1987a) also 
noted the close links between line transects and point transects (i.e. 
variable circular plots). Buckland (1987a) developed other models, evalu
ated the Fourier series, Hermite polynomial and hazard-rate estimators, 
and provided an evaluation of the efficiency of binomial models (where 
objects of interest are grouped into two categories, within or beyond a 
specified distance c1). The general theory for line and point transects is 
somewhat similar because they both involve sampling distances. Thus, 
the term point transect will be used rather than the variable circular 
plot 'census'. 

1.9 Program DISTANCE 

The computation for most estimators is arduous and prone to errors if 
done by hand. Estimators of sampling variances and covariances are 
similarly tedious. Data should be plotted and estimates of /(y) should 
usually be graphed for visual comparison with the observed distance 
data. 
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Program DISTANCE (Laake et al. 1993) was developed to allow 
comprehensive analyses of the type of distance data we discuss here. 
The program is written in FORTRAN and runs on any IBM PC 
compatible microcomputer with 640 K of RAM. A math coprocessor is 
desirable, but not required. Program DISTANCE allows researchers to 
focus on the biology of the population, its habitat and the survey 
operation; one can concentrate on the results and interpretation, rather 
than on computational details. Almost all the examples presented in this 
book were analysed using program DISTANCE; the distance data and 
associated program commands for some of the examples are available 
as an aid to data analysts. The program is useful both for data analysis 
and as a research tool. Only occasional references to DISTANCE are 
made throughout this book because a comprehensive manual on the 
program is available (Laake et al. 1993). 
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2 

Assumptions and 
modelling philosophy 

2.1 Assumptions 

This section provides material for a deeper understanding of the as
sumptions required for the successful application of distance sampling 
theory. The validity of the assumptions allows the investigator assurance 
that valid inference can be made concerning the density of the popula
tion sampled. The existing theory covers a very broad application area 
and makes it difficult to present a simple list of all the assumptions that 
are generally true for all applications. Three primary assumptions are 
emphasized, but first two initial conditions are mentioned. 

First, it is assumed that a population comprises objects of interest that 
are distributed in the area to be sampled according to some stochastic 
process with rate parameter D (= expected number per unit area). In 
particular, it is not necessary (in any practically significant way) that 
the objects be randomly (i.e. Poisson) distributed, although this is 
mistakenly given in several places in the literature. Rather, it is critical 
that the Jines or points be placed randomly with respect lo 1he dislribution 
of objects. Random line or point placement justifies the extrapolation of 
the sample statistics to the population of interesl. The area to be 
sampled must be defined, but its size need not be measured if only object 
density (rather than abundance) is to be estimated. Further, the observer 
must be able to recognize and correctly identify the objects of interest. 
This requirement seems almost trite, but in rich avian communities, 
the problem can be substantial. The distances from the line or point to the 
identified objects must be measured without bias. 

Second, the design and conduct of 1he survey must pay due regard to 
good survey practice, as outlined in Chapter 7. If the survey is poorly 
designed or executed, the estimates may be of little value. Sound theory 
and analysis procedures cannot change this. 
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Three assumptions are critical to achieving reliable estimates of density 
from line of point transect sampling. These assumptions are given 
roughly in order of importance from most to least critical. The effects 
of partial failure of these assumptions and corresponding theoretical 
extensions are covered at length in later sections. All three assumptions 
can be relaxed under certain circumstances. 

2.1.1 Assumption 1: objects on the line or point are detected with 
certainty 

It is assumed that all objects at zero distance are detected, that is 
g(O) = I. In practice, detection on or near the line or point should be 
nearly certain. Design of surveys must fully consider ways to assure that 
this assumption is met; its importance cannot be overemphasized. 

It is sometimes possible to obtain an independent estimate of the 
probability of detection on the centreline in a line transect survey, for 
example by assigning two (or more) independent observers to each leg 
of search effort. Chapter 6 summarizes methods which have been 
developed for estimating g(O), and Chapter 3 shows how the estimate 
can be incorporated in the estimation of density. It is important to note 
that g(O) cannot be estimated from the distances y; alone, and attempts 
to estimate g(O) with low bias or adequate precision when it is known 
to be less than unity have seldom been successful. This issue should be 
addressed during the design of surveys, so that observation protocol will 
assure that g(O) = I or that a procedure for estimating g(O) is incorpor
ated into the design. 

In fact, the theory can be generalized such that density can be computed 
if the value of g(y) is known for some value of y. However, this result is 
of little practical significance in biological sampling unless an assumption 
that g(y)= 1 for some y > 0 is made (Quang and Lanctot 1991). 

If objects on or near the line or point are missed, the estimate will 
be biased low (i.e. E(b) < D). The bias is a simple function of g(O): 
E(b) - D = - [I - g(O)] • D, which is zero (unbiased) when g(O) = I. 
Many things can be done in the field to help ensure that g(O) = I. For 
example, video cameras have been used in aerial and underwater surveys 
to allow a check of objects on or very near the line; the video can 
be monitored after completion of the field survey. Trained dogs have 
been used in ground surveys to aid in detection of grouse close to 
the line. 

Although we stress that every effort should be made to ensure 
g(O) = 1, the practice of 'guarding the centreline' during shipboard or 
aerial line transect surveys can be counterproductive. For example, 
suppose that most search effort is carried out using 20 x or 25 x tripod-
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', Perpeno'icufat dislance ~ • 

Fig. 2.1. Hypothetical detection function illustrating the danger of assigning an 
observer to 'guard the ce11treline'. This problem is most common in shipboard 
and aircraft surveys involving more than one observer. 

mounted binoculars on a ship, but an observer is assigned to search 
with the naked eye, to ensure animals very close to the ship arc not 
missed. Ir g(O) in the absence of this observer is appreciably below I, 
then the detection function may be as illustrated in Fig. 2.1. This 
function violates the shape criterion described later, and no line transect 
model can reliably estimate density in this case. The problem may be 
exacerbated if animals are attracted to the ship; the observer guarding 
the centreline may only detect animals as they move in toward the bow. 
Polacheck and Smith (unpublished) argued that if effort is concentrated 
close to the centreline, large bias can arise. Thus. field procedures should 
ensure both that g(O) = I and that the detection function does not fall 
steeply with distance from the line or point. 

2.1.2 Assumption 2: ohjects are detected at their initial location 

In studies of mobile animals, it is possible that an animal moves from 
its original location for some distance prior to being detected. The 
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measured distance is then from the random line or point to the location 
of the detection, not the animal's original location. If such undetected 
movements prior to detection were random (see Yapp 1956), no serious 
problem would result, provided that the animal's movement is slow 
relative to the speed of the observer. 1f movement is not slow, its effect 
must be modelled (Schweder 1977), or field procedures must be modified 
(Section 7.6). However, movement may be in response to the observer. 
Ir the movement is away from the transect line being traversed by the 
observer, the density estimator is biased low, whereas if the movement 
is toward the observer (e.g. some songbirds and marine mammals), the 
estimator of density will be biased high. Substantial movement away 
from the observer can often be detected in a histogram of the distance 
data (Fig. 2.2). However, if some animals move a considerable perpen• 
dicular distance and others remain in their original location, then the 
effect may not be detectable from the data. Ideally, the observer on a 
line transect survey would try to minimize such movement by looking 
well ahead as the area is searched. Field procedures should try to ensure 
that most detections occur beyond the likely range of the effect of the 
observer on the animals. In point transect surveys, one must be careful 
not to disturb animals as the sample point is approached, or perhaps 
wait a while upon reaching the point. 

The theory of distance sampling and analysis is idealized in terms 
of dimensionless points or 'objects of interest'. Surveys of dead deer, 
plants or duck nests are easily handled in this framework. More gener
ally, movement independent of the observer causes no problems, unless 
the object is counted more than once on the same unit of transect 
sampling effort (usually the line or point) or if it is moving at roughly 
half the speed of the observer or faster. Animals such as jackrabbits or 
pheasants will flush suddenly as an observer approaches. The measure
ment must be taken to the animal's original location. In these cases, the 
flush is often the cue that leads to detection. Animal movement after 
detection is not a problem, as long as the original location can be 
established accurately and the appropriate distance measured. Similarly, 
it is of no concern if an animal is detected more than once on different 
occasions of sampling the same transect. Animals that move to the 
vicinity of the next transect in response to disturbance by the observer 
are problematic. If the observer unknowingly records the same animal 
several times while traversing a transect, due to undetected movement 
ahead of him, bias can be large. 

The assumption of no movement before detection is not met when 
animals take evasive movement prior to detection. A jackrabbit might 
hop several metres away from the observer into heavy cover and wait. 
As the observer moves closer. the rabbit might eventually !lush. If the 
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Fig. 2.2. Three histograms of perpendicular distance data, for equally spaced 
cutpoints, illustrating the effect of evasive movement prior to detection. Expected 
values are shown for the case where relatively little movement away from the 
observer was experienced prior to detection (a), while (b) and (c) illustrate cases 
where mo,·ement prior to detection was more pronounced. Darn. taken from 
Laake (1978). 
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new location is thought to be the original location and this distance is 
measured and recorded, then the assumption is violated. If this condition 
happens in only, say, 5% of the observations, then the bias is likely to 
be trivial. If a· substantial portion of the population moves further from 
the line prior to detection, this movement will often be apparent from 
examination of the histogram of the distance data. If evasive movement 
occurs prior to detection, the estimator will be biased low (E(.b) < D) 
(Fig. 2.2b or c). Less frequently, members of a species will be attracted 
to the observer (Bollinger et al. 1988; Buckland and Turnock in press). 
If animals move toward the observer prior to being detected. a positive 
bias in estimated density can be expected (E(b) > D). However, in this 
case, the movement is unlikely to be detected in the histogram, even if 
it is severe. It seems unlikely that methods will be developed for the 
reliable estimation of density for cases where a high proportion of the 
objects moves in response to the observer prior to detection without 
making some very critical and untestable assumptions (e.g. Smith 1979), 
unless relevant and reliable ancillary data can be gathered (Turnock and 
Quinn 1991; Buckland and Turnock in press). 

2.1.3 Assumption 3: measurements are exact 

Ideally, recorded distances (and angles, where relevant) are exact, with
out measurement errors, recording errors or heaping. For grouped data, 
detected objects are assumed to be correctly assigned to distance categories. 
Reliable estimates of density may be possible even if the assumption is 
violated. Although the effect of inaccurate measurements of distances 
or angles can often be reduced by careful analysis (e.g. grouping), it is 
better to gather good data in the field, rather than to rely on analytical 
methods. It is important that measurements near the line or point are 
made accurately. Rounding errors in measuring angles near zero are 
problematic, especially in the analysis of ungrouped data, and for 
shipboard surveys. If errors in distance measurements are random and 
not too large, then reliable density estimates are still likely, especially 
if the sample size is large (Gates et al. 1985). Biased measurements pose 
a larger problem (e.g. a strong tendency to overestimate the distances 
using ocular judgements). and field methods should be considered to 
minimize this bias. 

For duck nests and other stationary objects, distances can be measured 
with a steel tape or similar devi(.;e, but distances are often merely paced or 
estimated. taken with a rangefinder or estimated using binocular reticles. 
These approximate methods compromise the quality of the data. but are 
often forced by practical considerations. A useful alternative is to take 
grouped data in, say, 5---7 distance categories. such that the width of the 
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categories increases toward w (i.e. [c1 - OJ..;; [c2 - c1] ,;;; [c3 - cJ ,;;; ... ). 
Thus, careful measurement is required only near the cutpoints c;. 

(a) Heaping Often, when distances are estimated (e.g. ocular estimates, 
'eyeballing'), the observer may 'round' to convenient values (e.g. 5, 10, 
50 or 100) when recording the result. Thus, a review of the n distance 
values will frequently result in many 'heaped' values and relatively few 
numbers such as 3, 4, 7, 8 or 11. Heaping is common in sighting angles, 
which are often strongly heaped at 0, 15, 30, 45, 60 and 90 degrees. 
A histogram of the data will often reveal evidence of heaping. Often 
some judicious grouping of the data will allow better estimates of 
density, i.e. the analysis can often be improved by proper grouping 
of the distance data. Cutpoints for grouping distances from the line or 
point should be selected so that large 'heaps' fall approximately at the 
midpoints of the groups. For line transects, sighting distances and angles 
should not be grouped prior to conversion into perpendicular distances. 
Heaping can be avoided in the field by measuring distances, rather than 
merely estimating them. The effects of heaping can be reduced during 
the analysis by smearing (Butterworth 1982b). Heaping at perpendicular 
distance zero can result in serious overestimation of density. This 
problem is sometimes reduced if a model is used that always satisfies 
the shape criterion (Section 2.3.2), although accurate measurement is the 
most effective solution. 

(b) Systematic bias When distances are estimated, it is possible that 
the errors are systematic rather than random. For example, there is 
sometimes a strong tendency to underestimate distances at sea. Each 
distance may tend to be over- or underestimated. In surveys where only 
grouped data are taken, the counts may be in error because the cutpoints 
c, are in effect C; + 6, where 61 is some systematic increment. Thus, n1 is 
not the count of objects detected between perpendicular distances O and 
Ci, it is the count of objects detected between O and c1 + 61. Little can 
be done to reduce the effect of these biased measurements in the analysis 
of the data unless experiments are carried out to estimate the bias; a 
calibration equation then allows the biased measurements to be cor
rected. Again, careful measurements are preferable to rough estimates 
of distances. 

(c) Outlier.~ If data are collected with no fixed width w, it is possible 
that a few extreme outliers will be recorded. A histogram of the data 
will reveal outliers. These data values contain little information about 
the density and will frequently be difficult to fit (Fig. 1.9). Generally, 
such extreme values will not be useful in the final analysis of density, 
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and should be truncated. It is orten recommended that the 5-10% of 
the largest observations be routinely truncated prior to analysis. 

1.1.4 Other assumptions 

Other aspects of the theory can be considered as assumptions. The 
assumption that detections are (statistically) independent events is often 
mentioned. If detections arc somewhat dependent (e.g. 'string' flushes 
of quail), then the theoretical variances will be underestimated. How
ever, we recommend that empirically based estimates of sampling vari
ances be made, thus alleviating the need for this assumption. That is, 
if var(n) is estimated from independent replicate lines or points, then 
the assumption of within line or (point) independence is not proble
matic, provided the dependence is over short distances relative to the 
distance between replicate lines or points. Independence of detection of 
individual animals is clearly violated in clustered populations. This is 
handled by defining the cluster as the object of interest and measuring 
the ancillary variable, cluster size. This solution can be unsatisfactory 
for objects that occur in loose, poorly defined clusters, so that the 
location and size of the cluster may be difficult to determine or estimate 
without bias. The assumption of independence is a minor one in a 
properly designed survey, unless the clusters are poorly defined. 

Statistical inference methods used here (e.g. maximum likelihood 
estimators of parameters, theoretical sampling variance estimators, and 
goodness of fit tests) assume independence among detections. Failure of 
the assumption of independence has little effect on the point estimators, 
but causes a bias (underestimation) in theoretical variance estimates 
(Cox and Snell 1989). The assumption of independence can fail because 
objects do not have a random (Poisson) distribution in space and this 
pattern could result in a dependency in the detections. Non-random 
distribution, by itself, is not necessarily a cause of lack of independence. 
Ir the transects are placed at random and a robust estimator of the 
sampling variance is used, then the assumption or independence can be 
ignored. At least in practice, it is not at all important that the objects 
be randomly distributed on the study area. Similarly, it is of little 
concern if detection on either side of the line or around the point is not 
symmetric, provided that the asymmetry is not extreme, such that 
modelling g(y) is difficult. 

A more practically important consideration relates to the shape of the 
detection function near zero distam .. --e. This shape can often be judged by 
examining histograms of the distance data using different groupings. 
Distance sampling theory performs well when a 'shoulder' in detectability 
exists near the line or around the point. That is. detectability is certain 
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near the line or point and stays certain or nearly certain for some distance. 
This will be defined as the 'shape criterion' in Section 2.3. If detectability 
falls sharply just off the line or point, then estimation tends to be poor, 
even if the true model for the data is known. Thus if data are to be analysed 
reliably, the detection function from which they come should possess a 
shoulder; to this extent, the shape criterion is an assumption. 

Some papers imply that an object should not be counted on more 
than one line or point. This, by itself, is not true as no such assumption 
is required. In surveys with w = oo, an object of interest (e.g. a dead elk) 
can be detected from two different lines without violating any assump
tions. As noted above, if in line transect sampling an animal moves 
ahead of the observer and is counted repeatedly, abundance will be 
overestimated. This is undetected movement in response to the observer; 
double counting, by itself, is not a cause of bias if such counts corres
pond to different units of counting effort. Bias is likely to be small 
unless repeated counting is common during a survey. Detections made 
behind the observer in line transect sampling may be utilized, unless the 
object is located before the start of a transect leg, in which case it is 
outside the rectangular strip being surveyed. 

These assumptions, their importance, models robust to partial viola
tions of assumptions, and field methods to meet assumptions adequately 
will be addressed in the material that follows. 

2.2 Fundamental models 

This section provides a glimpse of the theory underlying line and point 
transect sampling. This material is an extension of Section 1.6. 

2.2.1 Lbu transects 

In strip transect sampling, if strips of width 2w and total length L are 
surveyed, an area of size a= 2wL is censused. All n objects within the 
strips are enumerated, and estimated density is the expected number of 
objects per unit area: 

b = n/2wL 

In line transect sampling, only a proport10n of the objects in the area 
a surveyed is detected. Let this unknown proportion be Pa, If Pa can 
be estimated from the distance data, the estimate of density could be 
written as 

37 



ASSUMPTIONS AND MODELLING PHILOSOPHY 

b = nl2wLP,, (2.1) 

Now, some fonnalism is needed for the estimation of Pa from the 
distances. The unconditional probability of detecting an object in the 
strip (of area a= 2wL) is 

(2.2) 

In the duck nest example of Chapter I, g(x) was found by dividing the 
estimated quadratic equation by the intercept (77.05), to give 

g(x) ~ I - 0.005:lx' 

Note that i(8) = 0.66, indicating that approximately one-third of the 
nests near the edges of the transect were never detected. Then 

J 
8 

(I - 0.0052x')M . " Pa=""'----8----

= 0.888 

Substituting the estimator of Pa from Equation 2.2 into b from Equation 
2.1 gives 

b= n 

2L f 
O 
""fr(x)dx 

(2.3) 

because the wand 1/w cancel out. Then the integral fowg(x)dx becomes 
the critical quantity and is denoted as µ for simplicity. Thus, 

b=nl2Lit 

There is a very convenient way to estimate the quantity I/µ. The 
derivation begins by noting that the probability density function (pdf) 
of the perpendicular distance data, conditional on the object being 
detected, is merely 
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(2.4) 

This result follows because the expected number of objects (including 
those that are not detected) at distance x from the line is independent 
of x. This implies that the density function is identical in shape to the 
detection function; it can thus be obtained by rescaling, so that the 
function integrates to unity. 

is 
By assumption, g(O) = I, so that the pdf, evaluated at zero distance, 

/(0)=--

So w g(x)dx 

= I/µ 

The parameter µ = fowg(x)dx is a function of the measured distances. 
Therefore, we will often write the general estimator of density for line 
transect sampling simply as 

(2.5) 

n = 
2Lµ 

This estimator can be further generalized, but the conceptual approach 
remains the same. f> is valid whether w is bounded or unbounded 
(infinite) and when the data are grouped or ungrouped. Note that 
either form of Equation 2.5 is equivalent to b=nl2wLP,, (Equation 
2.1). 

For the example, an e:;timate of Gates' (1979) effective strip width is 
µ=wft0 =8(0.888)=7.!0ft, and b=534/(2xl600x7.IO) nests/mile/ft 
= 124 nests/square mile. 

The density estimator expressed in terms of an estimated pdf, evalu
ated at zero. is convenient, as a large statistical literature exists on the 
subject of estimating a pdf. Thus, a large body of general knowledge 
can be brought to bear on this specific problem. 
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2.2.2 Point transects 

In traditional circular plot sampling, k areas each of size 1tw1 are 
censused and all n objects within the k plots are enumerated. By 
definition, density is the number per unit area, thus 

• n 
D=-

k1tw2 

In point transect sampling, only a proportion of the objects in each 
sampled area is detected. Again, let this proportion be Pa. Then the 
estimator of density is 

b=--n~_ 
k1tw2 f>a 

(2.6) 

The unconditional probability of detecting an object that is in one of 
the k circular plots is 

Pa= f ... 21trg(r)dr 
0 1tWl 

(2.7) 

2 J • = 2 rg(r)dr 
w • 

Substituting Equation 2.7 into Equation 2.6 and cancelling the w2 terms, 
the estimator of density 1s 

Defining v = 21tf
0
wrg(r)dr 

then 

D = __ _c.cn __ 

2k1t Sa "',j(r)dr 

b = nlkV 

(2.8) 

Clearly, v is the critical quantity to be estimated from the distance data 
for a point transect survey. 
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2.2.J Summary 

The statistical problem in the estimation of density of objects is the 
estimation ofµ or v. Then the estimator of density for line transect 
sampling is 

D = n/2Lµ 

where 

The estimator of density for point transect surveys can be given in a 
similar form: 

b = n!kV 

where 

This, then, entails careful modelling and estimation of g(y). Good 
statistical theory now exists for these general problems. Finally, we note 
that the estimator of density from strip transect sampling is also similar: 

b = nl2wL 

where Pa= I and, by assumption, n is the count from a complete census 
of each strip. 

2.3 Philosophy and strategy 

The true detection function g(y) is not known. Furthermore, it 
varies due to numerous factors (Section 1.7). Therefore, it is important 
that strong assumptions about the shape of the detection function 
are avoided. In particular, a flexible or 'robust' model for g(y) is 
essential. 

The strategy used here is to select a few models for g(y) that have 
desirable properties. These models are selected a priori, and without 
particular reference to the given data set. This class of models excludes 
those that are not robust, have restricted shapes, or have inefficient 
estimators. Because the estimator of density is closely linked to g(y), it 
is of critical importance to select models for the detection function 
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carefully. Three properties desired for a model for g(y) are, in order of 
importance, model robustness, a shape criterion, and efficiency. 

2.3.1 Model robustness 

The most important property of a model for the detection function is 
model robustness. This means that the model is a general, flexible 
function that can take the variety of shapes that are likely for the true 
detection function. In general, this property excludes single parameter 
models; experience has shown that models with two or three parameters 
are frequently required. Most of the models recommended have a 
variable number of parameters, depending on how many are required 
to fit the specific data set. These are sometimes called semiparametric 
models. 

The concept of pooling robustness (Burnham et al. 1980) is included 
here under model robustness. Models of g(y) are pooling robust if the 
data can be pooled over many factors that affect detection probability 
(Section 1.7) and still yield a reliable estimate of density. Consider two 
approaches: stratified estimation i>.,1 and pooled estimation DP. In the 
first case, the data could be stratified by factors affecting detectability 
(e.g. three observers and four habitat types) and an estimate of density 
made for each stratum. These separate estimates could be combined into 
an estimate of average density b,1. In the second case, all data could 
be pooled, regardless of any stratification (e.g. the data for the three 
observers and four habitat types would be pooled) and a single estimate 
of density computed, DP. A model is pooling robust if Dsr,:,, .bp. Pooling 
robustness is a desirable property. Only models that are finear in the 
parameters satisfy the condition with strict equality, although general 
models that are model robust, such as those recommended in this book, 
approximately satisfy the pooling robust property. 

2.3.2 Shape criterion 

Theoretical considerations and the examination of empirical data suggest 
that the detection function should have a 'shoulder' near the line or 
point. That is, detection remains nearly certain at small distances from 
the line or point. Mathematically, the derivative g'(O) should be zero. 
This shape criterion excludes functions that are spiked near zero dis
tance. Frequently, a histogram of the distance data will not reveal the 
presence of a shoulder, particularly if the histogram classes are large 
(Fig 2.3), or if the data include several large values (a long tail). 
Generally, good models for g(y) will satisfy the shape criterion near zero 
distance. The shape criterion is especially important in the analysis of 

42 



PHILOSOPHY AND STRATEGY 

15 

10 f-

~ 

f-
I-

f-
5 ~ 

f-

I 
0 

30 

• 0 
C 

~ 20 , 
8 
0 

0 
~ 
0 
C 

10 • , 
0 • ~ I 

I 
0 

45 

30 

15 

I 
0 

Distance 

Fig. 2.3. Data (n = 100) from the half-normal model with o= 33.3 and w= 100 
shown with three different sets of group interval. As the group interval increases, 
the da1a appear to become more spiked. Adapted from Burnham el al. (1980). 

data where some heaping at zero distance is suspected. This occurs most 
frequently when small sighting angles are rounded to zero. and gives 
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rise to histograms that show no evidence of a shoulder, even when the 
true detection function has a substantial shoulder. 

2.3.1 Efficiency 

Other things being equal, it is desirable to select a model that provides 
estimates that are relatively precise (i.e. have small variance). We re
commend maximum likelihood methods, which have many good statis
tical properties, including that of asymptotic minimum variance. 
Efficient estimation is of benefit only for models that are model robust 
and have a shoulder near zero distance; otherwise, estimation might be 
precise but biased. 

2.3.4 Model fit 

Ideally. there would be powerful statistical tests of the fit of the model 
for g(y) to the distance data. The only simple omnibus test available is 
the x' goodness of fit test based on grouping the data. This test compares 
the observed frequencies n, (based on the grouping selected) with the 
estimated expected frequencies under the model, E(n,), in the usual way: 

·-£ = ± [n1 -,_£(n1)]2 
,-1 E(n;) 

is approximately x,2 with u - m - l degrees of freedom. where u is the 
number of groups and m is the number of parameters estimated. In 
isolation, this approach has severe limitations for choosing a model for 
g(y), given a single data set (Fig. 2.4). 

Generally, as the number of parameters in a model increases, the bias 
decreases but the sampling variance increases. A proper model should 
be supported by the particular data set and thus have enough parameters 
to avoid large bias but not so many that precision is lost (the Principle 
of Parsimony). Likelihood ratio tests (Lehmann 1959; Hogg and Craig 
1970) are used in selecting the number of model parameters that are 
appropriate in modelling/(y). The relative fit of alternative models may 
be evaluated using Akaike's Information Criterion (Akaike 1973; Saka
moto et al. 1986; Burnham and Anderson 1992). These technical subjects 
are presented in the following chapters. 

2.3.5 Test power 

The power of the goodness of fit test is quite low and, therefore, of 
little use in selecting a good model of g(y) for the analysis of a particular 
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Fig. 2.4. The distance data are often of little help in testing the relative fit among 
models. Here, fits of the negative exponential model and the hazard-rate model to a 
line transect data set are shown. Both models provide an excellent fit (X2 = 0.49, 
3 df, p = 0.92. and x2 = 0.33, 2 df, p,= 0.85, respectively), even though the esti
mates of /(0) are quite different (/{0) = 0.589 and 0.450, respectively). 

data set. In particular, this test is incapable of discriminating between 
quite different models near the line or point, the most critical region 
(Fig. 2.4). In addition, grouping data into fewer groups frequently 
diminishes the power of the test still further and may give the visual 
impression that the data arise from a spiked distribution such as the 
negative exponential, when the true detection function has a shoulder 
(Fig. 2.3). 

While goodness of fit test results should be considered in the analysis 
of distance data, they will be of limited value in selecting a model. Thus, 
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a class of reliable models is recommended here, based on the three 
properties: model robustness, the shape criterion and estimator efficiency. 

2.4 Robust models 

Several models of g(y) are recommended for the analysis of line or point 
transect data. These models, as implemented in program DISTANCE, 
have the three desired properties of model robustness, shape criterion and 
estimator efficiency. Following Buckland (1992a), the modelling process 
can be conceptualized in two steps. First, a 'key function' is selected as 
a starting point, possibly based on visual inspection of the histogram 
of distances, after truncation of obvious outliers. Often, a simple key 
function is adequate as a model for g(y), especially if the data have 
been properly truncated. Two key functions should probably receive 
initial consideration: the uniform and the half-normal (Fig. 2.5a). The 
uniform key function has no parameters, whereas the half-normal key 
has one unknown parameter to be estimated from the distance data. In 
some cases, the hazard-rate model (Fig. 2.5b) could be considered as a 
key function, although it requires that two key parameters be estimated. 

Second, a flexible form, called a 'series expansion', is used to adjust 
the key function, using perhaps one or two more parameters, to improve 
the fit of the model to the distance data. Conceptually, the detection 
function is modelled in the following general form: 

g(y) = key(y) [I + series (y)] 

The key function alone may be adequate for modelling g(y), especially 
if sample size is small or the distance data are easily described by a 
simple model. Theoretical considerations often suggest a series expansion 
appropriate for a given key. Three series expansions are considered here: 
(1) the cosine series, (2) simple polynomials, and (3) Hermite polynomials 
(Stuart and Ord 1987: 220---7). All three expansions are linear in their 
parameters. Thus, some generally useful models of g(y) are: 

Key function 

Uniform, I !w 

Uniform, I lw 

Series expansion 

Cosine, L u1 cos -m [J•y) 
j= l W 

• ( l'i Simple polynomial,
1

~
1

aJ ~ 
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Half-normal, exp (- /!2<T) 

Half-normal, exp (- /!2<T) 

Hazard-rate, l - exp(- (ylafb) 

Hazard-rate, l - exp(- (y/ofb) 

Cosine, 
1
t

2 
a1 cos f::) 

Hermite polynomial, 
where yg == y/a 

Cosine, 
1
t a1 cos (1::) 

m 
L a1H21 (y,) 

1~2 

Simple polynomial, L OJ -m (Y )'i 
1~2 W 

The uniform + cosine expression is the Fourier series model of Crain 
et al. (1979) and Burnham et al. (1980). This is an excellent omnibus 
model and has been shown to perform well in a variety of situations. 
The uniform + simple polynomial model includes the models of Ander
son and Pospahala (1970), Anderson et al. (1980), and Gates and Smith 
(1980). 

It may be desirable to use the half-normal key function with either a 
cosine expansion or Hermite polynomials. Because histograms of dis
tance data often decline markedly with distance from the line, the 
half-normal may often represent a good choice as a key function. 
Similarly, the uniform key and one cosine term will often provide a 
good standard for possible further fitting with series adjustment tenns. 
Theoretical reasons suggest the use of the Hermite polynomial in con
junction with the half-normal key, especially for the untruncated case. 
This is a minor point and the reader should think of this as only an 
alternative fonn of a polynomial. 

The final two models listed above use Buckland's (1985) hazard-rate 
as a two parameter key function and use cosine and simple polynomial 
expansions for additional fitting, if required. The hazard-rate model is 
a derived model in contrast to the others, which are proposed shapes. 
That is, the shape of this family of models is the result of a priori 
assumptions about the detection process. The hazard-rate model has 
been shown to possess good properties. especially for data that are 
genuinely spiked (as distinct from spuriously spiked, as a result of 
rounding). In addition, this model can have a marked shoulder that can 
be nearly flal for some dis1ance from the line or poinl. Even for da1a 
appearing to be spiked, this model can fit a flat shoulder, yet provide 
a good fit. 

These series-expansion models are non-parametric in the sense that 
the number of parameters used is data-dependent. The estimation theory 
for these models, including rules to select the number of parameters to 
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use, is given in the following chapter. Typically, given suitable distance 
truncation, an adequate model for g(y) will include only one or two 
parameters, sometimes three. Sometimes the key function by itself will 
be adequate, with no terms in the series expansion. We emphasize that 
truncation will often be required as part of the modelling, especially if 
the data are ungrouped. Outlier observations provide relatively little 
information about density, but are often difficult to model, so that 
proper truncation should always be considered in modelling g(y). Pro
gram DISTANCE allows the combination of any of the key functions 
with any of the series expansions as a model for /(y). Some models 
have appeared in the literature that assume g(y) = l for some consider
able distance from the line or point; the models suggested above do not 
impose this assumption. 

Only these general models are emphasized as state-of-the-art, general 
approaches at this time. Program DISTANCE allows any key function 
to be used with any series expansion; however, the combinations listed 
above should be satisfactory for general use. Further effort directed at 
model evaluation and development might now be better directed at 
survey design and data collection techniques to meet critical assump
tions. 

The exponential + simple polynomial is available for the salvage 
analysis of poorly collected data where there is strong reason to believe 
that the distance data are truly spiked. It has the form: 

m 

exp(-yO.) • [l + IaJ (y/A) 1j] 

}=' 

Use of this approach should be accompanied by adequate justification 
and we recommend its use only in unusual circumstances. Every con
sideration should be given to the use of the hazard-rate model for 
distance data that appear spiked because this model enforces the shape 
criterion, offers greater flexibility in fitting a spike, and gives a more 
realistic (larger) variance when the data are inadequate for reliable 
modelling. 

2.5 Some analysis guidelines 

Distance sampling represents a broad area and includes many types of 
application and degree of complexity of design and data. Thus, specific 
'cookbook' procedures for data analysis cannot be given safely. Instead, 
we will suggest a useful strategy that could be considered when planning 
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the analysis or a data set. In this section we will consider only a simple 
survey and will not address stratification and other complications given 
in later chapters. 

2.5.J Exploratory phase 

The exploratory phase of the analysis involves the preparation of 
histograms of the distance data under several groupings. Sometimes it 
is effective to partition the data into 10-20 groups to get a fine-grained 
picture of the distance data. Examination or such histograms can pro
vide insight into the presence of heaping, evasive movement, outliers 
and the occasional gross error. Prominent heaps can be mitigated by 
judicious grouping or splitting prior to further analysis. Evasive move
ment is problematic, but it is important to know that movement is 
present (movement toward the line or point generally cannot be detected 
from the distance data alone). Some truncation of the distance data is 
nearly always suggested, even if no obvious outlier is noticed. We 
frequently recommend that 5-10% of the largest observations be trun
cated. A more refined rule of thumb is to truncate the data when 
g(x) ± 0. I 5 for line transects or O.IO for point transects. ]f the data were 
taken as grouped data in the field, then options for further truncation 
are more limited. Some liberal truncation is generally recommended. 
Empirical estimates of var(n) can be computed and compared with the 
variance under the Poisson assumption (i.e. vai(n) = n). One can examine 
the stability of the ratio v'ar(n)ln over various design features. If the 
data are from a clustered population, plots of s or loge(s) vs x or r 
should be made and examined. Of course, data entry errors and other 
anomalies should be screened and corrected. This analysis phase is 
open-ended but the analyst is encouraged to begin to understand the 
data and possible violations of the assumptions. Chatfield (1988, 1991) 
offered some general practical advice relevant here. Program DIS
TANCE allows substantial exploratory options. 

2.5.2 Model selection 

Model selection cannot proceed until proper truncation and, where 
relevant, grouping have been tentatively addressed. Thus, this phase 
begins once a data set has been properly prepared. Several robust models 
should be considered (e.g. those in Section 2.4). The following chapters 
will introduce and demonstrate the use of likelihood ratio tests, goodness 
of fit tests and Akaike·s Information Criterion (AIC; Akaike 1973) as 
aids in objective model selection. Here it might be appropriate to remind 
the analyst that it is the fit of the model to the distance data near the 
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line or point that is most important (unless there is thought to be 
heaping at zero distance). Usually analysis will suggest additional ex
ploratory work, so that the process is iterative. For example, it may 
become apparent that the fit of one or more models could be improved 
by selecting a different truncation point w, or by grouping ungrouped 
data, or by changing the choice of group intervals for grouped data. 
Further, if data are available over several years, taken in the same 
habitat type by the same observer, then it might be prudent to pool the 
data for the estimation of /(0) or h(O), but to use the year-specific sample 
sizes n;, where i is year, to estimate annual abundance. The validity of 
this approach must then be assessed, for example using a likelihood 
ratio test to determine whether a common value for /(0) or h(O) can be 
assumed. 

2.5.J Final analysis and inference 

At some point the analyst selects a model believed to be the best for 
the data set under consideration. In some cases, there may be several 
competing models that seem equally good. In most cases, there will be 
a subset of models that can be excluded from final consideration because 
they perform poorly relative to other models. Often. if two or three 
models seem to fit equally well to a data set, estimation of density D 
and mean cluster size E(s) under these models will be quite similar (see 
examples in Chapter 8). 

Once a single model has been selected, the analyst can address further 
issues. Thus, one might consider bootstrapping to obtain improved 
estimates of precision, or carry out a Monte Carlo study to understand 
further the effect of some assumption failure (e.g. overestimation of a 
significant proportion of detection distances in an aerial survey, due to 
the aircraft flying too low at times). Finally, estimates of density or 
abundance and their precision are ma~e, and qualifying statements 
presented, such as discussion of the effects of failures of assumptions. 

The above guidelines give a broad indication of how the analyst might 
proceed. They will be developed in the following chapters, both to give 
substance to the theory required at each step, and to show how the 
philosophy for analysis is implemented in real examples. 
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3 

Statistical theory 

3.1 General formula 

The analysis methods for distance sampling described here model 
measured or estimated distances from a line or point so that density of 
objects in a study area may be estimated. Conceptually, object density 
varies spatially, and lines or points are placed at random or systematic~ 
ally in the study area to allow mean density to be estimated. 

Suppose in a given survey that objects do not occur in clusters and 
that distances are only recorded out to a distance w from the line or 
point, or equivalently that recorded distances are truncated at distance 
w. Suppose further that the true density is D objects per unit area. Let 
the area covered by the survey within distance w of the line or point 
be a, and let the probability of detection for an object within this area, 
unconditional on its actual position. be Pa, Then the expected number 
of objects detected within distance w, E(n). is equal to the expected 
number of animals in the surveyed area, D · a, multiplied by the prob
ability of detection, Pa. so that 

D = E(n) 
a· Pa 

If objects occur in clusters, so that E(n) is the expected number of 
clusters, then the above equation should be multiplied by E(s), the 
expectation of cluster size for the population: 

D = E(n) • E(s) 
a· Pa 

Although the result is then perrectly general, it is convenient to modiry 
the definitions of a and Pa to show explicitly two components of the 
general formula that are implicit in the above form of the equation. 
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First, if a is defined to be 2wL for a line transect survey, where L is 
the total transect length, or a= knw2• where k is the number of circular 
plots in a point transect survey, then the area surveyed within a distance 
w of the line or point can be expressed as c • a. Usually c = 1.0, but if 
for example only one side of a line transect is counted, then c = 0.5. 
Similarly, if only an angle of (j> radians (q> < 2n) is counted in a point 
transect survey, then c = q>J2n. This factor is required for example in 
the cue counting method (Section 6. 10), in which the sector counted is 
of angle (j>. 

Second, a basic assumption of the standard line and point transect 
methods is that the probability of detection at zero distance g(O) is unity. 
In surveys of inconspicuous objects or, for example, of whales, this 
assumption may be unreasonable. It may be possible to estimate g(O), 
in which case it is convenient to rescale the detection function g(y) such 
that g(O) = 1.0, and to define the probability of detection on the line or 
at the point to be g0• The unconditional probability of detection of an 
object (or cluster) in the surveyed area can then be factorized into 
g0 • Pa. This yields the general equation 

D = E(n) • E(s) 
C•a·Pa·go 

(3.1) 

Estimation of g0 is generally problematic, so that if at all possible, 
surveys should be designed such that all or almost all objects on or 
close to the line or point are detected. Further discussion of this issue 
is reserved for Chapter 6. 

Replacing parameters in Equation 3.1 by their estimators gives 

i>= n-E(s) 

c ·a· fa,,· fro 
(3.2) 

The variance of iJ may be approximated using the delta method (Seber 
1982: 7 9). Assuming correlations between the four estimation compo
nents are zero, the variance estimate is then: 

l

vir(n) + va'r{E'(s)] + ill(a • __ Pa)+ vai-[8"o]l 
n2 (E'(s)]1 (a , fa,,>2 [iof 

(3.3) 

The assumption of no correlation is a mild one in the sense that 
estimation is usually done in a way that ensures it holds. Because P" is 
estimated conditional on n, no correlation term exists between n and 
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P,, if we can assume that E(P,,ln) = E(fa,,), independent ofn. This assump
tion holds if (fa,,ln) is unbiased for Pa: 

cov{n,<Paln)] = E[n • Pain)- E(n) · E(fi,,ln) 

= £,[E[{n • (P, In)} I n]J - E(n) • P, 

= En(n • E(fa,, In)] - E(n) • Pa 

= E(n) • P,, - E(n) · P,, 

=O 

When sample size is adequate, (fa,,1n) is approximately unbiased. 
Similarly, E(s) may be estimated conditional on n and the detection 

distances, rendering E(s) uncorrelated with n or fa,,. Estimation of g0, if 
required, is usually based on additional, independent data, 

Although area a➔= as w➔=, the product a· Pa remains finite, so 
that all three equations hold when there is no truncation. To estimate 
a• P,,, a form must be specified, explicitly or implicitly, for the detection 
function g(y), which represents the probability or detection or an object 
or object cluster at a distance y from the line or point. The simplest 
form is that of the Kelker strip: the truncation point w is selected such 
that it is reasonable to assume that g(y) = 1.0 for O ..,; y ..,; w. More 
generally it seems desirable that the detection function has a 'shoulder'; 
that is, g'(O) should be zero, so that the detection function is flat at 
zero. This is the shape criterion defined by Burnham et al. (1980). The 
detection function should also be non-increasing, and have a tail that 
goes asymptotically to zero. 

The relationship between the detection Function and the probability 
density function of distances, j(y), is different for line and for point 
transects. We use the notation y to represent either x, the perpendicular 
distance of an object from the centreline in line transect sampling, or r, 
the distance of an object from the observer in point transect sampling. 

For line transect sampling, the relationship between g(x) and /(x) is 
particularly simple. Intuitively, because the area of a strip of incremental 
width dx at distance x from the line is independent of x, it seems 
reasonable that the density function should be identical in shape to the 
detection function, but rescaled so that it integrates to unity. This result 
may be proven as follows. Suppose for the moment that w is finite. 

/(x)dx = pr{object is in (x, x + dx) I object detected} 

pr{object is in (x, x + dx) and object is detected} 
= "---'---'-----'-'---'------'---------

pr { object is detected} 
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_ pr { object is detected I object is in (x, x + dx)} • P!. { object is in (x, x + dx)} 
- ~ 

Thus f(x) ~ g(x) 
w • Pa 

It is convenient to define µ = w • P "' so that 

J(x) = g(x) 
µ 

Because fo/(x)dx = I, it follows that µ = fo""g(x)dx. Figure 3.1 illustrates 
the result that P.,, the probability o/,.detecting an object given that it is 
within w of the centreline, isµ= J

0
g(x)dx (the area under the curve) 

divided by I.Ow (the area of the rectangle); that is. w • P., = µ, which is 
well-defined even when w is infinite. 

g(O) "' 1 

/ 
Total area 

• 1.0·w 

Area under curve 

.. {g(x)dx=µ 
0 

-~" / 
0 lLL'.LL'.LLLLLLLLLLLLLL'.LJ.'.L.L'.L.L'.LLLLLLLL~ 

w 
Peroendicular distance x 

Fig. 3.1. The unconditional probability that an animal within distance w of the 
line is detected is the area under the detection function µ divided by the area 
of the rectangle 1.0 w. 
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The parameter µ is often termed the effective strip width (or more strictly, 
the effective strip half-width); if all objects were detected out to a distance 
µ on either side of the transect, and none beyond, then the expected number 
of objects detected would be the same as for the actual survey. 

Let the total length of transect be L. Then the area surveyed is 
a= 2wL, and a· Pa= 2µL. Since µ = g(x)//(x) and g(O) = 1.0 after rescal
ing, if necessary, by the factor g0, then µ = 1//(0), and so for line 
transects, Equation 3.1 becomes: 

D = E(n) • /(0) • £(,) 
2l·Lgo (3.4) 

The parameter /(0) is statistically well-defined and is estimable from the 
perpendicular distances Xi. ... , Xn in a variety of ways. 

The derivation for point transects is similar, but the relationship 
between g(r) and /(r) is less simple. The area of a ring of incremental 
width dr at distance r from the observer is proportional to r. Thus we 
might expect that f(r) is proportional to r • g(r); using th,-sonstraint 
that /(r) integrates to unity, f(r) = 2,rrg(r)/v, where v = 21tJ, rg(r)dr. A 
more rigorous proof follows. 0 

f(r)dr = pr{object is in the annulus(r, r + dr) I object detected} 

pr{object is in (r, r + dr) and object is detected} 
= 

pr{obJect is detected} 

_ pr { object is detected! object is in (r, r + dr)} • pr{ object is in (r, r + dr)} 
- ~ 

( ) 
21trdr g, •--,-
1tw· 

so that 

To be a valid density function, f
0
"'J(r)dr = I, so that 

21tr • g(r) . f w 
/(r) = --~-, with V = 21t rg(r)dr = 1tw

2 
• Pu 

V o 

This result also holds for infinite w. Analogous to µ, v is sometimes 
called the effective area of detection. 
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Let there be k points, so that the surveyed area is a= k1t11i. The 
probability of detection of an object, given that it is within a distance 
w of the observer, is now Pa= v/(1tw2), so that a• Pa becomes kv; again 
this holds as w➔00• Since v = 21trg(r)//(r) and g(O) = 1.0 (after rescaling 
if necessary), then for point transects Equation 3.1 becomes: 

(3.5) 

where h(O) = lim/(r)/r = 21t/v 
'"" 

Note that h(O) is merely the derivative of the probability density 
/(r) evaluated at r = O; alternative notation would be f'(O). It is thus 
estimable from the detection distances r1, ... , r,,. Whereas/(x) and g(x) 
have identical shapes in line transect sampling, for point transects, g(r) 
is proportional to /(r)/r. The constant of proportionality is 1/h(O). 

Results equivalent to Equations 3.2 and 3.3 follow in the obvious way. 
Note that for both line and point transects, behaviour of the probability 
density function at zero distance is critical to object density estimation. 

Burnham et al. (1980: 195) recommended that distances in point 
transect sampling should be transformed to 'areas' before analysis. Thus, 
the ith recorded area would be u1 = 1trl, i = I, ... , n. If /",,{u) denotes 
the probability density function of areas u1, it may be shown that 
fu(u) = /(r)/(2rtr) = g(r)/v. The advantage of this transformation should 
now be apparent; the new density is identical in form to that for 
perpendicular distances in line transect sampling (where f(x) = g(x)/µ), 
so line transect software may be used to analyse the data. Further, if r 
is allowed to tend to zero, then /,.(0) =- h(0)/(21t), and the development 
based on areas is therefore equivalent to that based on distances. This 
seems to suggest that modelling of areas rather than distances is prefer
able. However, as noted by Buckland (1987a), the transformation to 
area appreciably alters the shape of the detection function, and it is no 
longer clear that a model for area should satisfy the shape criterion. 
For example the half-normal model for distances, which satisfies the 
shape criterion, transforms to the negative exponential model for areas, 
which does not satisfy the shape criterion, whereas the hazard-rate 
model of Hayes and Buckland (1983) retains both its parametric form 
and a shoulder under the transformation, although the shoulder becomes 
narrower. We now recommend modelling the untransformed distance 
data, because line transect detection functions may then be more safely 
carried across to point transects, thus allowing the focus of analysis to 
he the detection function in both cases. 
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3.2 Hazard-rate modelling of the detection process 

There are many possible models for the detection function that may fit 
any given data set well. lf all give similar estimates. then model selection 
may not be critical. However, when the observed data exhibit little or 
no 'shoulder', it is not uncommon that one model yields an estimated 
density around double that for another model. Although the develop
ment of robust, flexible models allows workers to obtain good fits to 
most of their data sets, it does not guarantee that the resulting density 
estimators have low bias. There is some value therefore in attempting 
to model the detection process, to provide both some insight to the 
likely form of the detection function and a parametric model that might 
be expected to fit real data well. Hazard-rate methods have proved 
particularly useful for this purpose. and have been developed by 
Schweder (1977). Butterworth (1982a), Hayes and Buckland (1983) and 
Buckland (1985) for line transect sampling. and by Ramsey et al. (1979) 
and Buckland (1987a) for point transect sampling, We consider only 
continuous hazard-rate models at this stage; discrete hazard-rate models 
are described in Chapter 6. 

3.2.J Line tran,ect sampling 

At any one point in Lime, there is a 'hazard' that an object will be 
detected by the observer, which is a function of the distance r separating 
the object and observer. If the object is on the line. the observer will 
be moving directly towards it, so that r decreases quite quickly. The 
farther the object is from the line. the slower the rate of decrease in 
distance r. so that the observer has more time to detect the object at 
larger distances. Hazard-rate analysis models this effect, and also allows 
the hazard to depend on the angle of the object from the observer's 
direction of travel. 

Suppose an object is at perpendicular distance x from the transect 
line. and let the length of transect line between the observer and the 
point of closest approach to the object be z, so that r, the distance between 
the observer and the object, satisfies ,2 = x2 + =2 (Fig. 1.5). Suppose also 
that the observer approaches from a remote point on the transect so 
that : may be considered to decrease from 00 to 0, and assume for 
simplicity that the object cannot be· detected once the observer has 
passed his/her point of closest approach. Let 

h(z, x)dz = pr{object sighted while observer is in (z, z - dz)jnot 
sighted while observer is between = and z} 
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and 

p(z, x) = pr{object not sighted while observer is between = and z} 

where both probabilities are conditional on the perpendicular distance 
x. Solving the forwards equations 

p(z - dz, x) = p(z, x) { I - h(z, x)dz} 

for p(z, x), and setting p(=, x) = I, yields 

p(,, x) = e,p (- J,- h(v, x)dv) 

so that 

g(x) = I - p(O, x) 

= I - exp!- f.- h(,, x)d,), 0 <a x < ~ 

Changing the variable of integration from z to r gives 

where k(r, x) = h {✓(? - x2), x} 

Time could be incorporated in the model, but for a continuous 
hazard•rate process, there is little value in doing so provided that the 
speed of the observer is not highly variable. Otherwise the development 
has been general up to this point. To progress further, it is necessary 
to restrict the form of the hazard. A plausible hazard should satisfy the 
following conditions: 

I. k(O, 0) = ~; 
2. k( 00 , x) = O; 
3. k(r, x) is non-increasing in r for any fixed x. 

For example suppose that the hazard belongs to the family defined 
by; 

f-✓ , r 
2 

k(r, x)dr = (x/or b 
X er- -X) 

for some o and b (3.6) 
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Hayes and Buckland (1983) give two hazards from this family. In the 
first. the hazard of detection is a function of r alone: 

- -{cr[(d- l)/2]r(0.5)}11(d-1) 
so that b - d - I and o - 2r(d/2) 

The second hazard function allows the hazard of detection to be greater 
for objects directly ahead of the observer than for objects to the side. 
In practice this may arise if an object at distance r is more likely to 
flush when the observer moves towards it, or if the observer concentrates 
search effort in the forward direction. The functional fonn of the second 
hazard is: 

where sin 9"' xlr 

{ }
,,,,_" 

so that b =d- l ando= d~ I 

The family of hazards defined by Equation 3.6, to which the above 
two belong, yields the detection function 

g(x)"" 1 - exp[- (x/orh) (3.7) 

This is the hazard-rate model derived by Hayes and Buckland (1983) 
and investigated by Buckland (1985), although the above parameteriza
tion is slightly different from theirs, and has better convergence proper
ties. The parameter b is a shape parameter, whereas o is a scale 
parameter. The model should provide a good representation of the 'true' 
detection function when the hazard process is continuous, sighting (or 
auditory) conditions are homogeneous, and visibility (or sound) falls off 
with distance according to a power function, although it appears to be 
robust when these conditions are violated. It may be shown that 
g'(O) ""0 for b > 0, which covers all parameter values for which the 
detection function is a decreasing function. Hence the above two hazards 
which are sharply 'spiked' (the derivative of the hazard with respect to 
r, evaluated at r: 0, is infinite) give rise to a detection function that 
always satisfies the shape criterion of Burnham et al. (1980). For 
untruncated data the detection function integrates to a finite value only 
if b > I. For truncated data, the model has a long tail and a narrow 
shoulder if b < I, and convergence problems may be encountered for 
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extreme data sets. These problems may be avoided and analyses are 
more robust when the constraint b:;,,, I is imposed (Buckland 1987b). 
Equation 3. 7 is plotted for a range of values for the shape parameter 
likely to be encountered in real data sets in Fig. 2.5b. 

Although in this book we describe the model of Equation 3.7 as 'the' 
hazard-rate model, any detection function may be described as a hazard
rate model in the sense that a (possibly implausible) hazard exists from 
which the detection function could be derived. Equation 3.7 is sometimes 
referred to as the complementary log-log model, a label which is both 
more accurate and more cumbersome. 

3.1.1 Point transect sumpling 

For point transect sampling, the hazard-rate formulation is simpler. 
since there is only one distance, the sighting distance r, to model. The 
probability of detection is no longer a function of distance moved along 
the transect, but of time spent at the point. Define the hazard function 
k(r, t) to be such that 

k(r, t)dt == pr{an object at distance r is detected during (t + dt)lit is 
not detected during (0, t)} 

Then the detection function becomes: 

where Tis the recording time at each point. If the observer is assumed 
to search with constant effort during the recording period, then 
k(r, /) = k(r), independent oft, so that 

g(r) == I - exp[- k(r)T] (3.8) 

If the hazard is assumed to be of the form k(r) == c,-d, then 

g(r) = I - exp[- (r/o"fb] 

where h = d and CJ= (cTtb. The effect of increasing the time spent at 
each point is therefore to increase the scale parameter. This widens the 
shoulder on the detection function, making it easier to fit. Scott and 
Ramsey (1981) plotted the changing shape of a detection function as 
time spent at the point increases from four to 32 minutes. The dis
advantages of choosing T large are that assumptions are more likely to 
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be violated (Section 5.9), and after a few minutes, the number of new 
detections per minute will become small. 

The parametric form of the above detection function is identical to 
that derived for line transects (Equation 3.7). Moreover. if sightings are 
squared prior to analysis, the parametric form remains unaltered, so 
that maximum likelihood estimation is invariant to the transformation 
to squared distances. This property is not shared by other widely used 
models for the detection function. Burnham et al. (1980: 195) suggested 
squaring distances, to allow standard line transect software to be used 
for analysing point transect data, but we now advise against this strategy 
(Buckland 1987a). 

3.3 The key function formulation for distance data 

Most formulations proposed for the probability density of distance 
data from line or point transects may be categorized into one of two 
groups. If there are theoretical reasons for supposing that the density 
has a given parametric form, then parametric modelling may be carried 
out. Otherwise, robust or non.parametric procedures such as Fourier 
series, splines, kernel methods or polynomials might be preferred. In 
practice it may be reasonable to assume that the true density function 
is close to a known parametric form, yet systematic departures can occur 
in some data sets. In this instance, a parametric procedure may not 
always give an adequate fit, yet a non•parametric method may be too 
flexible, perhaps giving very different fits to two related data sets from 
a single study, due to small random fluctuations in the data. An example 
of the latter occurs when a one term Fourier series model is selected 
for one data set and a two term model for a second. The second data 
set might be slightly larger, or show a slightly smaller shoulder; both 
increase the likelihood of rejecting the one term fit. Bias in estimation 
of /(0) can be a strong function of the number of Fourier series terms 
selected (Buckland 1985), so that comparisons across data sets may be 
misleading. The technique described by Buckland (1992a, b) and sum
marized below incorporates knowledge of the likely shape of the density 
function, whether theoretical or from past experience, and allows poly• 
nomial or Fourier series adjustments to be made, to ensure a good fit 
to the data. 

Simple polynomials have been used for fitting line transect data by 
Anderson and Pospaha!a (1970). However, low order simple polynomials 
may have unsuitable shapes. By taking the best available parametric 
form for the density, a(y). and multiplying it by a simple polynomial. 
this shortcoming is removed. We call a(y) the key runction. If it is a 
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good fit, it needs no adjustment; the worse the fit, the greater the 
adjustments required. 

When the key function is the untruncated normal (or half-normal) 
density, Hermite polynomials (Stuart and Ord 1987: 220-7) are ortho
gonal with respect to the key, and may therefore be preferred to simple 
polynomials. Hennite polynomials are usually fitted by the method of 
moments, leading to unstable behaviour when the number of observa
tions is not large or when high order terms are included. Buckland 
(1985) overcame these difficulties by using numerical techniques to 
obtain maximum likelihood estimates of the polynomial coefficients. 
These procedures have the further advantage that the Gram-Charlier 
type A and the Edgeworth formulations yield identical curves; for the 
method of moments, they do not (Stuart and Ord 1987: 222-5). 

Let the density function be expressed as 

where o:(y) is a parametric key, containing k parameters (usually 0, 
or 2); 

! yf, if a simple polynomial is desired, or 
p;(y,) = Hj(y,), the jth Hermite polynomial, j = I, . 

cos(jny,), if a Fourier series is desired; 

Ys is a standardized y value (see below); 

. , m, or 

. f = 0 if term j of pj(Ys) is not used in the model, or 
01 1 is estimated by maximum likelihood; 
~ is a normalizing function of the parameters (key parameters and 

series coefficients) alone. 

It is necessary to scale the observed distances. For the simple poly
nomial formulation, estimation is invariant to choice of scale, but the 
operation is still necessary to avoid numeric problems when fitting the 
model. If the key function is parameterized such that a single key 
parameter, a say, is a scale parameter, y, may be found as y/a for each 
observation. If lhe parameters of the key function are fully integrated 
inlo the estimation routine, a can be estimated by maximum likelihood 
(see below). Otherwise the key function may be fitted by maximum 
likelihood in the absence of polynomial adjustments, and subsequent 
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fitting or polynomial terms can be carried out conditional on those key 
parameter estimates. For the Fourier series formulation, analyses are 
conditional on w, the truncation point, and Ys = ylw. In practice, it is 
simpler to use this standardization for all models, a strategy used in 
DISTANCE. 

For line transect sampling, the standard form or the Fourier series 
model is obtained by setting the key function equal to the uniform 
distribution, so that «(y) = l!w. Used in conjunction with simple poly
nomials, this key gives the method of Anderson and Pospahala (1970). 
The standard form of the Hermite polynomial model arises when the 
key function is the half-normal. Point transect keys are found by 
multiplying their line transect counterparts by y (or, equivalently, 2xy). 
The key need not be a valid density function. For the half-normal line 
transect key, define a(y) = exp[- (y!o//2], and absorb the denominator 
of the half-normal density, ✓ (xcr2 /2), into~- In general, absorb any part 
of the key that is a function of the parameters alone into ~-

For line transect sampling, the detection function is generally assumed 
to be symmetric about the line. Similarly for point transect sampling, 
detection probability is assumed to be independent of angle. The detection 
function may be envisaged as a continuous function on (- w, + w); for 
line transects, negative distances would correspond say to sightings to 
the left of the line and positive to the right, and for point transects, 
this function can be thought of as a section through the detection 
'dome', passing through the centre or point. The function is assumed to 
be symmetric about zero (ahhough analyses are robust to this assump
tion). Hence only cosine terms are used for the Fourier series model, 
and only polynomials of even order for polynomial models, so that the 
detection function is an even function. In the case of the Hermite 
polynomial model, the parameter of the half-normal key corresponds to 
the second moment term, so that the first polynomial to be tested is of 
order four if terms are tested for inclusion in a sequential manner. The 
first adjustment to the half-normal fit therefore adjusts for kurtosis. It 
may be that kurtosis for the true detection function is close to that for 
the normal distribution, but a higher order moment may be very 
different. In this case it may be more profitable to test for inclusion of 
terms in a stepwise manner: select all terms of even order up to an 
arbitrary order. say to, and include at the first step that term which 
gives the greatest increase in the value of the likelihood. Next include 
the term that gives the greatest improvement when fitted simultaneously 
with the first term selected. Continue until a likelihood ratio test 
indicates that no significant improvement in the fit has been achieved. 

When the key function is not normal and testing is sequential, it is 
less clear which polynomial term should be tested first. Any key 
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will contain a parameter, or a function of parameters, that corresponds 
to scale, so a possible rule is to start with the term of order four, 
whatever the key. An alternative rule is to start with the term of order 
2 • (k + I), where k is the number of key parameters. We advise against 
the use of keys with more than two parameters. For stepwise testing, 
all even terms down to order two and up to an arbitrary limit can be 
included. 

3.4 Maximum likelihood methods 

We concentrate here on the likelihood function for the detection distan
ces, y;, i = I, ... , n, conditional on n. If the full data set was to be 
modelled in a comprehensive way, then the probability of realizing the 
data {n, )'1, ... , Yn, ~·1, ••. , Sn} might be expressed as 

Pr(n, y1, ... , )'n, S1, ... , Sn)= Pr(n) • Pr(yi, ... , Yn, S1, ... , snln) 

= Pr(n) • Pr(yi, ... , Ynln) • Pr(si, ... , snln, Y1,, .. , Yn) 

Thus, inference on the distances y1 can be made conditional on n, and 
inference on the cluster sizes s; can be conditional on n and they,. This 
provides the justification for treating estimation of D (with g0 = I) as a 
series of three univariate problems. 

Rao (1973) and Burnham et at. (1980) present maximum likelihood 
estimation methods for both grouped and ungrouped distance data. 
Applying those techniques to the key formulation of Section 3.3 yields 
the following useful results. 

3.4.J Ungrouped data 

' Define .:£(0) = TT/(y;) 

where 

- i= l 

y, is the ith recorded distance, i = 1, ... , n 

01, ••. , 0k are the parameters of the key function 

8t +j = aJ,j = 1, ... , m, are the parameters (coefficients) of the 
adjustment terms. 

" ' 
Then log,['.£(~)]= I= :l: Iog,[/(y,)] = :l: log,[f(y,) · ~] - n • log,~ 
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[ 
m dpj(y;,)l 

o:(y;). 2,al. -~ • 
r~1 dy,s 

l ,$,. j ,,;,:; k (3.9) 

cx(y,) · Pi- k(Yjs), for all j > k for which ai- k is non-zero 

clPJ'(Y) {i·P1-1(y,:,),withpo(Yis)=l, 
cl . 

1
·' = for simple and Hermite polynomials 

Y" - Jx · sinUxy,), for the Fourier series model 

When k= I 

dy;,=0 
00, 

d dy;s 2 d 
an y;, = y;/91, clEli = - y/91; when k = 1 an Y;s = yJw, 

The equations iJ/1091 = O,j = I, ... , k + m, may be solved using for 
example Newton-Raphson or a simplex procedure. To change between 
simple and Hermite polynomials, it is merely necessary to redefine pj(y,), 
J = 1, .... m; to change between polynomial and Fourier series adjust
ments, the derivative of pj(y,) with respect to Ys must also be redefined. 
If a different key o:(y) is required, the only additional algebra needed 
to implement the method is to find clo:(y)/d91 and dyid91, I ,,;,:; j,,;,:; k; 
j3 and clj3/cl81 are evaluated by numerical integration. 

The Fisher information matrix per observation may be estimated by 
the Hessian matrix H(8), with jhth element 

This may be formed from quantities already caJculated. If a function of 
the parameters, g(!:!:), is to be estimated by g(!:!:), then 
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3.4.2 Grouped data 

Suppose the observations y are grouped, the ith group spanning the 
interval (c;1, en), i =I, ... , u. In general, the data may be truncated at 
either or both ends. For line and point transects, it is usual that 
c;1 = 0 (no left truncation) and ci2 = c; + 1• 1, i = I, ... , u - I. The likelihood 
function is now multinomial. Let the group frequencies be n1, ... , nu, 

with cell probabilities 

Then 

• 
!oge(,;f(~)] =I= Ln; • loge(1t;) + a constant 

i • I 

Define P; = 1t; • 13, so that 

iln; I [ilP; •~ l -=-· ---•n, 
aa1 ~ aaj aa; 

Then if P; and ap,.raej,}= I, ... , k+m, i= I, ... , u, can be found, 

and 

Given parameter estimates, the P; may be evaluated by numerically 
integrating the numerator, /(y) • 13, of the density function: 
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Similarly, 

and may be found using numerical integration on 

alf(y) • Pl 
= +[1 + i_ai' ·Pr(Y:,)]· Oa(y), 1 "s i "s k 

r;i d81 
(3.10) 

a(y) · PJ-k(Y,), for all j > k for which OJ-k is non-zero 

The implications of changing between simple and Hermite polynomials 
or between polynomial and Fourier series adjustments, and of changing 
the key function, are identical to the case of ungrouped data. 

Again, a robust iterative procedure is required to maximize the likeli
hood. Variances follow as for ungrouped data, except that the informa
tion matrix per observation, !(~), now has jhth element 

All of these quantities arc now ayailable, and so a function of the 
parameters g(~) is estimated by gm) with variance 

fu(g<•n = ! . [••<~>]' u<•>r' [0•<~>] 
- n aa - ae - -

If data are analysed both grouped and ungrouped, and the respective 
maxima of the likelihood functions are compared, the constant combin
atorial term in the likelihood for grouped data should be omitted. As 
the number of groups tends to infinity and interval width tends to zero, 

68 



MAXIMUM LIKELIHOOD METHODS 

the likelihood for grouped data tends to that for ungrouped data. 
provided the constant is ignored. 

3.4.3 Special cases 

Suppose no polynomial or Fourier series adjustments are required. The 
method then reduces to a straightforward fit of a parametric density. 
The above results hold. except the range of j is now from I to k. and 
for ungrouped data Equation 3.9 reduces to 

For grouped data. Equation 3.10 reduces to the above. with the suffix 
i deleted from y. 

For the Hermite polynomial model. it is sometimes convenient to fit 
the half-normal model as described in the previous paragraph, and then 
to condition on that fit when making polynomial adjustments. For the 
standard Fourier series model. the key is a uniform distribution on (0, w), 
where w is the truncation point, specified before analysis. In each of 
these cases, the adjustment terms are estimated conditional on the 
parameters of the key. Thus Equation 3.9 reduces to 

d[f~i) • ~J = a(y,-) . PJ _,. (y,s), for non-zero a1 _,. and k < j ,;;; k + m 
81 

Equation 3.10 reduces similarly. but with suffix i deleted; otherwise 
results follow through exactly as before, but with J restricted to the 
range k + I to k + m. This procedure is necessary whenever the uniform 
key is selected. For keys that have at least one parameter estimated 
from the data, the conditional maximization is useful only if simultan
eous maximization across all parameters fails to converge. 

A third option that is sometimes useful is to refit the key, conditional 
on polynomial or Fourier series adjustments. Equation 3.9 then becomes 
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and similarly for Equation 3.10, but minus the suffix i throughout. The 
range of j is from I to k; otherwise results follow exactly as before. 

3.4.4 The half-normal detection funetion 

If the detection function is assumed to be half-nonnal, and the data are 
both ungrouped and untruncated, the above approach leads to closed 
form estimators and a particularly simple analysis for both line and 
point transect sampling. Suppose the detection function is given by 
g(y) = exp(- /!2d), 0,,,:; y < oo. We consider the derivation for line tran
sects (.v = x) and point transects (y= r) separately. 

(a) Line transects With no truncation, the density function of detection 
distances is f(x) = g(x)Iµ, where 

f- f- .r;;;;, µ = 
0 

g(x)d:,c = 
0 

exp(- x 2 /2ci)dx = '\J T 

Given n detections. the likelihood function is 

" so that I= loge(:£)= - L {xfl2d} - n • loge{✓(mi/2)} 
i = I 

Differentiating/ with respect to d (i.e. k = l, 81 = d and m = 0 in terms 
of the general notation) and setting the result equal to zero gives: 

;; = t XT 120◄ - n12d : o 

" 
so that &2 = l xffn 

i= I 

By evaluating the Fisher information matrix, we get 
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from which 

va<{ i(O)} = _I_ = { /(Ol)' 
mtd 2n 

Equation 3.4, with each of E(s), c and g0 set equal to one, yields 

from which 

D = E(n) • /(0) 
2L 

The methods of Section 3.7 yield an estimated variance for b. 
Quinn (1977) investigated the half-normal model, and derived an 

unbiased estimator for f(O). 

(b) Point transects The density function of detection distances is given 
by f(r) = 21tr • g(r)/v. For the half-normal detection function, 

= [- 21ta2 · ex:p(- r2/2a2)1,;" = 2:rta2{1 - exp(- w212a2)} 

Because there is no truncation, w = 00, so that v = 2,ui. Note that if we 
substitute w = a into this equation, then the expected proportion of 
sightings within a of the point transect is 21ta2 

{ I - ex:p(- 0.5)} /v = 39%. 
This compares with 68% for line transects; thus for the half-normal 
model, nearly 70% of detections occur within one standard deviation of 
the observer for line transects, whereas less than 40% occur within this 
distance for point transects. This highlights the fact that expected 
detection distance is greater for point transects than for line transects, 
a difference which is even more marked if the detection function is 
long-tailed. 

If n detections are made, the likelihood function is given by 
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!£ = ;~i { 21tr1 • g(r;)lv} = { 
1

~ i'; · exp(- ,f /2d)} /(d") 

• 
so that/= IOSe(.:f) = I {loge(r;) - r~/2o2} - n • log£(d) 

i • I 

This is maximized by differentiating with respect to d and setting equal 
to zero: 

• 
so that cl= L '112n 

i • I 

d/
2 
= i; ,lt2o4 

- n!d = o 
do 1-1 

It follows that h(O) = 21t/V = lla2 . Equation 3.5, with each of E(s), c 
and g0 set equal to one, gives 

so that 

D = E(n) • h(O) 

2nk 

. n • h(O) 
D= 21tk 

The maximum likelihood method yields var[h(O)]. The half-normal 
detection function has just one parameter (o2), so that the information 
matrix is a scalar. It yields 

and 

" 2o4 

var(o-2) = -
n 

var{h(O)} = ~ = 2{h(0)}
2 

ncr n 

Estimation of var(n) and var(b) is covered in Section 3.7. 
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3.4.5 Constrained maximum likelihood estimation 

The maximization routine used by DISTANCE allows constraints to be 
placed on the fitted detection function. In all analyses, the constraint 
i(y) :ae O is imposed. In addition, §(y) is evaluated at ten y values, y 1 

to Y10. and the non-linear constraint i(Y;) :a< i(J'; + 1), i = I, ... , 9, is en
forced. The user may override this constraint, or replace it by the weaker 
constraint that i(O) :a< i(y;), i =I, ... , 10. If the same data set is analysed 
by DISTANCE and by TRANSECT (Laake et al. 1979), different estimates 
may be obtained; TRANSECT does not impose constraints, and in addi
tion does not fit the Fourier series model by maximum likelihood. 

DISTANCE warns the user when a constraint has caused estimates 
to be modified. In these instances, the analytic variance of i(O) or 
h(O) may be unreliable. and we recommend that the bootstrap option 
for variance estimation is selected. 

3.5 Choice of model 

The key + adjustment formulation for line and point transect models 
outlined above has been implemented in DISTANCE, so that a large 
number of models are available to the user. Although this gives great 
flexibility, it also creates a problem of how to choose an appropriate 
model. We consider here criteria that models for the detection function 
should satisfy, and methods that allow selection between contending 
models. 

3.5.1 Criteria for robust estimation 

Burnham er al. (1979, 1980: 44) identified four criteria that relate to 
properties of the assumed model for the detection function. In order of 
importance, they were model robustness, pooling robustness, the shape 
criterion and estimator efficiency. 

(a) Model robustness Given that the true form of the detection function 
is not known except in the case of computer simulations, models are 
required that are sufficiently flexible to fit a wide variety of shapes for 
the detection function. An estimator based on such a model is termed 
model robust. The adoption of the key + series expansion formulation 
means that any parametric mode! can yield model robust estimation, by 
allowing its fit to be adjusted when the data dictate. A model of this 
type is sometimes called 'semiparametric'. 
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(b) Pooling robustness Probability of detection is a function of many 
factors other than distance from the observer or line. Weather. time of 
day, observer, habitat, behaviour of the object, its size and many other 
factors influence the probability that the observer will detect it. Condi
tions will vary during the course of a survey, and different objects 
will have different intrinsic detectabilities. Thus the recorded data are 
realizations from a heterogeneous assortment of detection functions. 
A model is pooling robust if it is robust to variation in detection 
probability for any given distance }'. A fuller definition of this concept 
is given by Burnham et al. (1980: 45). 

(c) Shape criterion The shape criterion can be stated mathematically 
as g'(O) :0. In words, it states that a model for the detection function 
should have a shoulder. The restriction is reasonable given the 
nature of the sighting process. Note that the hazard-rate derivations of 
Section 3.2 gave rise to detection functions which possess a shoulder 
for all parameter values, even though sharply spiked hazards with 
infinite slope at zero distance were assumed. If the shape criterion 
is violated, robust estimation of object density is problematic if not 
impossible. 

(d) Estimalor efficiency Estimators that have poor statistical efficiency 
(i.e. that have large variances) should be ruled out. However, an esti
mator that is highly efficient should be considered only if it satisfies the 
first three criteria. High estimator efficiency is easy to achieve at the 
expense of bias, and the analyst should be satisfied that an estimator is 
unbiased, or at least that there is no reason to suppose it might be more 
biased than other robust estimators, before selecting on the basis of 
efficiency. 

3.5.2 The likelihood ratio test 

The requirement for adjustment terms to a given key function can be 
judged using likelihood ratio tests. Suppose that a fitted model has m1 

adjustment terms (Model I). A likelihood ratio test allows an assessment 
of whether the addition of another m2 term improves the adequacy of 
a model significantly. The null hypothesis is that Model I, with m1 

adjustment terms, is the true model, whereas the alternative hypothesis 
is that Model 2 with all m1 + m1 adjustment terms is the true model. 
The test statistic is 
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where :£ 1 and ±2 are the maximum values of the likelihood functions 
for Models I and 2 respectively. If Model I is the true model, the test 
statistic follows a x2 distribution with m2 degrees of freedom. 

The usual way to use likelihood ratio tests for line and point transect 
series expansion models is to fit the key function, and then fit a low 
order adjustment tenn. The adjustment would normally be a polynomial 
of order four or the first term in a cosine series. If it provides no 
significant improvement as judged by the above test, the fit of the key 
alone is taken. If the adjustment term does improve the fit, the next 
term is added (usually the polynomial of order six, or the second term 
of a cosine series), an<l a likelihood ratio test is again carried out. The 
process is repeated until the test is not significant, or until a maximum 
number of terms has been attained. This method is therefore sequential, 
and is the default method used by DISTANCE. The conventional 
significance level is 5% (a= 0.05), so that the most recently added term 
is retained if the likelihood ratio statistic exceeds x~.o.1 = 1.962 = 3.84. 
Unless sample sizes are large, the test has rather low power, and the 
sequential method risks biased estimation of density and underestima~ 
tion of variance. We suggest that a= 0.15 be adopted, in which case 
the value 3.84 is replaced by X~ 15 = 2.07. 

Terms may be added in a stepwise manner, as in regression. For 
forward stepping, that term not yet in the model for which the x2 statistic 
from the likelihood ratio test is largest is included next, provided its 
test statistic is significant at the selected level. For backward stepping, 
the term already in the model with the smallest test statistic is dropped, 
unless it is significant at the a% level. 

The likelihood ratio test requires that Model I is a special case of 
Model 2. The models are said to be nested or hierarchical. The following 
procedure is similar in character, but allows the user to select between 
non•hierarchical models. 

3.5.3 Akaike's Information Criterion 

Akaike's Information Criterion (AIC) provides a quantitative method 
for model selection, whether or not models arc hierarchical (Akaike 
1973). It treats model selection within an optimization rather than a 
hypothesis testing framework. Burnham and Anderson (1992) illustrated 
the application of AIC, and Akaike (1985) presented the theory underly
ing the method. AIC is defined as 

AIC = ~ 2 · loge(~)+ 2q 
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where lo~(:£) is the log-likelihood function evaluated at the maximum 
likelihood estimates of the model parameters and q is the number of 
parameters in the model. The first term, - 2 • loge(:£), is a measure of 
how well the model fits the data, while the second term is a penalty for 
the addition of parameters (i.e. model complexity). For a given data set, 
AIC is computed for each candidate model and the model with the 
lowest AIC is selected. Thus, AIC attempts to identify a model that fits 
the data well and does not have too many parameters (the principle of 
parsimony). For the special case of nested models and m, = I, model 
selection based on AIC is exactly equivalent to a likelihood ratio test 
with X~ = 2.0, which corresponds to a= 0.157, close to the value of 0.15 
recommended above for the likelihood ratio test. 

For analyses of grouped data, DISTANCE omits the constant term 
from the multinomial likelihood when it calculates the AIC. This ensures 
that the AIC tends to the value obtained from analysis of ungrouped 
data as the number of groups tends to infinity, where each interval 
length tends to zero. 

3.5.4 Goodness of fit 

Goodness of fit can be a useful tool for model selection. Suppose the 
n distance data from line or point transects are split into u groups, with 
sample sizes ni, n2, .•• , nu. Let the cutpoints between groups be defined 
by c0, c1, ••• , Cu= w (co> 0 corresponds to left truncation of the data). 
Suppose a model with q parameters is fitted to the data. so that the 
area under the estimated density function between cutpoints c, _ 1 and 
c; is it; . Then 

has a x2 distribution with u - q - l degrees of freedom if the fitted model 
is the true model. 

Although a significantly poor fit need not be of great concern, it 
provides a warning of a problem in the data or the selected detection 
model structure, which should be investigated through closer examina
tion of the data or by exploring other models and fitting options. Note 
that it is the fit of the model near zero distance that is most critical; 
none of the model selection criteria of goodness of fit statistics, AIC 
and likelihood ratio tests give special emphasis to this region. A possible 
criterion for selecting between models is to calculate the 'x2 goodness of 
fit statistic divided by its degrees of freedom for each model, and to 
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select the model which gives the smallest value. A disadvantage of this 
approach is that the value of the X2 statistic depends on arbitrary 
decisions about the number of groups into which the data are divided 
and on where to place the cutpoints between groups. For several 
reasons. we prefer the use of AIC. However, a significant goodness of 
fit statistic is a useful warning that the model might be poor, or that 
an assumption might be seriously violated. 

3.6 Estimation for clustered populations 

Although the general formula of Section 3.1 incorporates the case in 
which the detections are clusters of objects, estimation of the expected 
cluster siLe E(s) is often problematic. The obvious estimator, tile average 
size of detected clusters, may be subject to size bias; if large clusters are 
detectable at greater distances than small clusters, mean size of detected 
clusters will be biased upwards. 

J.6.1 Truncation 

Th.e simplest solution is to truncate clusters that are detected far from the 
line. Th.e truncation distance need not be th.e same as th.at used if the 
detection function is fitted to truncated perpendicular distance data; if size 
bias is potentially severe, truncation sh.ould be greater. To be certain of 
eliminating tile effects of size bias, th.e truncation distance should corre
spond roughly to th.e width. of the shoulder of the detection function. Then 
E(s) is estimated by S, tile mean size of the n clusters detected within th.e 
truncation distance. Generally, a truncation distance v corresponding to 
an estimated probability of detection i(v) in th.e range 0.6 to 0.8 ensures 
th.at bias in this estimate is small. Variance of S is estimated by: 

where s1 denotes tile size of cluster i. Th.is estimator remains unbiased 
wh.en th.e individual s; h.ave different variances. 

J.6.1 Weighted a~erage of cluster siz.es and stratification 

Truncation may prove unsatisfactory if sample size 1s small. Quinn 
(19791 considered both. post-stratifying detections by cluster size and 
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pooling across cluster size in line transect sampling. He showed that 
estimation or the detection function, and hence or abundance or clusters, 
is not compromised by pooling the data. He noted the size bias in 
detected clusters, and proposed the estimator 

L nvsviv(Ols = Sv) 

i(s) = -•~~~--
L nJv(Ols = s0,) 

" 
where summation is over the recorded cluster sizes. Thus there are nv 
detections of clusters of size sv, and the effective strip width for these 
clusters is 1//v(Ols = sv). The estimate is therefore the average size of 
detected clusters. weighted by the inverse of th.e effective strip width at 
each cluster size. For point transect sampling, h.,(O 1s = sv) would replace 
1:(01s = s.,). As Quinn noted, if data are pooled with respect to cluster 
size. the /.,(Ols = sv) are not individually estimated. He suggested that 
the effective strip width might be assumed to be proportional to the 
logarithm of cluster size, so that 

L nvsvllOge(sv) 

E<s> = -'---L nvlloge(Sv) 

' 
This method is used in the procedures developed by Holt and Powers 
(1982) for estimating dolphin abundance in the eastern tropical Pacific. 
If it is adopted, the recommendation of Quinn (1985) should be im
plemented: plot mean perpendicular distance as a function of cluster 
size to assess the functional relationship between cluster size and effect
ive strip width. The method should not be used in conjunction with 
truncation of clusters at larger distances, because cluster size is then 
underestimated. The purpose of truncation is to restrict 1he mean cluster 
size calculation to those clusters that are relatively unaffected by size 
bias, so effective strip width of the retained clusters cannot be assumed 
proportional to the logarithm of cluster size. Clusters beyond the 
truncation distance are larger than average when size bias is present, so 
that the above weighted mean, if applied after truncating distant clus
ters, corrects for the effects of size bias twice. 

Quinn (1985) examined further the method of post-stratifying by 
cluster size. He showed that the method necessarily yields a higher 
coefficient of variation for abundance of clusters than the above method 
in which data are pooled across cluster size, but found that the result 
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does not extend to estimates of object abundance. For his example, he 
concludes that the method of pooling is superior for estimating cluster 
abundance, and the method of post-stratification for estimating object 
abundance. This conclusion is likely to be true more generally. To apply 
the method of post-stratification, cluster size intervals should be defined 
so that sample size is adequate to allow estimation of /(0) in each 
stratum. Stratification strategies relevant to this issue are discussed in 
more detail in Section 3.8. 

3.6.3 Regression estimators 

The solution of plotting mean distance y against cluster sizes was 
proposed by Best and Butterworth (1980), who predicted mean cluster 
size at zero distance, using a weighted linear regression of cluster size 
on distance. This suffers from the difficulty that, if Lhe detection 
function has a shoulder, mean cluster size is not a function of distance 
until distance exceeds the width of the shoulder. Sample size is seldom 
sufficient to determine that a straight line fit is inadequate, so that 
estimated mean cluster size at zero distance is biased downwards. 
Because this is assumed to be an unbiased estimate of mean size of 
all clusters in the population, population abundance is underestimated. 
A solution to this problem is to replace detection distance y, for the 
ith detection by i(y1) in the regression, where j(y) is the detection 
function estimated from the fit of the selected model to the pooled data, 
and to predict mean cluster size when detection is certain (i( y) = 1.0). 
Thus if there are n detections, at distances y; and of sizes s;, if Ed(sly) 
denotes the expected size of detected clusters at distance y, and E(s) de
notes the expected size of all clusters. whether detected or not (assumed 
independent of y), we have: 

E'd(s/y)=a+b·i(y) 

where a and b are the intercept and slope respectively of the regression 
of s on i( y). Then 

and 

E(s) = E"d(sly = 0) =a+ b 

@1i(,)J =[! + " 
0 

- ,i' ] • .;' 
l fg(y;) - ,l' 

I= I 

with O"' = residual mean square 

79 



STATISTICAL THEORY 

and 

A further problem of the regression method occurs when cluster size 
is highly variable, so that one or two large clusters might have large 
influence on the fit of the regression line. Their influence may be reduced 
by transformation, for example to z1 = loge(s1). Suppose a regression of 
z; on i( y,) yields the equation Z =a+ b • §(y). Thus at i(y) = 1.0, mean 
log cluster size is estimated by a+ b and E(s) is estimated by 

' ~' E(s) = exp(a + b + var(z)/2) 

~ ' [ I (I -iil' l ' where var(z) = I + -~ + n • o-2 

l lilY,l - iil' 
I• I 

6- 2 is the residual mean square, and g is as above. 
Further. 

vat'{i(s)} = exp{2(a + b) + vat'(Z)} · {I+ vat" (Z)/2) · vai-(Z)ln 

3.6.4 Use of eovariates 

The pooling method, with calculation of a weighted average cluster size, 
may be improved upon theoretically by incorporating cluster size as a 
covariate in the model for the detection function. Drummer and McDonald 
(1987) considered replacing detection distance y in a parametric model 
for the detection function by yisr, wheres is size of the cluster recorded 
at distance y and 'Y is a parameter to be estimated. Although their 
method was developed for line transect sampling, it can also be im
plemented for point transects. Ramsey el al. (I 987) included covariates 
for point transect sampling by relating the logaritllm of effective area 
searched to a linear function of covariates, one of wllich could be cluster 
size; this is in the spirit of general linear models. The same approach 
might be applied to effective strip width in line transect sampling, 
although the logarithmic link function might no longer be appropriate. 
These methods are discussed further in Section 3.8. Quang (1991) 
developed a method of modelling the bivariate detection function 
g(y,s) using Fourier series. 
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3.6.5 Rep/acinx clusters by individual objects 

The problems of estimating mean cluster size can sometimes be avoided 
by taking the sampling unit to be the object not the duster. Even when 
detected clusters show extreme selection for large dusters, this approach 
can yield an unbiased estimate of object abundance, provided all clusters 
on or near the line are detected. The assumption of independence 
between sampling units is dearly violated, so robust methods of variance 
estimation that are insensitive to failures of this assumption should be 
adopted. Use of resampling methods allows the line, line segment or 
point to be the sampling unit instead of the object, so that valid variance 
estimation is possible. Under this approach, results from goodness of 
fit tests, likelihood ratio tests and AIC should not be used for model 
selection, since they will yield many spurious significant results. One 
solution is to select a model based on an analysis of clusters. then to 
refit the model, with the same number of adjustment terms, to the data 
recorded by object. If the number of clusters detected is small, if cluster 
size is highly variable, or if mean duster size is large, the method may 
perform poorly. 

3.6.6 Some basic theory for size-biased detection of objects 

We present here some basic theoretical results when detection of clusters 
is size-biased. In this circumstance it is necessary to distinguish between 
the probability distribution of cluster sizes in the population from which 
the sample is taken from the distribution of s in the sample. Some of 
these results are in the literature (e.g. Quinn 1979; Burnham et al. 1980; 
Drummer and McDonald 1987; Drummer 1990; Quang 1991). 

Let the probability distribution of cluster sizes in the region sampled 
be x(s), s = l, 2, 3, .... This distribution applies to all the dusters, not 
to the detected sample. If there is size bias, then the sample of detected 
clusters has a different probability distribution, say x• (s), s = 1, 2, 3, .... 
Consider first line transect sampling. Let the conditional detection 
function be g(xls) = probability of detection at perpendicular distance 
x given that the duster is of size s, and let the detection function 
unconditional on cluster size be g(x). Denote the corresponding probability 
density functions (pdf) by /(xis) and f(x) respectively. The conditional 
pdf at x = O is 

f(Ol,)•-~-

{""g(xis)dx 
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where w need not be finite. Note also the results 

/(xis) 
g(xls) = f(Ols) and 

f(x) 
g(x) = /(0) 

which are useful in derivations of results below. 
For any fixed s, cluster density is given by the result for object density 

in the case without clusters: 

E[n(s)] • /(Ols) 
D(s) = 2L 

where n(s) is the number of detections of clusters of size s and D(s) is 
the true density of clusters of size s. We need not assume that c and 
g0 from Equation 3.1 equal one; however, the complication of g0 varying 
by s is not considered here. 

The key to deriving results is to realize that 

and 

where 

1t(s) = D(s) 
D 

'( ) _ E{n(s)] 
1t s - E(n) 

D=ID(s) and n= I,n(s) 
S=I s=l 

By substituting the results for D and D(s) into the first equation and 
using the result of the second, we derive 

'[/(0)] 1t (s) = /(OW • n(s) 

Note that well-defined marginal probabilities and distributions exist; 
for example, 

g(x) = L,g(xls) - n(s) 
• = I 
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from which 

/(0) = ---'-- and 

{"' g(x)dx 

D = E(n) • j(O) 
2L 

Given the above it is just a matter of using algebra to derive results 
of interest. Some key results are: 

• [ 
r"w g(xls)dx] • 1t(s) -1!.{&_ 
), j(Ols) 

1t (s) = -------- = ~~~ 
-[f' ] ;. s(s) 

s;, o g(xls)dx • 1t(s) s:'1 /(Ols) 

By definition. E(s) = 2, s • n(s), so that 
,. ' 

l;J(Ols) • s • ••(s) l;J(Ols) · s · E[n(s)] 
E(s)= 5-·-~-----=·'"cc.,• _____ _ 

l;J(Ols) • ••(,) l;J(O[s) · E[n(s)] 
s-1 ••I 

The validity of Quinn's (1979) estimator, given in Section 3.6.2, is now 
apparent. The marginal pdf satisfies 

These results are consistent with the formulae for density of individ
uals either as 

or as 

D = E(n) 1(0) • E(s) 
2L 
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A bivariate approach involves modelling the bivariate detection function 
g(x, s), perhaps using generalized linear or non-linear regression. Adopt
ing a univariate approach, we can estimate E(s) in a linear regression 
framework. The key quantity needed here for theoretical work is the 
conditional probability distribution of detected cluster size given that 
detection was at perpendicular distance x, symbolized 1t"(slx). Alterna
tive representations are 

o, 

x•(slx) = .. g(xls) • 1t(s) 

L g(x Is) • x(s) 
s = t 

a 
g(x Is) - Jt(s) 

g(x) 

If T(s) represents any transformation of s, then we can compute condi
tional (on x) properties of T(s), for example 

L T(s) • g(xjs) • Jt(s) 
s ~ I 

E[T(,)lx] = =IT(,)· •'(,Ix) 

Ig(xl,) · x(,) 
., • I 

IT(,)· /(xi,)·•'(,) 
s ~ I 

= 

I J<xl,> • •<,> 
s~I 

In particular, to evaluate the reasonableness of the regression estimator 
of loge(s) on i(x), we can plot E[loge(s) Ix] against i(x) or otherwise 
explore this relationship, including computing var(loge(s) Ix]. 
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Similar formulae exist for point transect sampling; in fact, many are 
the same. The relationship between the conditional detection function 
g(rls) and the corresponding pdr or distances to detected clusters is now 

and 

. f(,1,) 
h(O Is).:: hm -- = --~--

,_, 0 r f • 

from which 

Univariate results are 

and 

0 
r • g(rls)dr 

E[n(s)] • h(Ols) 
D(s) == 21tk 

g(r) = L g(rls) • 1t(s) 
s,. I 

h(0)=-~
1
-

fo w r • g(r)dr 

D = E(n) • h(O) 
2nk 
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Using these formulae we can establish that 

• h(O) 
1t (s) = h(Ols) • 1t(s) 

This is obtained from 

D(s) = £[n(s)] • h(Ols) 
D E(n) • h(O) 

The conditional and unconditional h(·) functions are related by 

Also, analogous to the line transect case with hO in place off(-), we 
have 

• [ tK• r • g(rls)dr] • 1t(s) h;~~:) 
n (s) = ___ [ __ ( _____ ] ___ ~-~,~(~,)-

.. ~
1 

Jo r • g(rls)dr • n(s) s~i h(Ols) 

and 

E h(OI,) ·, • •"(,) Eh(OI,) ·, • E[n(,)] 
S el S• I 

E(s) = .., -------

E h(OI,) • •"(,) Eh<OI,) • E[n(,)] 
,.-~ I s- I 

In general, all the results for point transects can be obtained from the 
analogous results for line transects by making the following replace
ments: r • g(r) for K(x), and r • g(rls) for g(xls). In particular, note what 
happens to n*(slr) in point transect sampling: 
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* r • g(rls) • n(s) r • g(rls) • n(s) 
Jt(slr)=_ = 

r • g(r) 
L, r • g(rls) • Jt(s) 

., ~ I 

a 
K(r)s) • Jt(s) 

a 
g(rls) • Jt(s) 

g(r) 

This has exactly the same form as for line transects. An alternative 
expression is 

• f(rls) • 1t*(s) f(rls) • 1t'(s) 
7t (sl r) = = m f(r) 

111,1,1. •"(,) 
'a ' 

(defined to give continuity at r = 0), which looks structurally like the 
result for line transects. However, here the probability density function 
necessarily differs in shape from that for line transects, whereas the 
detection function of the previous expression might plausibly apply to 
both point and line transects. 

3. 7 Density, variance and interval estimation 

3.7.J B'"ic formulae 

Substituting estimates into Equation 3.4, the general formula for estim
ating object density from line transect data is 

From Equation 3.3, the variance of b is approximately 

~ D. D., (lli(n) lli[f(O)] lli(E'(s)] @[go) ) var()= • --+-~~"+-~~+---
n

2 
[.f(O)f [i(s)]2 [ioJ2 

Equivalent expressions for point transect sampling are 
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• n · h(O) • E(s) 
D = -'-----'-'"-----"---'~ 

21tckio 

and 

var =v · --+-~~+-~~ + --~(D.) ;c /va"r(n) vat°[.h(O)] vat°(i(s)] fu[ko]l 
n

2 
[h(0)]2 [i(s)j2 [io]2 

If go"" I (detection on the line or at the point is certain) or E(s) = I (no 
clusters), the terms involving estimates of these parameters are elimi
nated from the above equations. Generally, the constant c = I, further 
simplifying the equations for b. 

To estimate the precision of D, the precision of each component in 
the estimation equation must be estimated. Alternatively, rcsampling or 
empirical methods can be used to estimate var(b) directly; some options 
are described in later sections. If precision is estimated component by 
component, then methods should be adopted for estimating mean cluster 
size and probability of detection on the line that provide variance 
estimates, @[i(s)] and vai-[§0]. Estimates of/(0) or h(O) and correspond
ing variance estimates are obtained from DISTANCE or similar soft
ware, using maximum likelihood theory. If objects are distributed 
randomly, then sample size n has a Poisson distribution. and 
va!"(n) = n. Generally, biological populations show some degree of ag
gregation, and Burnham et al. (1980: 55) suggested multiplication of the 
Poisson variance by two if no other approach for estimating var(n) was 
available. If data are recorded by replicate lines or points, then a better 
method is to estimate var(n) from the observed variation between lines 
and points. This method is described in the next section. 

Having obtained b and va'r(b), an approximate 100(1 - 2a)% con
fidence interval is given by 

D±zo: • ✓ {va'r(b)} 

where zo: is the upper a¾ point of the N(O,I) distribution. However, the 
distribution of b is positively skewed, and an interval with better 
coverage is obtained by assuming that D is log-normally distributed. 
Following lhe derivation of Burnham et al. (1987: 212), a 100(1 - 2a)% 
confidence interval is given by 

(DIC, jj · CJ 
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where 

and 

This is the method used by DISTANCE, except =a. is replaced by a 
slightly better constant that reflects the actual finite and differing 
degrees of freedom of the variance estimates. 

The use of the normal distribution to approximate the sampling 
distribution of loge(i>) is generally good when each component of 
val'(.b) (e.g. vai'(n) and va'r[j(O)]) is based on sufficient degrees of 
freedom (say 30 or more). However, sometimes the empirical estimate 
of var(n) in particular is based on less than IO replicate lines, and hence 
on few degrees of freedom. When component degrees of freedom are 
small, it is better to replace za. by a constant based on a !-distribution 
approximation. In this case we recommend an approach adapted from 
Satterthwaite (1946); see also Milliken and Johnson (1984) for a more 
accessible reference. 

Adapting the method of Satterthwaite (1946) to this distance sampling 
context, Za. in the above log-based confidence interval is replaced by the 
two-sided alpha-level !-distribution percentile tJJ(a) _where df is c~mputed 
as below. The coefficients of variation cv(D), cv(n), cv[/(0)] or 
cv[h(O)], and, where relevant, cv[E'(s)] and cv(g0) are required, together 
with the associated degrees of freedom. In general, if there are q 
estimated components in b, then the computed degrees of freedom are 

This value may be rounded to the nearest integer to allow use of tables 
of the !-statistic. 

For the common case of line transect sampling of single objects using 
k replicate lines, the above formula for df becomes approximately 
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" . 
df = [cv(D)] 

[cv(n)]4 {cv[}(0)])4 

+ k - l n 

(The actual degrees of freedom for var(/(0)] are n minus the number of 
parameters estimated in f(x).) This Satterthwaite procedure is used by 
program DISTANCE, rather than just the first order zo; approx.imation. 
It makes a noticeable difference in confidence intervals for small k, 
especially if the ratio cv(n)/cv(/<O)] is greater than one; in practice, it 
is often as high as two or three. 

3.7.2 Replicate lines or points 

Replicate lines or points may be used to estimate the contribution to 
overall variance of the observed sample size. In line transects, the 
replicate lines may be defined by the design of the survey: for example 
if the lines are parallel and either systematically or randomly spaced, 
then each line is a replicate. Surveys of large areas by ship or air 
frequently do not utilize such a design for practical reasons. In this case, 
a 'leg' might be defined as a period of search without change of bearing, 
or all effort for a given day or watch period. The leg will then be treated 
as a replicate line. When data are collected on an opportunistic basis 
from, for example, fisheries vessels, an entire fishing trip might be 
considered to be the sampling unit. 

Suppose the number of detections from line or point i is n;, 
i = I, ... , k, so that n = I, n1. Then for point transects ( or for line 
transects when the replicate lines are all the same length), the empirical 
estimate of var(n) is 

For line transects, if line i is of length Ii and total line length = 

' L=I;l1, then 
; = J 

~ ' ("' ")' var(n) = L I;l, J.- - l(k- l) 
1= 1 , L 

Encounter rate nl L is often a more useful form of the parameter than n 
alone; the variance of encounter rate is vir(n)/ £2. There is a similarity here 
to ratio estimation in finite population sampling, except that we take all 
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line lengths Ii, and hence L, to be fixed (as distinct from random) values. 
Consequently, the variance of a ratio estimator does not apply here, and 
our viir(n/ L) is a little different from classical finite sampling theory. 

If the same line or point is covered more than once, and an analysis 
of the pooled data is required, then the sampling unit should still be 
the line or point. That is, the distance data from repeat surveys over a 
short time period of a given line or point should be pooled prior to 
analysis. Consider point transects, in which point i is covered t1 times, 
and in total, n; objects are detected. Then 

~ ' (" ")' var(n) = T_L 11 _i - -T l(k- I) 
,~ l (/ 

where 

The formula for line transects becomes 

• where 

' TL=l:t;·/1 
,. ' 

Generally, t; will be the same for every point or line, in which case the 
above formulae simplify. The calculations may be carried out in DIS
TANCE by setting SAMPLE equal tot; for point i (point transects) or 
t, • I, for line i (line transects). 

The above provides empirical variance estimates for just one compo
nent of Equation 3.2. which may then be substituted in Equation 3.3. 
A more direct approach is to estimate object density for each replicate 
line or point. Define 

, n;• i;(s) 
D,= , ,i=l, ... ,k 

c • a,· Pa,· ko; 
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Then for point transects (and line transects when all lines are the same 
length), 

D=!I.b,lik 
'. ' 

(3.11) 

and 

(3.12) 

For line transects with replicate line i of length 11, 

(3.13) 

and 

' iai(D) = L {/,(D, - D)')I {L(k- I)) (3.14) 
,~ I 

In practice, sample size is seldom sufficient to allow this approach, 
so that resampling methods such as the bootstrap and the jackknife are 
required. 

3.7.3 The jackknife 

Resampling methods start from the observed data and sample repeatedly 
from them to make inferences. The jackknife (Gray and Schucany 1972; 
Miller 1974) is carried out by removing each observation in turn from 
the data, and analysing the remaining data. It could be implemented 
for line and point transects by dropping each individual sighting from 
the data in turn, but it is more useful to define replicate points or lines, 
as above. The following development is for point transects, or line 
transects when the replicate lines are all of the same length. 

First. delete all data from the first replicate point or line, so that 
sample size becomes n - n1 and the number of points or lines becomes 
k - I. Estimate object density using the reduced data set, and denote 
the estimate by Dw . Repeat this step, reinstating the dropped point or 
line and removing the next, to give estimates b1;), i =I, ... , k. Now 
calculate the pseudovalues: 
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" (i) " ' . D = k, D -(k - 1) · D(i), 1 =I, ... , k (3.15) 

These pseudovalues are treated ask replicate estimators of density, and 
Equations 3.11 and 3.12 yield a jackknife estimate of density and 
vanance: 

and 

vai-J(.bJ)=j±cb(/)-b1)2)/{k(k- I)} , . ' 
For line transects in general, Equation 3.15 is replaced by 

and the jackknife estimate and variance are found by substitution into 
Equations 3.13 and 3.14: 

and 

' vib(DJ) = L {/;(iJ(i) - bJ)2} / {L(k - I)} ,. ' 
An approximate 100(1 - la)% confidence interval for density D 1s 

given by 

where tk _ 1 (a) is from Student's !"distribution with k - I degrees of 
freedom. 

This interval may have poor coverage when the number of replicate 
lines is small; Buckland (1982) found better coverage using 
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where b is the estimated density from the full data set and 

k 

va'r;(b) = 1, {l;(ff'l - b/} l{L(k - 1)} 
i~ I 

The jackknife provides a strictly balanced resampling procedure. How
ever there seems little justification for assuming that the pseudovalues 
are normally distributed, and the above confidence intervals may be poor 
when the number of replicate lines or points is small. Further there is 
little or no control over the number of resamples taken; under the above 
procedure, it is necessarily equal to the number of replicate lines or points 
k, and performance may be poor when k is small. Thirdly a resample 
can never be larger than the original sample, and will always be smaller 
unless there are no sightings on at least one of the replicate lines or 
points. The bootstrap therefore offers greater flexibility and robustness. 

3.7.4 The bootstrap 

The bootstrap (Efron 1979) provides a powerful yet simple method for 
variance and interval estimation. Consider first the non-parametric 
bootstrap, applied in the most obvious way to a line transect sample. 
Suppose the data set comprises n observations, yi, ... , y,,, and the 
probability density evaluated at zero, /(0), is to be estimated. Then a 
bootstrap sample may be generated by selecting a sample of size n with 
replacement from the observed sample. An estimate of /(0) is found from 
the bootstrap sample using the same model as for the observed sample. 
A second bootstrap sample is then taken, and the process re~ated. 
Suppose in total B samples are taken. Then the variance of /(0) is 
estimated by the sample variance of bootstrap estimates of /(0), 
/~(0), i = 1, ... , B (Efron 1979). The percentiles of the distribution of 
bootstrap estimates give approximate confidence limits for f(O) (Buckland 
1980; Efron 1981). An approximate 100(1 - 2a)% central confidence 
interval is given by [Jv)(O), j;kJ(O)], where j = (B + l)a and 
k = (B + 1)(1 - a) and }i,l(O) denotes the ith smallest bootstrap estimate 
(Buckland 1984). To yield reliable confidence intervals, the number of 
bootstrap samples B should be at least 200, and preferably in the range 
400-1000, although around 100 are adequate for estimating standard 
errors. The value of B may be chosen so that j and k are integer, or j 
and k may be rounded to the nearest integer values, or interpolation 
may be used between the ordered values that bracket the required 
percentile. Various modifications to the percentile method have 
been proposed, but the simple method is sufficient for our purposes. 
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The parametric bootstrap is applied in exactly the same manner, except 
that the bootstrap samples are generated by taking a random sample of size 
n from the fitted probability density, j(y). 

If no polynomial or Fourier series adjustments are made to the fit of 
a parametric probability density, the above implementation of the boot
strap (whether parametric or non-parametric) yields variance estimates 
for /N) close to those obtained using the information matrix. Since the 
bootstrap consumes considerably more computer time (up to B times 
that required by an analytical method), it would not normally be used 
in this case. When adjustments are made, precision as measured by the 
information matrix is conditional on the number of polynomial or 
Fourier series terms selected by the stopping rule (e.g. a likelihood ratio 
test). The Fourier series model in particular gives analytical standard 
errors that are strongly correlated with the number of terms selected 
(Buckland 1985). The above implementation of the bootstrap avoids this 
problem by applying the stopping rule independently to each bootstrap 
data set so that variation arising from estimating the number of terms 
required is accounted for (Buckland 1982). 

In practice the bootstrap is usually more useful when the sampling 
unit is a replicate line or point, as for the jackknife method. The simplest 
procedure is to sample with replacement from the replicate lines or 
points using the non-parametric bootstrap. Unlike the jackknife. the 
sample need not be balanced, but a degree of balance may be forced 
by ensuring that each replicate line or point is used exactly B times in 
the B bootstrap samples (Davison et al. 1986). Density Dis estimated 
from each bootstrap sample, and the estimates are ordered, to give 
bu), i= 1, ... , B. Then 

and 

while a 100(1 - 2a)% confidence interval for D is given by [Dui, b(k)], 

with j = (B + l)a and k = (B + 1)(1 - a) as above. (Note that the esti
mates do not need to be ordered if a confidence interval is not required.) 
The estimate based on the original data set, D, is usually used in 
preference to the bootstrap estimate b8 , with var(b) estimated by 
~ ' vars(Ds). 
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If an automated model selection procedure is implemented, for 
example using AlC, the bootstrap allows model selection to take place 
in each individual replicate. Thus the variability between bootstrap 
estimates of density reflects uncertainty due to having to estimate which 
model is appropriate. In other words, the bootstrap variance incorpor
ates a component for model misspecification bias. By applying the full 
estimation procedure to each replicate, components of the variance for 
estimating the number of adjustment terms and for estimating E(n), 
E(s) and g0 (where relevant) are all automatically incorporated. An 
example of such an analysis is given in Chapter 5. 

A common misconception is that no model assumptions are made 
when using the non-parametric bootstrap. However, the sampling units 
from which resamples are drawn are assumed to be independently and 
identically distributed. If the sampling units are legs of effort then each 
leg should be randomly located and independent of any other leg. In 
practice, this is seldom the case, but legs should be defined that do not 
seriously violate the assumption. For example, in marine line transect 
surveys, the sampling effort might be defined as all effort carried out 
in a single day. The overnight break in effort will reduce the dependence 
in the data between one sampling unit and the next, and the total 
number of sampling units should provide adequate replication except 
for surveys of short duration. It is wrong to break effort into small 
units and to bootstrap on those units. This is because the assumption 
of independence can be seriously violated. leading to bias in the variance 
estimate. If transect lines are designed to be perpendicular to object 
density contours. each line should be a sampling unit; subdivision of 
the lines may lead to overestimation of variance. In the case of point 
transects, if points are positioned along lines, then each line of points 
should be considered a ~ampling unit. If points are randomly distributed 
or evenly distributed throughout the study area, then individual points 
may be taken as sampling units. If a single line or point is covered more 
than once, and an analysis of the pooled data is required, the sampling 
unit should still be the line or point; it is incorrect to analyse the data 
as if different lines or points had been covered on each occasion. 
Analysis of such data is addressed in Section 3.7.2. 

3. 7.5 A finite population correction factor 

We denote the size of the surveyed area, within distance w of the line 
or point, by a. If the size of the study area is A, a known proportion 
a!A is sampled. Moreover. a finite population of objects, N, exists in 
the area. Thus the question arises of whether a finite population cor-
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rection (rpc) adjustment should be made to sampling variances. We give 
here a Few thoughts on this matter. 

Assume that there is no stratification (or that we are interested 
in results for a single stratum). Then for strip transect or plot sampling, 
fpc = I - al A. The adjusted variance or N is 

var(if) • (1 - a/A) 

where var(N") is computed from infinite population theory. In distance 
sampling, not all the objects are detected in the sampled area a, so that 
the fpc differs from I - al A. Also, no adjustment is warranted to 
var(Pa) because this estimator is based on the detection distances, which 
conceptually arise from an infinite population of possible distances, 
given random placement of lines or points, or different choices of sample 
period. 

Consider first the case where objects do not occur in clusters, and the 
following simple formula applies: 

for which 

N== A n 
a· P,, 

[cv(lV)J2 = [cv(n)]2 + [cv(fa,,)]2 

The fpc is the same whether it is applied to coefficients of variation or 
variances. Heuristic arguments suggest that the fpc might be estimated 
by 1 - nl N or by I - (a • fa,,)/ A. These are clearly identical. In the case 
of a census of sample plots (or strips), Pa= 1 and the correct fpc is 
obtained. For the above simple case of distance sampling, cv(N) cor
rected for finite population sampling is 

·, '[ a•P] •• [cv(N)] = (cv(n)] • I -~ + (cv(P,,Jr 

This fpc is seldom large enough to make any difference. When it is, 
then the assumptions on which it is based are likely to be violated. For 
the correction 1 - (a· fo,,)IA to be valid, the surveyed areas within 
distance w of each line or point must be non-overlapping. Further, it 
must be assumed that an object cannot be detected from more than one 
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line or point if objects are mobile, the fpc 1 - nl IV is arguably inappro
priate. 

If objects occur in clusters, correction is more complicated. First 
consider when there is no size bias in the detection probability. The 
above result still applies to Ns, the estimated number of clusters. 
However, the number of individuals is estimated as 

Inference about N is limited to the time when the survey is done, hence 
to the actual individuals then present. If all individuals were counted 
(Pa= I), var(N) should be zero; hence a fpc should be applied to S and 
conceptually, it should be I - (n • f)I N = I - (a • P~)I A. Thus for this 
case we have 

[cv(N)]2 = [ [cv(n)]2 + [cv(S)J2] • [ 1 - a A Pa] + [cv(F' .,)]2 

Considerations are different for inference about E(s). Usually one 
wants the inference to apply to the population in the (recent) past, 
present and (near) future, and possibly to populations in other areas as 
well. If this is the case, var(S) should not be corrected using the fpc. 

Consider now the case of clusters with size-biased detection. The fpc 
applied to the number of clusters is as above. For inference about JV, 
the fpc applied to the variance of i(s) is still I - (n • S)I N, which is now 
equal to 

I _ _J_. a· Pa 
i(s) A 

Thus the adjusted coefficient of variation of fl is given by 

in the case of size-biased detection of clusters. 
We reiterate that these finite population corrections will rarely, if ever, 

be worth making. 
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3.8 Stratification and covariates 

Two methods of handling heterogeneity in data, and of improving 
precision and reducing bias of estimates, are stratification and inclusion 
of covariates in the analysis. Stratification might be carried out by 
geographic region, environmental conditions, cluster size. time, animal 
behaviour, detection cue. observer, or many other factors. Different 
stratifications may be selected for different components of the estimation 
equation. For example, reliable estimation of f(O) or h(O) (or equival
ently, effective strip width or effective area), and of go where relevant, 
requires that sample size is quite large. Fortunately, it is often reason
able to assume that these parameters are constant across geographic 
strata. By contrast, encounter rate or cluster size may vary appreciably 
across strata, but can be estimated with low bias from small samples. 
In this case, reliable estimates can be obtained for each geographic 
stratum by estimating _f(O) or h(O) from data pooled across strata and 
other parameters individually by stratum, although it may prove necessary 
to stratify by, say, cluster size or environmental conditions when estimat
ing /(0) or h(O). In general, different stratifications may be needed for 
each component of Equation 3.2. 

Post-stratification refers to stratification of the data after the data 
have been collected and examined. This practice is generally acceptable, 
but care must be taken. For example, if geographic strata are defined 
to separate areas for which encounter rate was high from those for 
which it was low, and estimates are given separately for these strata, 
there will be a tendency to overestimate density in the high encounter 
rate stratum, and underestimate dem;ity in the low encounter rate 
stratum. Variance will he underestimated in both strata. If prior to the 
survey, there is knowledge of relative density, geographic strata should 
be defined when the survey is designed, so that density is relatively 
homogeneous within each stratum. Survey effort should then be greater 
in strata for which density is higher (Section 7.2.3). 

Variables such as environmental conditions, time of day, date or 
cluster size might enter the analysis as covariates rather than stratifica
tion factors. If the number of potential covariates is large, they might 
be reduced ln some way, for example through stepwise regression or 
principal components regression. To carry out a covariate analysis, an 
appropriate model must he defined. For example, the scale parameter 
of a model for the detection function might be replaced by a linear 
function of parameters: 
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where X1; might be sea state (Beaufort) at the time of detection i, X 21 
might be cluster size for the detection, and so on. 

3.8.1 Stratification 

The simplest form of a stratified analysis is to estimate abundance 
independently within each stratum. A more parsimonious approach is 
to assume that at least one parameter is common across strata, or a 
subset of strata, an assumption that can be tested. Consider a point 
transect survey for which points were located in V geographic strata of 
areas A,,, v =I, ... , V. Suppose we assume there is no size bias in 
detected clusters, and abundance estimates are required by stratum. 
Suppose further that data are sparse, so that h(O) is estimated by pooling 
detection distances across strata. From Equation 3.2 with c"" 1, g0 = 1 
and a· Pa= 2rtk/h(0), we obtain 

, n,,•h(O)·S,, h(O)·M,, 
D,, = 2nk,, = 2n 

0 n,,S,, 
where M,, = ku 

for stratum v. Mean density D is then the average of the individual 
estimates, weighted by the respective stratum areas A,,: 

with A=2,Av 

' 
The variance of any i>,, may be found from Equation 3.3. However, to 
estimate var(f>). care must be taken, since one component of the 
estimation equation is common to all strata in a given year. The correct 
equation is: 

where 

and 

var( ) = v · . + -_~= ~ D. " [ ½<i(M) va",[h(O)] l 
M2 [h(0)]2 

2,A,,M,, 
M==-'-A~-

. ~ . I A,;; • var(M,,) 
~ . " var(M) = ---~-

A' 
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~(M.) _ M., (vaf(n11) fu(Sv)] with var 11- 11· 2 + _2 
nv Sv 

Thus the estimation equation has been separated into two compo
nents, one of which (M'11 ) is estimated independently in each stratum, 
and the other of which is common across strata. Population abundance 
is estimated by N = A • iJ"' I A11 b11 , with vai'(iJ) = A2 

• v'ar(iJ). Further 
layers of strata might be superimposed on a design of this type. In the 
above example, each stratum might be covered by more than one 
observer, or several forests might be surveyed, and a set of geographic 
strata defined in each. Provided the principle of including each inde
pendent component of the estimation equation just once in the variance 
expression is adhered to, the above approach is easily generalized. 

The areas A,. are weights in the above expressions. For many purposes, 
it may be appropriate to weight by effort rather than area. For example, 
suppose two observers independently survey the same area in a line 
transect study. Then density within the study area may be estimated 
separately from the data of each observer (perhaps with at least one 
parameter assumed to be common between the observers), and averaged 
by weighting the respective estimates by length of transect covered by 
the respective observers. Note that in this case, an average of the two 
abundance estimates from each stratum is required, rather than a total. 
If stratification is by factors such as geographic region, cluster size, 
animal behaviour or detection cue, then the strata correspond to mu
tually exclusive components of the population and the estimates should 
be summed, whereas if stratification is by factors such as environmental 
conditions, observer, time or date (assuming no migration), then each 
stratum provides an estimate of the whole population, so that an average 
is appropriate. 

Note that the stratification factors for each component of estimation 
may be completely different provided the components are combined with 
care. As a general guide, stratification prior to estimation of f(O) or 
h(O) should only be carried out if there is evidence that the parameter 
varies between strata, and some assessment should be made of whether 
the number of strata can be reduced. This policy is recommended since 
estimation of the parameter is unreliable if sample size is not large. 
Encounter rate and mean cluster size on the other hand may be reliably 
estimated from small samples, so if there is doubt, stratification should 
be carried out. Further, if abundance estimates are required by stratum, 
then both encounter rate and mean cluster size should normally be 
estimated by stratum. If all parameters can be assumed common across 
strata, such as observers of equal ability covering a single study area at 
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roughly the same time, stratification is of no benefit. Also, in the special 
case that strata correspond to different geographic regions, effort per unit 
area is the same in each region, the parameter /(0) or h(O) can be assumed 
constant across regions, and estimates are not required by region, stratifi
cation is unnecessary. Proration of a total abundance estimate by the area 
of each region is seldom satisfactory. An example for which stratification 
was used in a relatively complex way to improve abundance estimation of 
North Atlantic fin whales is given in Section 8.5. 

Further parsimony may be introduced by noting that var(nv) is a 
parameter to be estimated, and bu= var(nv)lnv is often quite stable over 
strata. Especially if the nu are small, it is useful to assess the assumption 
that bu = b for all v. If it is reasonable, the number of parameters is 
reduced. The parameter b can be estimated by 

L vai"(nu) 

h=-"----
n 

and var(nv) is then more efficiently estimated as vat'p(nv) = blnv. This 
approach is described further in Section 6.3, and illustrated in Section 
8.4. The same method might also be applied to improve the efficiency 
of vai-(S(/). 

3.8.2 Corariates 

Several possibilities exist for incorporating covariates. Ramsey et al. 
(1987) used the effective area, v, as a scale parameter in point transect 
surveys, and related it to covariates using a log link function: 

where x, is the jth covariate. Computer programs for implementing this 
approach for the case of an exponential power series detection function 
are available from the authors. 

Drummer and McDonald (1987) considered a single covariate X, taken 
to be cluster size in their example, and incorporated it into detection 
functions by replacing y by y/ Xl, where y is a parameter to be estimated. 
Thus the univariate half-normal detection function 
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becomes the 'bivariate' detection function: 

g(yiXJ =e>p[ y~ ,] 
2(cr ) 

The interpretation is now that g(y IX) is the detection probability of a 
cluster at distance y, given that its size is X. Drummer and McDonald 
proposed the following detection functions as candidates for this ap
proach: negative exponential, half-normal, generalized exponential, ex
ponential power series and reversed logistic. They implemented the 
method for the first three, although their procedure failed to converge 
to plausible parameter values for the generalized exponential model for 
the data set they present. Their software (SIZETRAN) is available 
(Drummer 1991). 
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Line transects 

4.1 Introduction 

The purpose of this chapter is to illustrate the application of the theory 
of Chapter 3 to line transect data, and to present the strategies for 
analysis outlined in Section 2.5. In general, the principal parameter of 
a line transect analysis does not have a closed form estimator. Instead, 
numerical methods are required; it is generally not possible to substitute 
statistics computed from the data into formulae to estimate object 
density. Using pen and paper and a pocket calculator, a fairly simple 
analysis might take months. Instead, we rely on specialized computer 
software to analyse distance sampling data. 

This chapter uses a series of examples in which complexities are 
progressively introduced. The examples come from simulated data for 
which the parameters are known; this makes comparisons between 
estimates and true parameters possible. However, in every other respect, 
the data arc treated as any real data set undergoing analysis, where the 
parameters of interest are unknown. A simple data set, where each object 
represents an individual animal, plant, nest, etc., is first introduced. 
Truncation of the distance data, modelling the spatial variation of 
objects to estimate var(n), grouping of data, and model selection phil
osophy and methods are then addressed. Once an adequate model has 
been selected, we focus on statistical inference given that model, to 
illustrate estimation of density and measures of precision. Finally, the 
objects are allowed to be clusters (coveys, schools, nocks). Cluster size 
is first assumed to be independent of distance and then allowed to 
depend on distance. 

The ex.ample data are chosen to be 'realistic' from a biological stand
point. The data (sample size, distances and cluster sizes) are generated 
stochastically and simulate the case where the assumptions of line transect 
sampling are true. Thus, no objects went undetected on the line 
(g(O) = 1), no movement occurred prior to detection, and data were free 
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of measurement error (e.g. heaping at zero distance). In addition; the 
sample size n was adequate. The assumptions and survey design to ensure 
they are met are discussed in Chapter 7. Examples illustrating analysis 
of real data where some of these assumptions fail are provided in Chapter 
8. The example data of this chapter are analysed using various options 
of program DISTANCE. In the penultimate section, some comparative 
analyses using program SIZETRAN (Drummer 1991) are carried out. 

4.2 Example data 

The example comprises an area of size A, whose boundary is well 
defined, and sampled by 12 parallel line transects (/1, !2, ... , !1~. The 
area is irregularly shaped, so that the lines running from boundary to 
boundary are of unequal length. We assume that no stratification is 
required and that the population was sampled once by a single observer 
to exacting standards; hence the key assumptions have been met. The 
distance data, recorded in metres, were taken without a fixed transect 
width {i.e. w = oo), and ungrouped. to allow analysis of either grouped 
or ungrouped data. The detection function g(x) was a simple half
normal with a=!Om, giving /(0)= ✓ {2/{na2)} =0.079788m- 1

• Then; 
were drawn from a negative binomial distribution such that the spatial 
distribution of objects was somewhat clumped (i.e. var(n) > n). Specific
ally, var(n,ll;) = 2£(n,1!,). 

The total length (L = l: l;) of the 12 transects was 48 000 m and 
n = l05 objects were detected. Their distances from the transect lines 
were measured carefully in metres. E(n) = 96, thus somewhat more were 
observed than expected (105 vs. 96). The true density is 

D 
N E(n) • /(0) b. / , 

=A= 2L o~ectsm 

where all measurements are in metres. To convert density from numbers 
per m2 into numbers per km', multiply by 1 000 000. The true density 
is known in this simulated example to be approximately 80 objects per 
km2

; the actual value is 79.788/km2
. 

The first step is to examine the distance data by plotting histograms 
using various distance categories. It is often informative to plot a 
histogram with many fine intervals (Fig. 4.1). Here one can see the 
presence of a broad shoulder, no evidence of heaping, and no indication 
of evasive movement prior to detection; the data appear to be 'good', 
which we happen to know to be true here. 
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Fig. 4.J. Histogram of the example data using 20 distance categories. A titted 
hazard-rate key with one cosine adjustment term is shown as a candidate model 
for the detection function, g(x). 

4.3 Truncation 

Inspection of the histogram in Fig. 4.1 shows the existence of an extreme 
observation or 'outlier' at 35.82 m. A useful rule of thumb is to truncate 
at least 5% of the data; here the six most extreme distances arc 19.27, 
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19.42, 19.44, 19.46. 21.21 and 35.82 m. Thus, w could initially be set for 
purposes of analysis at 19 m. An alternative is to fit a reasonable 
preliminary model to the data, compute i(x) to find the value of x such 
that i(x)::: 0.15, and use this value of x as the truncation point for 
further analysis. 

As an illustration, the half-normal key function was fitted to the 
ungrouped, untruncated data and found to fit well. This approach 
suggested a truncation point of 19 m for the half-normal model, based 
on the criterion that i(x) == 0.15 (actually ,i(l9) = 0.13). The deletion of 
outliers is useful because these extreme observations provide little infor
mation for estimating .f(O), the density function at x = 0, but can be 
difficult to model. The series expansions require additional adjustment 
tenns to fit the few data in the tail of the distance distribution, which 
may unnecessarily increase the sampling variance of the density estimate. 
In this example, both truncation rules suggest w == 19, leaving n ::c 99 
observations. For the rest of this chapter we will emphasize the results 
with w = 19 m, but estimates corresponding to no truncation will also 
be given and compared. The choice of truncation point is not a critical 
decision for these example data where all the assumptions are met and 
the true detection function is simple. 

For the true model, the quantity E(n) • /(0) remains unchanged as 
the truncation point is varied. Consequently, for good data (i.e. data 
satisfying the assumptions) and a reasonable model for g(x), the product 
n • j(O) is quite stable over a range of truncation points. With increased 
truncation, n decreases, but j(O) increases to compensate. The estimate 
n • j(O) under the half-normal model is 8.477 if data are truncated at 
19 m, and 8.417 without truncation. 

Truncation of the data at w ::c 19 m removed only six detections. If a 
series expansion model is used, up to three fewer parameters are required 
to model the truncated data than the untruncated data (Table 4.1). (Note 
that the truncation distance w supplied to DISTANCE must be finite; 
by 'untruneated data', we mean that w was at least as large as the largest 
recorded distance.) Outliers in the right tail of the distance distribution 
required additional adjustment parameters and the inclusion of such 
tenns increased the sampling variance of](O) and hence .b when a robust 
but incorrect model was used (Table 4.2). If the correct model could 
somehow be known and used, then truncation is unimportant if the 
measurements are exact and no evasive movement prior to detection is 
present. 

Truncation of the distance data for analysis deletes outliers and 
facilitates modelling of the data. However, as some data are discarded, 
one might ask if the uncertainty in b increases. First, this issue is 
examined when the true model is known and used (i.e. the half-normal 
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m this case). The coefficient of variation increased about 1% when the 
data were truncated at 19 m relative to untruncated (Table 4.2). Thus, 
little precision was lost due to truncation if the data were analysed under 
the true model. or course, one never knows the true detection function 
except for computer simulation examples. 

Table 4.1 Summary of AIC values at two truncation values w for the example 
data analysed as ungrouped and at three different groupings (five groups of 
equal width, 20 groups of equal width, and five unequal groups such that the 
number detected was equal in each group). The models with minimum AIC 
values are indicated by an asterisk 

Data 

'"" 
Model (key + 

adJUStmelll) 

w = 19m w = largest observation 

No. of parameters No. of parameters 

Key Adjust. AIC Key Adjust. AIC 
---------------
Ungrouped 

Grouped 
(5 equal) 

Grouped 
(20 equal) 

Grouped 
(5 unequal} 

l:niform + w,ine 
Uniform + polynomial 
Halt~normal + Hermite 
Hazard-rate + cosine 
Uniform + cosine 
Uniform + polynomial 
Hall~normal + Hermite 
Hazard-rate + cosine 
L'niform + cosine 
Uniform + polynomial 
Half-normal + Hermite 
Hazard-rate + cosine 
Uniform + cosine 
Umform -1- polynomial 
Half-normal + Hermite 
Hazard-rate + cosine 

0 
0 
I 
2 
0 
0 
I 
2 
0 
0 
I 
2 
0 
0 

2 

I 
0 
0 

I 
0 
0 

I 
0 
0 
I 
I 
0 
0 

562.98 
563.28 
562.60* 
565.22 
300.91 
301.09 
300.63° 
303.18 
563.58 
563.40 
563.03• 
565.80 
323.05° 
324.45 
323.35 
324.32 

0 
0 

2 
0 
0 
I 
2 
0 
0 
I 
2 
0 
0 

2 

2 
4 
0 
0 
3 
4 
0 
0 
2 
3 
0 
I 
2 
4 
0 
0 

636.48° 
638. 18 
636.98 
639 16 
224.77 
226. 75 
222.13• 
224.21 
520.88 
524.78 
52031* 
523.53 
345.13 
348.56 
342.54• 
344.95 

When series expansion models are used for the analysis of the example 
data, the uniform key function with either cosine or polynomial adjust
ments gives a smaller coefficient of variation when the data are truncated 
(Table 4.2). This small increase in precision is because only one par
ameter was required for a good model fit when w = 19 m, whereas two 
to four parameters were required to fit the untruncated data (Table 4.2). 
Precision was better for the untruncated data for the hazard-rate model. 

The effect of truncation on the point estimates was relatively small, 
and estimates were not consistently smaller or larger than when data 
were untruncated (Table 4.2). The various density estimates ranged from 
72.75 to 94.09, and their coefficients of variation ranged from 14.8% to 
20.3%. The true parameter value was D = 80 objects/km2

. 

In general, some truncation is recommended, especially for obvious 
outliers. Although some precision might be lost due to truncation. it is 
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usually slight. Often, precision is increased because fewer parameters are 
required to model the detection function. Most importantly, truncation 
will often reduce bias in b or improve precision, or both, by making 
the data easier to model. Extreme observations in the right tail of the 
distribution may arise from a different detection process (e.g. a deer 
seen at some distance from the observer along a forest trail, or a whale 
breaching near the horizon), and are generally not informative, in 
addition to being difficult to model. Truncation is an important tool in 
the analysis of distance sampling data. 

Table 4.2 Summary of estimated density b and coefficient or variation cv for 
two truncation values IV for the example data. Estimates are derived for four 
robust models of the detection function. The data analysis was based °" ungrouped data and three different groupings (five groups or equal width. 20 
groups of equal width, and five unequal groups such that the number detected 
was nearly equal in each group) 

Truncation 

Data Model (key + we 19m IV :: largest obsn 
type adjustment) D CV(%) b cv(%) 

Ungrouped Uniform + cosine 90.38 15.9 80.52 16.8 
Uniform + polynomial 78.95 14.8 84.53 20.0 
Half-normal + Hennite 88.31 16.7 87.68 15.3 
Hazard-rate + cosine 84.23 18.4 72.75 15.6 

Grouped Uniform + cosine 88.69 15.9 94.09 16.7 
(5 equal) Uniform + polynomial 79.37 15.2 88.39 19.1 

Half-normal + Hermite 86.94 16.8 92.16 15.8 
Hazard-rate + cosine 84.49 19.6 80.80 16.7 

Grouped Uniform + cosine 89.95 15.8 80.06 I 5.1 
(20 equal) Uniform + polynomial 79.10 14.9 74.43 15.3 

Half-normal + Hermite 87.98 16.6 86.87 15.7 
Hazard-rate + cosine 85.81 19.2 84.06 18.1 

Grouped Uniform + cosine 86.14 16.3 81.40 19.0 
(5 unequal) Uniform + polynomial 78.60 15.8 86.91 17.8 

Half-normal + Hermite 85.12 17.0 88.84 16.3 
Hazard-rate + cosine 86.83 20.3 82.54 I 7.7 

4.4 Estimating the variance in sample size 

Before the precision of an estimate of density can be assessed, attention 
must be given to the spatial distribution of the objects of interest. If 
then detected objects came from a sample of objects that were randomly 
(i.e. Poisson) distributed in space. then var(n) = E(n) and va'i-(n) = n. 
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Because most biological populations exhibit some degree of clumping, 
one expects var(n) > E(n). Thus, empirical estimation of the sampling 
variance of n is recommended. This makes it nearly imperative to sample 
using several lines, {1, such as the 12 used in the example. Variation in 
the number of detections found on each of the lines, n1, provides a valid 
estimate of var(n) without having to resort to the Poisson assumption 
and risk what may be a substantial underestimate of the sampling 
variance of the estimator of density. 

After truncating at 19 m, the line lengths in km and numbers of 
detections (I,, n,) for the k = 12 lines were: (5, 14), (2. 2), (6, 8), (4, 8), 
(3,3~(1.~.(,l~,(4,8~(5,17),(7,W),(3.~.-~.~-
estimator for the empirical variance of n is (from Section 3.7.2) 

va'r(n) = L _I/; (T --L"l2 /(k - I) 
1-1 l 

= 195.8 

This estimate is based on k - I = 11 degrees of freedom. The rat10 of the 
empirical variance to the estimated Poisson variance is 195.8/99 = 1.98, 
indicating some spatial aggregation of objects. Equivalently, one can 
estimate the sampling variance of the encounter rate (nJL), 

' I ( )' I_!. E!__.!! 
,- IL I; L 

vi?(nl L) = - k _ l 

= 0.0850 

ie(nl L) = ✓v'ar(nl L) 

= 0.292 

Then iie(n) = L • s"e(nlL) and vai-(n) = [iie(n)f. In most subsequent ana• 
Jyses of these data, we use the empirical estimate, vit(n) = 195.8. 

4.5 Analysis of grouped or ungrouped data 

Analysis of the ungrouped data is recommended for the example because 
it is known that the assumptions of line transect sampling hold. General 
statistical theory and our experience indicate that little efficiency is 
lost by grouping data. even with as few as five or six well-chosen 
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intervals. Grouping of the data can be used to improve robustness in 
the estimator of density in cases of heaping and movement prior to 
detection (Chapter 7). 

For the example, changes in the estimates of density under a given 
model were in most cases slight (much smaller than the standard error) 
whether the analysis was based on the ungrouped data or one of the 
three sets of grouped data. This is a general result if the assumptions 
of distance sampling are met. If heaping, errors in measurement, or 
evasive movement prior to detection are present, then appropriate 
grouping will often lead to improved estimates of density and better 
model fit. Grouping the data is a tool for the analysis of real data to 
gain estimator robustness. When heaping occurs, cutpoints should be 
selected to avoid favoured rounding distances as far as possible. Thus, 
if values tend to be recorded to the nearest 10 m, cutpoints might be 
defined at 5 m, 15 m, 25 m, .... The first cutpoint is the most critical. 
If assumptions hold, the first interval should be relatively narrow, so 
that the first cutpoint is on the shoulder of the detection functi_on. 
However, it is not unusual for 10% or more of detections to be recorded 
as on the centreline, especially when perpendicular distances are calcu
lated from sighting distances and angles. In this circumstance, the width 
of the first interval should be chosen so that few detections are erro
neously allocated to the first interval through measurement error, and 
in particular, through rounding a small sighting angle to zero. 

4.6 Model selection 

4.6.1 The models 

Results for fitting the detection function are illustrated using the uniform, 
half-normal and hazard-rate models as key functions. Cosine and simple 
polynomial expansions are used with the uniform key, Hermite polyno
mials are used with the half-normal key, and a cosine expansion is used 
with the hazard-rate key. Thus, four models for g(x) are considered for 
the analysis of these data. Modelling in this example can be expected to 
be relatively easy as the data are well behaved, exhibit a shoulder, and 
the sample size is relatively large (n = 105 before truncation). With such 
ideal data, the choice of model is unlikely to affect the abundance 
estimate much, whereas if survey design or data collection is poor, 
different models might yield substantially different estimates. 

From an inspection of the data in Fig. 4.1, it is clear that the uniform 
key function will_ require at least one cosine or polynomial adjustment 
tenn. The data here were generated under a half-normal detection 
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function so we might expect the half-normal key to be sufficient without 
any adjustment terms. However. the data were stochastically generated: 
the addition of a Hermite polynomial term is quite possible. although 
it would just fit 'noise'. The hazard-rate key has two parameters and 
seldom requires adjustment terms when data are good. In general, a 
histogram of the untruncated data using 15 20 intervals will reveal the 
characteristics of the data. Such a histogram will help identify outliers, 
heaping, measurement errors, and evasive movement prior to detection. 

4.6.2 Likelihood ratio tests 

The addition of adjustment terms to a given key function can be judged 
using likelihood ratio tests (LRTs). This procedure is illustrated using 
1he example data, wilh w = 19, and ungrouped data. Assume the key 
function is the I-parameter half-normal. This model is fitted to the 
distance data to provide the MLE of the parameter cr. Docs an adjust
ment term significantly improve the fit of the model of g(x) to the data? 
Let 5:£0 be the value of the likelihood for the I-parameter half-normal 
model and 2 1 be its value for the 2-parameter model (half-normal model 
plus one Hermite polynomial adjustment term). Then, the test statistic 
for this likelihood ratio test is 

X1 = - 2 loge (!£0/!£1) 

and is distributed asymptotically as x2 with 1 dfifthe I-parameter model 
(5:£0) is the true model. In general, the degrees of freedom are calculated 
as the difference in the number of parameters between the two models 
being tested. This is a test of the null hypothesis that the I-parameter 
model is the true model against the alternative hypothesis that the 
2-parameter model is the true model. If the additional term makes a 
significant improvement in the fit, then the test statistic wil! be 'large'. 
For the example, lo&e(.'£0) = - 280.3000 and loge(5:£i) = - 280.2999. These 
are values of the log-likelihood function computed at the MLE values 
of the parameters. Then, the test statistic is 

X1 = - 2 loge(5:£0/X1) 

= - 2[1oge(!£0) - log..(5:£1)] 

" - 2(- 280.3000- (- 280.2999)] 

"0.0002 

This test statistic ha:; I df, so that p = 0.988, and there is no reason to 
add a Hermite polynomial adjustment term. This does not necessarily 
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mean that the I-parameter half-normal model is an adequate fit to the 
example data; it only informs us that the 2-parameter model is not a 
significant improvement over the I-parameter model. If goodness of fit 
for example indicates that both models are poor, it is worth investigating 
whether a 3-parameter model is significantly better than the I-parameter 
model. This may be done by setting the LOOKAHEAD option in 
DISTANCE to 2. Another solution is to try a different model. 

A second example is that shown in Fig. 4.1, the untruncated example 
data modelled by a hazard-rate key and cosine adjustment terms. Let 
5fo be the likelihood under the 2-parameter hazard-rate model and ;£1 

be the likelihood under this same model with one cosine adjustment term. 
ML Es of the parameters are found under both models with the resulting 
log-likelihood values: loge(,;£0) = -259.898 and loge(.:£1) = -258.763. Which 
is the better model of the data? Should the cosine term be retained? 
These questions are answered by the LRT statistic, 

X2 = - 2 [loge(.2\) - log._.(!£1)] 

= - 2 [- 259.898- (-258.763)) 

= 2.27 

Because ;£0 has two parameters and ;£1 has three parameters, the LRT 
has I df. Here, x2 = 2.27, I df, p = 0.132. As noted in Section 3.5.2, use 
of o: = 0.15 instead of the conventional a= 0.05 might be found useful 
as a rejection criterion. Thus, the 2-paramcter model is rejected in favour 
of a 3-paramcter model, with a single cosine adjustment to the hazard
rate key. The procedure is repeated to examine the adequacy of the 
3-paramcter model against a 4-parameter model with two cosine terms. 
Note that this illustration used the untruncated data; additional terms 
are frequently needed to model the right tail of the distance data if 
proper truncation has not been done. 

If the LRT indicates that a further term is not required but goodness 
of fit (below) indicates that the fit is poor, the addition of two tenns 
(using DISTANCE option LOOKAHEAD = 2) may provide a signific
antly better fit. If it is important to obtain the best possible fit, 
options SELECT = forward and SELECT = all of DISTANCE may 
prove useful. 

4.6.3 Akaike's Information Criterion 

The use of the Akaike's Information Criterion (AIC) provides an 
objective, quantitative method for model selection (see Burnham and 
Anderson (1992) for application of AIC and Akaike (1985) for theoretical 
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synthesis). It is similar in character to a likelihood ratio test for 
hierarchical models, but is equally applicable to selection between non
hierarchical models. The criterion 1s 

AIC = - 2 · [loge('.£) - q] 

where log,(~) is the value of the log-likelihood function evaluated 
at the maximum likelihood estimates of the model parameters and q is 
the number of parameters in the model (Section 3.5.3). AIC is computed 
for each candidate model, and that with the lowest AIC is selected 
for analysis and inference. Having selected a model, one should 
check that it fits as judged by the usual x2 goodness of fit statistics. 
Visual inspection of the estimated detection function plotted on the 
histogram is also informative because one can better judge the model 
fit near the line, and perhaps discount some lack of fit in the right tail 
of the data. 

AIC was computed for the four models noted above for both grouped 
and ungrouped data with and without truncation (Table 4.1 ). For 
computational reasons, w was set equal to the largest observation in the 
case of no truncation. Three sets of cutpoints were considered for each 
model for illustration. Set I had five groups of equal width. set 2 had 
20 groups of equal width, and set 3 had five groups whose width 
increased with distance, such that the number detected in each distance 
category was nearly equal. Note that AIC cannot be used to select 
between models if the truncation distances w differ, or, in the case of 
an analysis of grouped data, if the cutpoints differ. 

AIC values in Table 4.1 indicate that the half-normal model is the 
best of the four models considered. Here, we happen to know that this 
is the true model. All four models have generally similar AIC values 
within any set of analyses of Table 4.1. Still, AIC selects the half-normal 
model in three of the four instances, both with truncation and without. 
Thus, the main analysis will focus on the ungrouped data, truncated at 
w = 19 m. under the assumption that g(x) is well modelled by the 
half-normal key function with no adjustment parameters. The fit of this 
model is shown in Fig. 4.2. One might suspect that all four models 
would provide valid inference because of the similarity of the AIC 
values. Often, the AIC will identify a subset of models that are clearly 
inferior and these should be discarded from further consideration. 

4.6.4 Goodness of fit 

Goodness of fit is described briefly in Section 3.5.4, and is the last of 
the model selection criteria we consider here. Although it is the fit of 
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Fig. 4.2. Histogram of the example data using five distance categories. A 
half-normal detection function. fitted to the ungrouped data with w = 19 m, is 
shown and was used as a basis for final inference from these data. 

the model near zero distance that is most critical, none of the model 
selection criteria of goodness of fit statistics, AIC and likelihood ratio 
tests give special emphasis to this region. 

Some goodness of fit statistics for the example with w = 19 m and 20 
groups are given' in Table 4.3. These data were taken when all the 
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assumptions were met; all four models fit the data well and yield similar 
estimates of density. 

Table 4.3 Goodness of fit statistics for models fitted 
to the example data with w"' 19 m and 20 groups 

Model x' df p 

Uniform + cos 14.58 17 0.62 
Uniform + poly 13.11 17 0.73 
Half-normal + Hennite 13.63 17 0.69 
Hazard-rate + cos 14.91 16 0.53 

Real data are often heaped, so that no parsimonious model seems to 
fit the data well, as judged by the x2 test. Grouping can be carried out 
to smooth the distance data and. thus, obtain an improved fit. While 
grouping usually results in little change in D, it provides a more 
acceptable assessment of the fit of the model to the data. If possible, 
groups should be selected so that there is one favoured rounding 
distance per interval, and it should occur at the midpoint of the interval. 
The grouped nature of the (rounded) data is then correctly recognized 
in the analysis. If cutpoints are badly chosen, heaping will generate 
spurious significant x,2 values. 

4. 7 Estimation of density and measures of precision 

4.7.1 The standard analysis 

Preliminary analysis leads us to conclude that the half-normal model is 
an adequate model of the detection function, with truncation of the 
distance data at w = 19 m, fitted to ungrouped data, and using the 
empirical variance of n. 

Replacing the parameters of Equation 3.4 by their estimators and 
simplifying under the assumptions that objects on the line are detected 
with certainty, detected objects are recorded irrespective of which side 
of the line they occur, and objects do not occur in clusters, estimated 
density becomes 

where n is the nu,!llber of objects detected, L is the total length of 
transect line, and .f(O) is the estimated probability density evaluated at 
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zero perpendicular distance. For the example data,. and adopting the 
preferred analysis, program DISTANCE yields /(0) = 0.08563 with 
se{j(O)} = 0.007601. The units of measure for ((0) are I/metres. Often, 
estimates of the effective strip width, µ = l //(0), are given in preference 
to j(O), since it has an intuitive interpretation. It is the perpendicular 
distance from the line for which the number of objects closer to the line 
that are missed is equal to the number of objects farther from the line 
(but within the truncation distance w) that are detected. 

For the half-normal model, if data are neither grouped nor truncated, 
a closed form expression for /(O) exists (Chapter 3): 

where 

Similarly, closed form expressions exist for the Fourier series estimator 
(uniform key + cosine adjustment terms) of /(0) (Burnham et al. 1980: 
56-61). However, generally the MLE of/(0) must be computed numeri
cally because no closed form equation exists. 

The ~stimate of density for the example data truncated at 19 m, and 
usingf(O) from DISTANCE, is 

b = n • i(0)/2L 

= (99 X 0.08563)/(2 X 48) 

= 0.0883 

Since the units of j(O) are m and those for L are km, multiplying by 
1000 gives 

b = 88.3 objects/km2 

The estimator of the sampling variance of this estimate is 

vac(D) = jj. {[cv(n)]' + [cv{i(OJ}l'J 

where 

[cv(n)f"' vai-(n)ln2 = 195.8/992 = 0.01998 

and 
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[C' {i(O))]' = vai{i(O)}/{ j(O)}' = 0.007601'10.08563' = 0.007879 

where vai'{i(O)} is based on approximately n = 99 degrees of freedom. 
Then 

and 

vai'(b) = (88.3)2 [0.01998 + 0.0078791 

= 217.2 

secb) = ✓ vai:cb) 

= 14. 74 

The coefficient of variation of estimated density is cv(b) = 
'se(b)tb = 0.167, or 16.7Q/4,, which might be adequate for many purposes. 
An approximate 95% confidence interval could be set in the usual way 
as b ± 1.96 • i;e(b), resulting in the interval [59.4, 117.2}. Log-based 
confidence intervals (Burnham et al. 1987: 211-3) offer improved cover
age by allowing for the asymmetric shape of the sampling distribution 
of b for small n. The procedure allows lower and upper 95% bounds 
to be computed as 

and 

where 

This method gives the interval [63.8, 122.2], which is wider than the 
symmetric interval, but is a better measure of the precision of the 
estimate b = 88.3. The imprecision in b is primarily due to the va
riance component associated with n; approximately 72% (i.e. 
0.01998/(0.01998+ 0.007879)) of vai:(b) is due here to vai:(n). 

The use of 1.96 in constructing the above confidence intervals is only 
justified if the degrees of freedom of all variance components in 
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~ . 
var(D) are large, say greater than 30. In this example, the degrees 
of freedom for the component va'r(/1) are only 11. If there were 
only one variance component, it would be standard procedure to use 
the t-distribution on the relevant degrees or freedom, rather than the 
standard nonnal distribution, as the basis for a confidence interval. 
When the relevant variance estimator is a linear combination or varian
ces, there is a procedure using an approximating !-distribution as the 
basis for the confidence interval. This more complicated procedure is 
explained in Section 4. 7.4 below, and is used automatically by program 
DISTANCE. 

The effective strip width is estimated by J.l = I i](O) = 11.68 m. The 
unconditional probability or detecting an object in the surveyed area, 
a= 2wL, is Pa= jl!w = 0.61, which is simply the ratio of the effective 
strip width to the truncation distance, w = 19 m. These estimates are 
MLE as they are one-to-one transformations of the MLE of /(0). 

In summary, we obtain b = 88.3, s"e(b) = 14.7, cv = 16.7%, with a 95% 
confidence interval of (63.8, 122.2). Recalling that the true parameter 
D = 80, this particular estimate is a little high, largely because the 
sample size (n = 105, untruncated) happened to be above that expected 
(E(n) = 96). This is not unusual, given the large variability in n due to 
spatial aggregation of the objects, and the confidence interval easily 
covers the parameter. Some alternative analyses and issues and their 
consequences will now be explored. 

4. 7.2 Ignoring information from replicate lines 

If 1he Poisson assumption (vai"(n) = n) had been used with w = 19 m and 
L = 48 km, then the estimate of density would not change, but 5e(b) 
would be underestimated at 11.84, with 95% confidence interval of 
[67.98, I 14.70]. While this interval happens to cover D, the method 
underestimates the uncertainty of the estimator b; if many data sets 
were generated, the true coverage of the interval would be well below 
95%. This procedure cannot be recommended; one should estimate the 
variance associated with sample size empirically from the counts on the 
individual replicate lines, including those lines with zero counts. For 
example, line 11 had no observations (n 11 = 0), which must be included 
in the analysis as a zero count. 

4. 7.3 Bootl·trap variances and confidence intervals 

The selected model for g(x) for the example data was the half-normal, 
with w = 19 m, fitted to ungrouped distance data. The MLE of f(O) was 
0.08563 with se = 0.007601. The bootstrap procedure (Section 3.7.4) can 
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be used to obtain a more robust estimate of this standard error. The 
required number of series expansion terms can be estimated in each 
resample, and variance due to this estimation, -ignored in the analytical 
method, is then a component of the bootstrap variance. As an illustra
tion, 1000 bootstrap replications were performed, yielding an average 
i(O) = 0.08587 with §e = 0.00748. In this simple example where the true 
model is the fitted model without any adjustment terms, the two 
procedures yield nearly identical results. 

A superior use of the bootstrap in line transect sampling is to sample 
with replacement from the replicate lines, until either the number of 
lines in the resample equals the number in the original data set, or the 
total effort in the resample approximately equals the total effort in 
the real data set. If the model selection procedure is automated, it can 
be applied to each resample, so that model misspecification bias can be 
incorporated in the variance estimate. Further, the density D may 
be estimated for each resample, so that robust standard errors and 
confidence intervals may be set that automatically incorporate variance 
in sample size (or equivalently, encounter rate) and cluster size if 
relevant, as well as in the estimate of /(0). The method is described in 
Section 3.7.4, and an example of its application to point transect data 
is given in Section 5.7.2. 

A possible analysis strategy is to carry out model selection and 
choice of truncation distance first, and then to evaluate bootstrap stand
ard errors only after a particular model has been identified. Although 
model misspecification bias is then ignored, the bootstrap is computa
tionally intensive, and its use at every step in the analysis will be 
prohibitive. 

4.7.4 Satterthwaite degreeJ of freedom for confidence interral£ 

For the log-based confidence interval approach. there is a method to 
allow for the finite degrees of freedom of each estimated variance 
component in va'r(b). This procedure dates from Satterthwaite (1946); 
a more accessible reference is Milliken and Johnson (1984). Assuming 
the log-based approach, [loge(b) - loge(D)]/cv(b) is well approximated 
by a t-distribution with degrees of freedom computed in the case of two 
variance components by the formula 

df = (cv(b)J4 , 

(cv(n)J4 [cv{/(0))]4 
+ k - I n 

120 



ESTIMATION OF DENSITY AND MEASURES OF PRECISION 

where 

~ ' 

I D')J 2 var(D) 
CV( =---

fj' 

, vai'(n) 
(cv(n)J" = --,

n 

Given the computed degrees of freedom, one finds the two-sided 
100(1 - 2o:) percentile of the !-distribution with these degrees of free
dom; df is in general non-integer, but may be rounded to the nearest 
integer. Usually o: = 0.025, giving a 95% confidence interval. Then one 
uses the value of ldf(0.025) in place of 1.96 in the confidence interval 
calculations, so that 

and 

where 

D~ = .b1c 

bv = b · C 

C = exp { tJr(0.025) • ✓ loge(! + [cv(i>)J2)} 

This lengthens the confidence interval noticeably when the number of 
replicate lines is small 

We illustrate this procedure with the current example for which 
[cv(n)]2 = 0.01998 on I I degrees of freedom, and [cv { i(O)Jf = 0.007879 

' ' on 99 degrees of freedom. Thus (cv(D)J ~ 0.027859. The above formula 
for df gives 

df= 0.0007761 __ = 21.02 
0.0003992 0.00006208 

11--+ 99 

which we round to 21 for looking up t21 (0.025) = 2.08 in tables. Using 
2.08 rather than 1.96, we find that C = 1.4117, and the improved 95% 
confidence interval is [62.6, 124.7], compared with [63.8, 122.2] using 
z = 1.96. The Satterthwaite procedure is implemented in DISTANCE, 
so that it produces the improved interval. 

This procedure for computing the degrees of freedom for an approx
imating !-distribution generalizes to the case of more than two compo
nents, for example when there are three parameter estimates, n, /(0) and 
i(s). Section 3.7.1 gives the general formula. 
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4.8 Estimation when the objects are in clusters 

Often the objects are detected in clusters (flocks, coveys, schools) and 
further considerations are necessary in this case. The density of clusters 
(D,), the density of individual objects (D), and average cluster size E(s) 
are the biological parameters of interest in surveys of clustered popula
tions, and several intermediate parameters are of statistical interest 
(e.g. /(0)). Here, we will assume that the clusters are reasonably well 
defined; populations that form loose aggregations of objects are more 
problematic. 

It is assumed that the distance measurement is taken from the line to 
the geometric centre of the cluster. If a truncation distance w is adopted 
in the field (as distinct from in the analysis), then a cluster is recorded 
if its centre lies within distance w and a count made of all individuals 
within the cluster, including those individuals that are at distances 
greater than w. If the geometric centre of the cluster lies at a distance 
greater than w, then no measurement should be recorded, even if some 
individuals in the cluster are within distance w of the line. The sample 
size of detected objects n is the number of clusters, not the total number 
of individuals detected. 

4.8.1 Observed cluster size independent of distance 

If the size of detected clusters is independent of distance from the line 
(i.e. g(x) does not depend on s), then estimation of D,, D and E(s) is 
relatively simple. The sample mean S is taken as an unbiased estimator 
of the average cluster size. Then i(s) = S = :E s;ln, where s, is the size of 
the ith cluster. In general the density of clusters D, and measures of 
precision are estimated exactly as given in Sections 4.3-4.7. Then, 
b = b, • S; the estimator of the density of individuals is merely the 
product of the density of clusters times the average cluster size. Alter
natively, the expression can be written 

• n 
D= 

·f(O)-s 
2L 

The example data set used throughout this chapter is now reconsidered 
in view of the (now revealed) clustered nature of the population. The 
distribution of true cluster size in the population was simulated from a 
Poisson distribution and the size of detected clusters was independent 
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of distance from the line. The value of s was simulated as I + a Poisson 
variable with a mean of two or, equivalently, (s - I) - Poisson (2), so 
that E(s) = 3. Theoretically, var(s) = var(s - I)= E(s - I)= E(s) - 1 = 2. 
Under the independence assumption, the sample mean S is an un
biased estimate of E(s). The true density of individuals was 240. 
Estimates of Ds (called Din previous sections),/(0), effective strip width 
and the various measures of precision are exactly those derived in 
Section 4.7. 

The estimated average cluster size, S, for the example data with 
w = 19 mis 2.859 (S= 283/99) and the empirical sampling variance on 
n - l = 98 degrees of freedom is 

so that 

" L,(s;-S/ 
/'-... 1~ I 
var(s) = ·----'-~

n(n - I) 

~ 0.02062 

secs)= ✓0.02062 
=0.1436 

These empirical estimates compare quite well with the true parameters; 
var(S)"' 2/n = 2/99 = 0.0202, se(s) = 0.142. If one uses the knowledge 
that cluster sizes were based on a Poisson process, one could estimate 
this true standard error as ✓ {(S - 1)/n} = ✓o .859/99) = 0.137, which is 
also close to the true value. The point here is that the empirical estimate 
is quite good and can be computed when the Poisson assumption is 
false. 

A plot of cluster size s; vs. distance x; (Fig. 4.3) provides only weak 
evidence of dependence (r=0.16,p=0.10). In this case, we take 
f(s) = S, the sample mean. Thus, the density of individuals is estimated 
as 

b = b,. s 

= 88.3 X 2.859 

= 252.4 individuals/km2 

Then, for large samples, 
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vat'(b) = b2 · {[cv(n)]2 + (cv{/(0))]2 + [cv(S)]2) 

= 252.42 
• (0.01998 + 0.007879 + 0.002523] 

= 1936 

secbJ = ✓ 1936 = 44.o 

This gives b = 252.4 individuals/km2 with cv = 17.4%. The log-based 95% 
confidence interval, using the convenient multiplier== l.96, is [179.8, 
354.3]. This interval is somewhat wide, due primarily to the spatial 
variation inn; vai"(n) makes up 66% ofvai-(b), while va'r(/(0)) contributes 
26% and vai'(s) contributes only 8% (e.g. 66% = {0.01998/(0.01998+ 
0.007879+ 0.002523)} X 100). 
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Fig. 4.3. Scatterplot of the relationship between the size of a detected cluster 
and the distance from the line to the geometric centre of the cluster for the 
example in which size and detection distance are independent. The correlation 
coefficient is 0.16. 
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A theoretically better confidence interval is one based not on the 
standard normal distribution (i.e. on z = 1.96) but rather on a I-distribu
tion with degrees of freedom computed here as 

Ccvcb>r 
df= , 

[cv(n)J' [cvlf(O)}]' (cv(s)r 
~-~+-~--+--~ 
k-1 n n-i 

0.0009235 = 24 97 
0.0003992 0.00006208 0.000006366 • 

II + 99 + 98 

which we round to 25. Given this computed value for the degrees of 
freedom, one finds the two-sided 100(1 - 2a) percentile tdJ(CI.) of the 
t-distribution. In this example, we find t25(0.025) = 2.06. Using 2.06 
rather than 1.96 in the log-based confidence interval procedure, 
C = 1.4282, giving an improved 95% confidence interval of [176.8, 360.5). 
It is this latter interval which DISTANCE computes, applying the 
procedure of Satterthwaite (1946) to !og,..(b). 

Plots and correlations should always be examined prior to proceeding 
as if cluster size and detection distance were independent. In particular, 
some truncation of the data will often have the added benefit of 
weakening the dependence between s, and x,. If truncation is appropri
ate, then E(s) should be based on only those clusters within (0, w). Our 
experience suggests that data from surveys of many clustered popula
tions can be treated under the assumption thats; and x; are independent 
For small clusters (e.g. coveys of quail of 5-12 or family groups of 
antelope of 2-4), the independence assumption is likely to be reasonable. 
This allows the analysis of f(O), Ds, and measures of their precision to 
be separated from the analysis of the data on cluster size and its 
variability. Then, estimation of the density of individuals is fairly simple. 

4.8.2 Observed cluster size dependent on distance 

The analysis of survey data where the cluster size is dependent on the 
detection distance is more complicated because of difficulties in obtain
ing an unbiased estimate of E(s) (Drummer and McDonald 1987; 
Drummer et al. 1990; Otto and Pollock !990). The dependence arises 
because large clusters might be seen at some distance from the line (near 
w), while small clusters might remain undetected. This phenomenon 
causes an overestimation of E(s) because too few small clusters are 
detected (i.e. they are underrepresented in the sample). Thus, 
.iJ = ii,• .f is also an overestimate. Another complication is that large 
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clusters might be more easily detected near w than small clusters, but 
their size might be underestimated due to reduced detectability of 
individuals at long distances. This phenomenon has a counter-balancing 
effect on the estimates of E(s) and D. The dependence of x; on s; is a 
case of size-biased sampling (Cox 1969; Patil and Ord 1976; Patil and 
Rao 1978; Rao and Portier 1985). 

The analysis of sample data from clustered populations where a 
dependence exists between the distances x 1 and the cluster sizes s; can 
take several avenues. Some of these require that the detection function 
g(x) is fitted unconditional on cluster size, using the robust models and 
model selection tools already discussed. The simplest method exploits 
the fact that size bias in detected clusters does not occur at distances 
from the line for which detection is certain. Hence, E(s) may be 
estimated by the mean size of clusters detected within distance v, where 
g(v) is reasonably close to one. say 0.6 or 0.8. In the second method, 
a cluster of sizes; at distance x; from the line is replaced bys, objects, 
each at distance x,. Thus. the sampling unit is assumed to be the 
individual object rather than the cluster, and the issue of estimating true 
mean cluster size is side-stepped. For the third method, data are strati
fied by cluster size (Quinn 1979, 1985). The selected model is then fitted 
independently to the data in each stratum. If si1e bias is large or cluster 
size very variable, smaller truncation distances are likely to be required 
for strata corresponding to small clusters. The fourth method estimates 
cluster density D, conventionally, as does the first. Then, given the x,, 
E(s) is estimated by some form of regression of s1 on the Xi (i.e. an 
appropriate model is identified for £(six)). This sequential procedure 
seems to have a great deal of flexibility. In the final approach considered 
here, a bivariate model of g(x, s) is fitted to the data to obtain the 
estimates of D, D., and E(s) simultaneously. The first four approaches 
are illustrated in this section using program DISTANCE, and the fifth 
using program SIZETRAN (Drummer 1991). 

The data used in this section are sampled from the same population 
as in earlier sections of this chapter (i.e. L = 48, Ds = 80 f(O) = 0.079, 
E(s) = 3 and E(n) = 96, so that D = 240 = 3 x 80). The half-normal de
tection function was used. as before, but cr was allowed to be a function 
of cluster size: 

cr(s) = cr0 [1 + b · s - E(s)l 
E(s) 

where b = l and E(s) = 3 in the population. Selecting b = I represents a 
strong size bias and corresponds to Drummer and McDonald's (1987) 
form with a= I. Cluster size in the entire population (detected or not) 
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was distributed ass - (I + Poisson). Given a cluster size s, the detection 
distance was generated from the half-normal detection function g(x,js1). 
Because of the dependence between cluster size and detection distance, 
the distance data differ from those in the earlier parts of this chapter. 
In particuJar, some large clusters were detected at greater distances (e.g. 
one detection of 5 objects at 50.9 m). Because of the dependence on 
cluster size, the bivariate detection function g(x, .s) is not half-normal. 
This detection function is monotone non-increasing in x and monotone 
non-decreasing in s. In addition, the detected cluster sizes do not represent 
a random sample from the population of cluster sizes, as small clusters 
tend to remain undetected except at short distances. Thus. the size of 
detected clusters is not any simple function of a Poisson variate. Gener
ation of these data is a technical matter and is treated in Section 6.7.2. 

A histogram of the distance data indicates little heaping and a 
somewhat long right tail (Fig. 4.4). Truncation at 20 m seemed reason
able and eliminated only 16 observations, leaving n = 89 (15% trunca
tion). Truncation makes modelling of the detection function easier and 
always reduces, at least theoretically, the correlation between detection 
distance and duster size. Three robust models were chosen as candidates 
for modelling g(x): uniform + cosine, half-normal + Hermite, and hazard
rate + cosine. All three models fit the truncated data well. AIC suggested 
the use of the uniform + cosine model by a small margin (506.26 vs. 
506.96 for the half-normal), and both models gave very similar estimates 
of density. The hazard-rate model (AIC = 509.209) provided rather high 
estimates of density with less precision, although confidence intervals 
easily covered the true parameter. The uniform + cosine model and the 
half-normal model both required only a single parameter to be estimated 
from the data, while the hazard-rate has two parameters. This may 
account for some of the increased standard error of the hazard-rate 
model, but the main reason for the high estimate and standard error is 
that the hazard-rate model attempts to fit the spike in the histogram of 
Fig. 4.4 in the first distance category. Because we know the true model 
in this case, we know the spike is spurious, and arises because for this 
data set, more simulated values occurred within 2.5 m than would be 
expected. Generally, if such a spike is real, the hazard-rate model yields 
lower bias (but also higher variance) than most series expansion models, 
whereas its performance is poor if the spike is spurious. Since AIC 
selected the uniform + cosine model, we use it below to illustrate meth
ods of analysis of the example data. 

The uniform + cosine model for the untruncated data required five 
cosine terms to fit the right tail of the data adequately (Fig. 4.4). Failure 
to truncate the data here would have resulted in lower precision, 
the model would have required five cosine terms instead of just one 
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Fig. 4.4. Histogram of the example data using 20 distance categories for the 
case where cluster size and detection distance are dependent. The fit of a 
uniform+ 5-term cosine model is shown. 

(Fig. 4.5). and the mean cluster size would have been less reliably 
estimated (below). 

The uniform key function and a I-term cosine model fit the truncated 
data well (Fig. 4.5, 0.38,;;; p,;;; 0.71, depending on the grouping used 
for the x2 test). The estimated density of clusters was 81.56 (se = 12.43). 
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Fig. 4.5. Histogram of the example data using five distance categories and 
truncation al w = 20 m for the case where cluster size and detection distance are 
dependent. The fit of a uniform+ 1-tenn cosine model is shown. 

quite close to the true value (80). The mean cluster size from the sample 
data was 3.258 (se = 0.134) which is surely too high in view of the 
size-biased sampling caused by the correlation between cluster size and 
detection distance. However, truncation at w = 20 reduced this correla
tion from 0.485 to 0.224 so this uncorrected estimate of E(s) may not 
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be heavily biased. Multiplying the density of clusters by the uncorrected 
estimate of mean cluster size (3.258), the density of individuals is 
estimated as 265. 7 (SC= 41.9; 95% CI= [195.4, 361.4]), which is a little 
high, but still a quite acceptable estimate for these data, for which actual 
density was 240 individuals/km2 

(a) Truncation Observed mean cluster sizes and standard errors for 
various truncation distances are shown in Table 4.4. The detection 
function g(x) was estimated using truncation distance w and mean 
cluster size was estimated after truncating data at distance v, v ,;;; w. 
The gain in precision by reducing the truncation distance from 51 m to 
20 m arises because predominantly large clusters are truncated, and 
variability in the size of remaining clusters is reduced. It is clear from 
Table 4.4 that 20 m is too large a truncation distance for unbiased 
estimation of mean cluster size, since mean cluster size continues to fall 
when the truncation distance is reduced further. The choice of truncation 
distance is a compromise between reducing bias and retaining adequate 
precision. Here, mean cluster size appears to stabilize at a truncation 
distance of 10.5 m, for which j(I0.5)"' 0.5. Thus, mean cluster size is 
estimated to be 3.116 with 8e"' 0.152 Replacing the estimates 
S= 3.258 and s"e = 0.134 by these values, density is estimated as 254.1 
individuals/km\ with SC= 40.7 and approximate 95% confidence interval 
[186.1, 347.0] (based on z = 1.96 rather than Sattenhwaite's correction). 
This estimate is closer to the true value of 240 individuals/km2

, and 
precision is almost unaffected, because the contribution to the overall 
variance due to variation in cluster size is slight. 

Table 4.4 Observed mean cluster sizes and standard errors for 
various truncation distances v. Probability of detection i(v) at 
the truncation distance v for cluster size estimation was 
estimated from a uniform + I-term cosine model with w = 20 m 
(Fig. 4.5) for v ~ 20 m, and from a uniform + 5-term e-0sine 
model with w=51 m for v=51 m 

Truncation 
distance v(m) " ' 5e(s) k(v> 

51.0 105 3.581 0.150 0.02 
20.0 89 3.258 0.134 0.14 
13.6 80 3.188 0.144 0.30 
10.5 69 3.116 0.152 0.50 
9.1 61 3.098 0.166 0.60 
7.6 49 3.061 0.192 0.70 
6.0 44 3.114 0.206 0.80 
4 I 37 3.081 0.214 0.90 
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Hence if sample size is large, one may select a truncation point for 
the estimation of E(s) that is smaller than the truncation point for the 
estimation of /(0) to· reduce the size bias in i(s). For example, E(s) 
might be estimated by the mean size of clusters detected within a 
distance x of the line, where g(x) = 0.6. Often bias reduction is more 
important than precision in estimating mean cluster size because its 
relative contribution to var(b) may be small, as in this example. 

(b) Replacemenl of c/uslers by individuals If a cluster of size s; is 
replaced by s; objects at the same distance, the assumption that detec
tions are independent is violated. This compromises analytic variance 
estimates and model selection procedures. The first difficulty may be 
overcome by using robust methods for variance estimation, but model 
selection is more problematic. If likelihood ratio tests are used to 
determine the number of terms, too many terms are fitted on average, 
since heaping in the data at distances where large clusters were recorded 
yield significant departures from a smooth detection function when 
observations are assumed to be independent. The effect may be reduced 
by imposing a monotonicity constraint (Section 3.4.5). Another option 
is to select a model taking clusters as the sampling unit, then refit the 
model (with the same series terms, if any) to the data with object as the 
sampling unit. Neither of these is entirely satisfactory. If both strategies 
are adopted in the same analysis, so that a uniform+ I-term cosine 
model is fitted to the distance data truncated at 20 m, the following 
estimates are obtained. Number of objects detected, n = 290. Estimated 
density, D = 255.6 objects/km2, with analytic se = 38.3 and 95% con
fidence interval [184.7, 353.8]. These estimates are very close to those 
obtained assuming cluster size is independent of distance, although the 
point estimate is rather closer to the true density of 240 objects/km2

. 

Average cluster size can be estimated by the ratio of estimated object 
density (255.6) to estimated cluster density (81.56), giving 3.134. The 
precision of this estimate could be quantified using the bootstrap. In 
each bootstrap resample, both densities, and hence their ratio, would 
be estimated, and a variance and confidence interval obtained as de
scribed in Section 4.7.3. 

This procedure cannot generally be recommended. However, it 
may be useful if the population being sampled occurs in loose aggrega
tions, rather than tight, easily defined clusters. The distance to each 
individual object should ideally be measured in this case, although it 
may be sufficient to record positions and sizes of smaller groups within 
a cluster. The method will often perform poorly unless sample size is 
fairly large. 
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(c) Stratification Choice of number of strata is determined largely by 
sample size. The more strata, the greater the reduction in size bias, but 
an adequate sample size for estimating /(0) is required in each stratum 
(perhaps at least 20-30 per stratum). Defining two strata, corresponding 
to cluster sizes 1-3 and :a,, 4, sample sizes before truncation are 52 and 
53 respectively. If four strata are defined, for cluster sizes l-2, 3, 4 and 
:a,, 5, sample sizes before truncation are 29, 23, 26 and 27. The data were 
analysed for both choices of stratification. 

Table 4.5 Summary of results for different stratification options. Model was 
uniform with cosine adjustments; distance data were truncated at w = 20 m, 
except for the stratum comprising clusters of 5jze 5-9, for which w = 35 m 

Cluster Sample size Effective strip 
sizes after truncation width (m) D st<b) 95% CJ for D 

All 89 11.4 265.7 41.9 (195.4, 361.4) 
1-3 51 I 1.0 96.9 17.6 
4--9 38 12.1 147.4 35.0 
All 244.3 39.2 (178.8, 333.8) 
1-2 29 10.0 51.2 16.0 
3 22 13.7 50.1 16.3 
4 22 11.7 78.2 21.0 

5 9 24 22.6 53.3 18.0 
All 232.8 35.8 (172.5, 314.2) 

Results are summarized in Table 4.5. In this case, no precision is 
lost by stratification, despite the small samples from which /(0) was 
estimated, and the estimated densities were closer to the true value 
of 240 objects/ /km2 than for the case without stratification. In our 
experience, loss of precision arising from stratification by cluster size is 
seldom large, provided sample size in each stratum does not fall below 
20, and the method is a simple way of reducing the effects of size-biased 
sampling. Mean cluster size may be estimated by a weighted average of 
the mean size per stratum, with weights equal to the estimated density 
of clusters by stratum. Alternatively, E(s) may be estimated as overall 
D from the stratified analysis divided by b, from the unstratified 
analysis. For two strata, this yields i(s) = 244.3/81.56= 2.995, and for 
four strata, i(s) = 232.8/81.56 = 2.854. Both estimates are close to the 
true mean cluster size of 3.0. The reader is referred to Drummer (1985) 
and Quinn (1985) for further information on stratification. 

(d) Regression estimator The procedure we recommend in most cases 
1s a regression of s, or logp(S;) on i(x;) (Section 3.6.3). This allows an 
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Fig. 4.6. Scatterplot of the relationship between the size of a detected cluster 
and the distance from the line to the geometric centre of the cluster for the 
example in which probability of detection is a function of cluster size. The 
correlation coefficient is D.485 (w = <><>). 

estimate of E(s) at the point where i(x1) = I; that is, the point at which 
detectability is certain, where size bias should not occur. Proper truncation 
of the distanc~ data should be considered prior to the regression analysis 
(e.g. g(x) =- 0.15). Applying this method to the example, with dependent 
variable loge (s,), yields i(s) = 2.930 and s"e{i(s)} = ✓ [vai-{i(s)}] = 0.139, 
which is close to the true mean cluster size of 3.0 with good precision. 
The corresponding density estimate is 239.0 individuals/km2, with 
§e = 38.1, cv = 16.0% and 95% confidence interval [171.3, 333.5]. The 
regression approach allows /(0) to be estimated using all the robust 
theory available and then treats the estimation of mean cluster size as 
a separate problem. The analyst has good control over 1he estimation 
under this procedure. A scatter plot of cluster size against distance or 
estimated detection probability can be used to investigate the form of 
the relationship, although the scatter can be wide (fig. 4.6). 

The regression estimate of E(s) reduces the bias but some precision 
may be lost in correcting for the size-biased sampling of cluster size. 
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Often, var(s) is a small component of var(b), so that little precision 
is lost by applying an adjustment for.size bias. Use of Sas an estimate 
of E(s) is not recommended if dependence between cluster size and 
detection distance is suspected. 

(e) Bivariate models for the detection function This methodology, due 
to Drummer and McDonald (1987), relies on several parametric models, 
each incorporating a parameter ( a) to reflect the size bias in the sample 
data. The data are transformed to x!s0 and the bivariate detection 
function is expressed as g(x, s) = g(x!s0

); a= 0 represents the special 
case where cluster size and detection distance are independent and no 
size bias exists (Otto and Pollock 1990). Program SIZETRAN was used 
for the analysis of the example data and four models were considered: 
the negative exponential, the half-normal, the reversed logistic, and the 
generalized exponential (Drummer and McDonald 1987, Table I). These 
models incorporate the size bias by mode!ling the scale parameter as a 
simple increasing power function of observed cluster size, s0

. Under this 
approach, truncation is not an option with current software and separate 
consideration of i(s) is not necessary. 

The choice of the best model might be guided by AIC and this leads 
to the half-normal model (Table 4.6). The generalized exponential model 
failed to converge and cannot be considered. The estimates under the 
half-normal model are quite good (Table 4.6), but the precision is poorer 
than under the sequential approach using regression (cv = 21.Y/o instead 
of 16.0%). This model fits the data well as judged by x2 goodness of fit 
tests ( p > 0.15). The data were simulated from this model with a= I, 
so that it would be expected to fit well. Estimation under the other 
models seems less satisfactory; the estimated density of individuals is 
too high under both the negative exponential and the reversed logistic 
(Table 4.6). Still, the confidence intervals cover the true density, partially 
because the estimated standard errors are so large. In each case, there 
is clear evidence of a size-biased sample (i.e. a is significantly greater 
than zero, Table 4.6). 

Table 4.6 Summary of res lilt~ for 1hree models allowing for dependence between 
cluster size and detection distance (standard errors). The parameter a is 
incorporated into these models to account for size-biased sampling (Drummer 
and McDonald 1987). Data are untruncated (w = 00) 

Model AIC a h, i, 
Negative exponential 674.4 1.113 (0.214) 140.7 (41.4) 397.6 (114.6) 
Half-normal 668.9 1.092 (0.150) 87.1 (!9.3) 247.5 (52.9) 
Reversed logistic 671.I 1.076 (0.171) 95.2 (27.8) 271.4 (77 .5) 
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If the size-biased nature of the data had been ignored (i.e. a= 0), the 
point estimates would have been less satisfactory. In general, the point 
estimates of the density of individuals would have been too high (e.g. 
b = 385.0 and 384.6 for the negative exponential and reversed logistic, 
respectively). In this example, AIC selected a good model and the point 
estimates were quite satisfactory. Again. this illustrates the importance 
of meeting the key assumptions and obtaining an adequate sample of 
quality data. 

The bivariate approach is interesting and appealing from a statistical 
viewpoint, but precision seems poorer than for the sequential regression 
approach. Software development is required to address convergence 
problems, and to allow the user to specify a finite truncation width. 
Further study is needed to investigate the robustness of the approach. 
The method of Quang (1991), using Fourier series, may partially address 
this aspect. 

4.9 Assumptions 

Assumptions of line transect sampling are covered in detail in Section 
2.1, and further discussion is given in Chapter 7. We outline a few issues 
here, to counter some of the more common misconceptions about what 
is assumed in deriving density or abundance estimates. 

Most model selection procedures and some variance estimation pro
cedures assume that objects are randomly and independently distributed 
throughout the study area. Provided lines are randomly located, or a 
systematic grid of lines is randomly positioned in the study area, the 
assumption is not required. If object density is highly variable, or 
dependence between detections is strong, then the possible effect on 
model selection should be borne in mind, and robust variance methods 
should be adopted. with care taken to ensure that the correct sampling 
unit is selected; whether a detection associated with one sampling unit 
is made should be largely independent of detections made in other 
sampling units. Often, all effort carried out by a single observer in a 
single session comprises a suitable sampling unit. Detections made 
within the unit might be highly dependent (e.g. if one bird calls in 
response to the calls of another, both might be detected by the observer, 
or encounter rate might be abnormally high on one leg of a marine 
mammal survey because of exceptional sighting conditions). Between 
units, dependence should be slight. If random lines are used, the appro
priate sampling unit is the line, and all data associated with it. If the 
design comprises a systematic grid of lines, use of lines as sampling units 
should again prove satisfactory. These issues are discussed further in 
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Section 3.7. The most extreme departure from independent detections 
is when objects occur in clusters. Strategies for this case are outlined in 
Section 4.8. 

Estimation of g(O) for line transect surveys is considered in Chapter 
6. There is currently no approach to this problem that is wholly 
satisfactory, so whenever possible, surveys should be designed to ensure 
that g(O) = I. The solution of guarding the centreline can be counter
productive if this gives rise to two detection processes. If one process 
generates detections at large distances, but is such that g(O) is appreci
ably less than one. and the other generates detections only at sma!l 
distances, then the composite detection function will be impossible to 
model adequately. If such a field strategy is adopted, data from the two 
processes should he recorded and analysed separately, although prob
lems are likely to remain. If it is suspected that g(O) is less than one, 
methods that might increase it include using more observers to cover 
the line, travelling more slowly along the line, using only experienced 
observers, improving the training of observers, and upgrading optical 
aids. For terrestrial surveys in which animals arc flushed, trained dogs 
can be an effective aid, allowing a wider area to be efficiently searched. 

Random movement of objects before detection generates positive bias 
in estimates of object density. Hiby (1986) showed that bias is small 
provided that object movement is slow relative to that of the observer 
(up to around a third of the observer's speed). A strategy for line 
transect analysis of fast moving objects is outlined in Section 7.6. 
Movement in response to the observer is problematic, and is discussed 
in Section 2.1. From a practical viewpoint, field procedures should be 
developed that ensure that most detections occur at distances for which 
responsive movement is unlikely to have occurred. In other words, the 
observer should strive to detect the object before the object is able to 
move far from its initial position in response to the observer's presence. 
lf this is not possible, the methods of Turnock and Quinn (1991) or 
Buckland and Turnock (1992), which use ancillary data to adjust for 
the effect of movement, might be attempted. The latter method is 
described in Section 6.4. 

If the distance data appear to have a distinct mode away from the 
origin, the analysis is problematic. This might happen by chance, as a 
result of heaping, or through the presence of evasive movement prior 
to detection. Some robust models will attempt to fit the data near the 
origin, so that the mode of the density function is to the right of the 
origin. In these cases, it is often prudent to constrain the estimated 
detection function to be monotone non-increasing in an attempt to 
minimize bias. A weak constraint is to impose the condition 
i(x) ,,-;;: g{O) = I for all x > 0. This condition is often sufficient to achieve 
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a monotone non-increasing function and satisfactory estimates of /(0). 
The alternative is a constraint forcing a strict non-increasing function 
such that i(x;) ;;.- i(x;+ i), where x; < X;+ 1. The default option of DIS
TANCE imposes the strong constraint. To reduce the computational 
cost of applying the constraint, the estimated density is evaluated at just 
ten points, and the fit is modified if the constraint is not satisfied for 
all successive pairs of these points. The user may instead select the weak 
constraint, or override both constraints. DISTANCE warns the user if 
a constraint has caused the_ model fit to be modified. In this case, the 
bootstrap estimate of var(/(0)) is recommended, since the assumptions 
on which the analytic variance is based are violated. 

Consistent bias in distance estimation should be avoided. If distances 
are overestimated by 10%, densities are underestimated by 9%; if they 
are underestimated by 10%, densities are overestimated by 11%. If on 
the other hand distance estimation is unbiased on average, measurement 
errors must be large to be problematic. For marine surveys, reticles or 
graticules (Section 7 .4.2) are almost essential for accurate distance 
estimation. In terrestrial surveys, distances can often be measured, and 
if this is not practical, good range finders can be effective up to around 
300 m. Distance categories can be accurately determined in aerial sur
veys by lining up markers on the windows with markers or streamers 
on the wing struts, although the height of the aircraft must be accurately 
measured and constant. In hilly terrain, perpendicular distances from 
the aircraft must be determined by other means. 

4.10 Summary 

Data analysis is relatively easy if the survey is well designed and the 
data properly collected. The analysis of small samples, especially where 
some assumptions have been violated, is more problematic. The analysis 
of 'good' data, such as here, is relatively easy using available software. 
Adequate analysis cannot be carried out without specialist software. 

An objective strategy must be followed, such as that outlined in this 
chapter and Section 2.5. The data must be checked for recording or 
data-entry errors. Plotting the distance data as histograms will often 
reveal anomalies that must be further considered. Truncation of some 
observations in the right tail of the distance data should always receive 
consideration. Several candidate, robust models should be considered. 
The use of AIC and other criteria are helpful in selecting the best model, 
or a small subset of good models, for final analysis and inference. Once 
a model is selected, M LE is used to obtain parameter estimates and 
measures of their precision. With good data (adequate sample size and 

137 



LINE TRANSECTS 

validity of the key assumptions), inference using two or three good, 
robust models is likely to yield similar estimates. This is reassuring 
because the methods to select the best model are subject to uncertainty. 

lf objects on the centreline are missed, E(i>) will be too low. If 20% 
of objects on the centreline are missed, the density estimate can be 
expected to show a negative bias of around 20%. Movement prior to 
detection is also problematic. Measurement errors, especially near the 
centreline. are more difficult to treat. If measurement errors are random, 
then the sampling variance may be somewhat inflated, but bias may be 
small. Systematic measurement errors invariably generate bias and 
should be avoided. Valid inference depends on field design and attention 
to the assumptions. While analysis procedures are robust to some types 
of assumption failure. there is no substitute for quality data taken 
carefully under the assumptions. Searching should be conducted such 
that the distance data have a broad shoulder. The presence of a shoulder 
makes model selection less important and improves the quality of 
inference. The reader is urged to study the material in Chapter 7 prior 
to the conduct of a survey involving distance sampling. 

These strategies for analysis carry over to more complicated surveys 
involving stratification, surveys repeated in time using the same lines, 
multiple observers, aerial or underwater platforms, or samples of very 
large areas. Some of these issues are illustrated in Chapter 8 (and by 
Burnham et af. 1980: 41-55), and specialized theory is ex.tended in 
Chapter 6. 

Surveys of clustered populations require additional care in counting 
the number of individuals in each cluster detected and addressing the 
possible size-biased aspects of such sampling. Plotting the cluster sizes 
s; against the X; distances is always recommended. Our ex.perience 
suggests that size bias is often a minor issue if cluster size is not too 
variable; proper truncation of perpendicular distance data can often 
allow simple models to provide valid inference concerning the density 
of clusters and individuals. However, if the largest cluster is. say, more 
than five times the size of the smallest, correction for possible size bias 
should be investigated. When cluster size is highly variable (e.g. from 
one or two individuals to many thousands, as in some species of marine 
mammals), then very careful modelling and analysis of the data is 
required. 

Populations in large, loose aggregations, scattered around the sample 
area. are problematic. Theory and software are readily available for the 
analysis of sample data from populations of individuals randomly dis
tributed in space, and the same is true of populations distributed under 
some regular stochastic process that generates some degree of spatial 
aggregation, by computing var(n) empirically. Good theory and software 

138 



SUMMARY 

now ex.isl for lhe analysis of populations that are clustered in definable 
clusters where the cluster size is not too variable. Difficulties arise when 
populations are spatially distributed in loose clusters whose boundaries, 
and therefore size, must be determined subjectively. This situation is in 
need of additional research, but bootstrap methods may play an important 
role in the analysis of such data. Ir at all possible, the location of each 
individual object should be recorded in this circumstance, so that the 
method of Section 4.8.2(b) can be applied, but the cluster to which each 
individual belongs should also be noted, to allow comparative analyses of 
clusters. Populations in large or highly variable groups require great care 
in estimating E(s) in ways that minimize or avoid bias. Estimation of average 
cluster size must receive special emphasis in the design of lhe survey and the 
pi!ot study (e.g. temporarily leaving the planned centreline in aerial surveys 
of cetaceans to count individuals more accurately). 

The following is intended as a crude checklist of the stages required 
to carry out a foll analysis of line transect data. Not all steps are 
necessarily required in any given analysis, especially if similar data sets 
have been analysed previously. 

I. Key in and validate the data. The data should not be aggregated in 
any way prior to entry. Thus if distances are ungrouped, they should 
not be entered as grouped data, even if they are subsequently grouped 
for analysis. Distances should be entered by line, so that individual 
lines can be defined as the sampling units. For stratified desigm, 
these lines should be allocated to their strata. 

2. Plot histograms of the perpendicular distance data, using different 
choices for the cutpoints, and fit a preliminary model to the data. 
Examine the histograms for evidence of failure of assumptions, If 
data are ungroupcd, assess whether they should be grouped before 
analysis, selecting group cutpoints to reduce the effect of heaping, 
or to alleviate the effects of a spurious spike in the data at zero 
distance (Section 4.5). If data are grouped, assess whether any groups 
should be amalgamated. 

3. Identify a truncation point w for perpendicular distances, preferably 
such that i(w)::::: 0.15, although truncation of roughly 5% of obser
vations is often satisfactory (Section 4.3). Assess from the histograms 
whether this truncation distance is reasonable: if not, select one or 
more alternatives. Try fitting a few models, possibly with different 
grouping options or different truncation points, 

4. Where relevant, select an appropriate truncation point w and an 
appropriate choice of grouping (if any). Fit several models that 
satisfy the model robustness, shape and estimator efficiency criteria, 
We recommend some or all combinations of a half-normal, uniform 
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or hazard-rate key with simple or Hermite polynomial or cosine 
adjustments. Select a single model, for example using Akaike's In
formation Criterion, and assess its adequacy using goodness of fit 
(Section 4.6). If the fit is poor, investigate the reasons, and evaluate 
possible solutions. Assess the sensitivity of estimation to the model 
selected; if sensitivity is high (e.g. the detection curve is excessively 
spiked under one or more models), examine whether the estimates 
from the selected model should be replaced or supplemented by those 
from other models that yield adequate fits. 

5. If the detections are of clusters of objects, assess whether there is 
evidence of size bias, and if necessary, try one or more or the methods 
of Section 4.8 to correct for it. 

6. Having identified a model for the perpendicular distance data, review 
the options for variance estimation, for stratifying some or all com
ponents of estimation, and for including covariates. Select options 
that are likely to reduce bias; of the options remaining, select those 
that yield the most efficient estimation. Fit the data using the 
preferred model(~) and options. 
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Point transects 

5.1 Introduction 

Songbird surveys often utilize point transects rather than line transects 
for several reasons. Once the observer is at the point, he or she can 
concentrate solely on detecting, locating and identifying birds, without 
the need to traverse what may be difficult terrain; he or she can take 
the easiest route into and away from the point, whereas good line 
transect practice dictates that the observer follows routes determined in 
advance and according to a randomized design. Further, patchy habitat.<; 
can be sampled more easily by point transects. Frequently, density 
estimates are required for each habitat type, or estimation is stratified 
by habitat to improve precision. Designing a point transect survey so 
that each habitat lype is represented in the desired proportions is easier 
than for line transects, and describing the vegetation structure associated 
with a point is also easier than for a line. If line transects are used in 
patchy habitats, either each line traverses several habitat types, and data 
must be recorded separately for each section of line within a single 
habitat type, or the design comprises many short lines, so that end 
effects (e.g. objects detected behind the observer when he or she first 
starts a transect, or objects detected by the observer as he or she 
approaches the end of a transect, which are beyon<l the area to be 
surveyed) become problematic. Other advantages of point transects are 
that known distances from the points may be flagged, to aid distance 
estimation, and only the observer-to-object distance is required. which 
is easier to estimate than the perpendicular distance required in line 
transect sampling if the observer is far from that part of the line closest 
to the object. 

At the time of writing, point transect sampling seems to be restricted 
to bird surveys. although the theory also applies to the cue count and 
trapping web methods described in Chapter 6. The disadvantages of 
point transect sampling that make it unsuitable for many purposes 
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include the following. Objects may be disturbed or flushed by an 
observer approaching the point. It is difficult to determine which of 
these would have been detected from the point, but if they are ignored, 
density will be underestimated. The observer may detect many objects 
and waste much time while travelling between points; for line transects, 
a higher proportion of time in the field is spent surveying, and a higher 
proportion of detections is made while surveying. Thus, point transects 
may be inefficient for objects that occur at low densities. 

This chapter illustrates point transect analysis through simulated data 
sets for which the parameters are known. As in Chapter 4, a simple 
data set is first introduced. Truncation of the distance data, modelling 
the spatial variation of objects to estimate var(n), grouping of data, and 
model selection philosophy and methods are then addressed. Having 
selected an appropriate model, estimation of density and measures of 
precision are discussed. In a final example, the objects are assumed to 
occur in clusters (e.g. family parties or flocks). 

5.2 Example data 

The example data were generated from a half-normal detection function, 
g(r) = exp(- r2!2a2). O ,;,; r < ""' with o- = 10 m. There were k = 30 points. 
and the number of sightings per point followed a Poisson distribution 
with parameter E(n,) = 5, i = 1, ... , k. Each sighting is of a single object. 
Thus E(n)= 5x 30= 150,h(O)= l/o-2 =0.01, and true density is 

D = E(n~;:(O) = 0.00196 objects/m2 = 79.6 ohjects/ha 

Untruncated data generated from this model, together with the fitted 
half-normal model, are shown in Fig. 5.1. Data truncated at 20 m and 
the corresponding fit of the half-normal are shown in Fig. 5.2. For 
comparison, the fit of the uniform + one term simple polynomial detec
tion function is shown in Fig. 5.3. 

The histograms of Figs 5.1 and 5.2 illustrate two methods of presen
ting point transect data. In Figs 5. I b and 5.2b, the frequency of 
distances is shown by distance interval, as for a conventional histogram. 
The curve is the fitted probability density function of recorded distances, 
with scale chosen to match that of the frequency data. The parameter 
h(O) is estimated by the slope of this rnrve at distance r = 0. At small 
distances, the function increases hecause area surveyed at a given 
distance increases with distance from the point. For example, the area 
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Fig. 5.1. Histograms of the example data using 20 distance categories. The fit 
of the half-nonnal detection function to untruncated data is shown in (a), in 
which frequencies are divided by detection distance, and the corresponding 
density function is shown in (h). 
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Fig. 5.2. Histograms of the example data. truncated at 20 m, using five distance 
categories. The half-normal model. fitted to the ungrouped data, is shown and 
was used for final analysis of these data. The fitted detection function is shown 
in (a), in which frequencies are divided by detection distance, and the corres
ponding density function is shown in (b). 
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Fig. 5.3. The fit of the detection function using a uniform key with a single 
simple polynomial adjustment term to the example data, ungrouped and trun
cated at w = 20 m. 

surveyed between r and r + 0. where O is small, is approximately 21tr15. 
whereas the area between 2r and 2r + 0 is roughly 41trO. To correct for 
this increase in area. the ith distance r; may be assigned a weight 1/r;. 
For each distance interval, these weights are summed across those 
observations falling within the interval. The sums are the 'corrected 
frequencies' of Figs 5.1 a and 5.2a. To guard against infinite weights, 
program DISTANCE assigns weights to any zero distances equal to the 
weight for the smallest non-zero distance. If data are in frequency form, 
DISTANCE approximates the weights by the reciprocals of the mid
points of the groups. The fitted detection function, plotted so that its 
scale corresponds to that of the data, is also given in Figs 5.la and 
5.2a. Note that the detection function may sometimes appear to fit badly 
at small distances, as in Fig. 5.2; this is not a programming error, but 
arises because of the deceptive nature of point transect data. Relatively 
few distances are recorded close to the point, where area surveyed is 
small, so the fit of the model is not heavily influenced by distances close 
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to zero. whereas the height of the first histogram bar is dominated by 
small distances. The corresponding density is plotted with untrans
formed frequencies, and should appear to fit the data well, as in 
Fig. 5.2b, provided heaping is not severe, adequate truncation is carried 
out, and an appropriate model is selected. 

5.3 Truncation 

The largest detection distance in the example data was 34.16 m, consid
erably greater than the second largest of 26.87 m (Fig. 5.1 ). Unless the 
true detection function is somehow known (as it is for this simulated 
example), large distances can prove difficult to model, and the extra 
terms required increase the variance in /~(0). If the uniform + simple 
polynomial model is fitted to the untruncated data of Fig. 5.1, four 
polynomial terms are required, and a less plausible shape for the 
detection function is obtained than for the single term fit of Fig. 5.3. 
In Chapter 4, we suggested as rules of thumb that either roughly 5% of 
observations be truncated or truncation distance w be chosen such that 
i(w):::: 0.15. These rules do not carry across to point transects, for which 

Table 5.1. Summary of AIC values for two truncation values(w) for the example 
data analysed as ungrouped and three differen1 groupings (five groups of equal 
width, 20 groups of equal width, and five unequal groups such that the number 
detected was nearly equal in each group). For each analysis, the model with the 
smallest AIC is indicated by an asterisk 

w = 20 m w = largest obsn 

o,u Model Ikey+ No. of parameters No. of parameters 

''" 
adjustment) Koy Adjust. AIC Key Adjust. ATC 

Ungrouped Uniform + cosine 0 765.51 0 2 918.46* 
Uniform + polynomial 0 764.48 0 4 922.32 
Half-normal + Hermite I 0 764.31* I 0 919.16 
Hazard-rate+ cosine 2 0 767.22 2 I 919.79 

Grouped Uniform+ cosine 0 403.36 0 2 374.06* 
(5 equal) Uniform + polynomial 0 I 400.83* 0 4 377.78 

Half-normal+ Hermite I 0 401.97 I I 374.22 
Hazard-rate + cosine 2 0 403.52 2 I 375.91 

Grouped Uniform+ cosine 0 I 768.16 0 2 764.20* 
(20 equal) Uniform + polynomial 0 I 766.90 0 2 830.04 

Half-normal+ Hermite I 0 766.85* I 0 764.34 
Hazard-rate + cosine 2 I 769.94 2 I 765.25 

Grouped Uniform + cosine 0 I 426.28 0 2 468.50 
(5 unequal) Uniform + polynomial 0 I 426.69 0 4 476.91 

Half-normal + Hermite I 0 425.93* I 0 467.17* 
Hazard-rate + cosine 2 0 428.04 2 0 472.39 
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a higher proportion of detections occurs in the tail of the detection 
function. This can be seen in Fig. 5.1; Fig. 5.la shows that probability 
of detection is as small as 0.12 at a distance of 20 m, yet 13 of 144 
observations (9%) lie beyond 20 m (Fig. 5.lb). We suggest that roughly 
IO% of observations should be truncated for point transects, or alter
natively, w should be chosen such that g(w) = 0.1, where g(w) is esti
mated from a preliminary fit of a plausible model to the data. In this 
example, a truncation distance of 20 m roughly satisfies both criteria, 
and is used subsequently for the example data. 

Truncation of the data at w = 20 m removed 13 detections. If a series 
expansion model is used, up to three fewer parameters are required to 
model the truncated data than the untruncated data (Table 5.1). Outliers 
in the right tail of the distance distribution required additional adjust
ment parameters. Except for the hazard-rate model, which performed 
relatively poorly on these data, density estimates varied more when data 
were untruncated (Table 5.2). The poor performance of the unifonn + 
polynomial model when fitted to untruncated data divided into 20 

T3ble 5.2 Summary of estimated density (D) and coefficient of variation (cv) 
for two truncation values (w) for the example data. Estimates are derived for 
four robust models of the detection function. The data analysis was based on 
ungrouped data and three different groupings (five groups of equal width, 20 
groups of equal width, and five unequal groups such that the number detected 
was equal in each group) 

Data 
type 

Ungrouped 

Grouped 
(5 equal) 

Grouped 
(20 equal) 

Grouped 
(5 unequal) 

Model (key+ 
adjustment) 

Uniform + cosine 
Uniform+ polynomial 
Half-normal + Hermite 
Hazard-rate+ cosine 
Uniform+ cosine 
Uniform+ polynomial 
Half-normal+ Hermite 
Hazard-rate + cosine 
Uniform + cosine 
Uniform + polynomial 
Half-normal+ Hermite 
Hazard-rate+ cosine 
Uniform+ cosine 
Uniform+ polynomial 
Half-normal+ Hennite 
Hazard-rate+ cosine 
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Truncation 
w: 20m w"" largest obsn 

D CV(%) b CV(%) 

75.05 14.4 74.13 10.6 
60.76 12.1 70.88 18.0 
70.82 15.7 79.62 12.6 
62.36 18.7 71.02 18.1 
73.74 14.5 73.77 11.5 
62.01 12.7 70.14 25.7 
69.06 16.0 64.53 26.3 
52.14 14.5 79.13 17.2 
75.54 14.0 74.24 10.7 
61.09 12.2 42.26 9.0 
71.30 15.6 80.25 12.3 
82.98 26.9 70.85 18.6 
74.91 14.3 74.36 15.8 
61.93 12.8 57.45 37.0 
71.57 15.8 80.73 13.0 
84.76 37.2 57.50 13.9 
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groups was because DISTANCE failed to converge when attempting to 
fit a better model; convergence problems are encountered more com
monly when appropriate truncation is not carried out. If the correct 
model is known and used, then truncation is not necessary provided the 
measurements are exact and no evasive movement prior to detection 
occurs. However, the true model is never known in field surveys. 

Truncation of the distance data deletes outliers and facilitates model 
fitting. However, as some data are discarded, the uncertainty in b may 
increase. For the example data, when the true model was used (i.e. the 
half-normal), the coefficient of variation was around 3% higher for 
analyses of truncated data in three of the four analyses, but 10% lower 
(16.0%, compared with 26.3%) in one of the analyses of grouped data. 
When an incorrect model was fitted, the cv increased after truncation 
in eight analyses and decreased in four. 

The true density in this example was 79.6 objects/ha. In exactly one 
half of the 16 analyses of Table 5.2, the estimate was closer to the true 
density after truncation than before. The case for truncation is therefore 
not compelling for these simulated data. However, real data tend to be 
less well behaved, and if no truncation is imposed in the field. truncation 
at the analysis stage is advisable. 

5.4 Estimating the variance in sample size 

If objects were known to be distributed at random, the distribution of 
sample size n would be Poisson with var(n) = E(n). so that vai"(n) = n. 
Most biological populations exhibit some degree of clumping. so that 
var(n) > E(n). If the survey is well designed so that points are spread 
either systematically or randomly throughout the study area, or within 
each stratum if the study area is divided into strata, then point transect 
methods are ideally suited to estimating var(n) empirically, from the 
variability in sample size between individual points. For the example 
data, there were k = 30 points, and sample sizes ni within the truncation 
distance of w = 20 m were I, 1, 5, 6, 3, 8, 7, 5, 3, 4, I, 8, 3, I, 2, 7, 4, 
4, 6, 7, 6, 8, 4, 3, 5, 2, 4, 2, 9 and 2. 

From Section 3.7.2, 

' vai-(n) = k I. (n; - Tl)1!(k - 1) 
'.' 

with k - l degrees of freedom. All counts here are positive; had any 
been zero, they would be retained when calculating the variance. For 
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the example, the above formula yields vai'(n) = 172.7, or 3e(n) = 13 14. 
Equivalently. the variance of the mean number of objects per point. 
ii= nlk = 4.367. may be estimated: 

k 
va"r(ii) = L, (n; - 11/l{k • (k- I)} 

i • 1 

so that vai-(ii) = 0.1919= vai'(n)lk 2
• Since n = 131 after truncation. 

vai'(n) > n, indicating possible clumping of objects. However, the vari
ance-mean ratio does not differ significantly from one (p = 0.12): 

~ 

(k - I). var(n) = 38.2 
n 

which is a value from x1- 1 = X~9 if the true distribution of n is Poisson. 
For this simulated example. we know the true distribution is indeed 
Poisson. 

5.5 Analysis of grouped or ungrouped data 

Because the assumptions of point transect sampling are known to hold 
for the example, analysis of ungrouped data is preferred. Generally. little 
efficiency is lost by grouping data prior to analysis, even with as few 
as five or six well-chosen intervals. If recorded distances tend to be rounded 
to favoured values (heaping), or if there is evidence of movemenl of 
objects in response to the observer before detection. appropriate group
ing of data can lead to more robust estimation of density (Chapter 7). 
Often, there are sound practical reasons for recording data by distance 
group, instead of measuring each individual detection distance, in which 
case the field methods determine the analysis option. 

For the example, estimated densities tended to be rather more variable 
between models when analysis was based on grouped data, although 
coefficients of variation were not consistently higher (Table 5.2). Provided 
distances can be measured accurately, and movement in response to the 
observer before detection is not a problem, we recommend that analysis 
should be of ungrouped data. Otherwise. data should be grouped. If 
heaping occurs, group cutpoints should be selected so that favoured 
distances for rounding tend to occur midway between cutpoints. Choice 
of group interval is often more critical than for line transect sampling, 
since a smaller proportion of detections occurs near zero distance. yet 
it is the value of a function at zero distance. h(O). that must be estimated. 
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It is this difficulty that gives rise to the relatively large variability in 
density estimates in Table 5.2. On the other hand, although poor 
practice, it is not uncommon ror 10% or more of perpendicular distances 
to be recorded as on the line in line transect sampling. It is rare for an 
object to be recorded as at the point (r == 0) in point transect sampling, 
so that spurious spikes in the detection function at small distances are 
uncommon. 

5.6 Model selection 

5.6.J The models 

The same four models for the detection function are considered as in 
Chapter 4. Thus, the uniform, half-normal and hazard-rate models are 
used as key functions. Cosine and simple polynomial expansions are 
used with the uniform key, Hermite polynomials are used with the 
half-normal key, and a cosine expansion is used with the hazard-rate 
key. The data were generated under a half-normal detection function so 
we might expect the half-normal key to be sufficient without any 
adjustment terms. However, the data were stochastically generated, so 
that the addition of a Hermite polynomial term in one analysis of Table 
5.1 is not particularly surprising. A histogram of the data using 15-20 
intervals, as in Fig. 5.1, tends to reveal the characteristics of the data, 
such as outliers, heaping, measurement errors, and evasive movement 
prior to detection. 

5.6.2 Likelihood ratio tests 

If default settings are accepted, DISTANCE determines the number of 
adjustment terms required to attain an adequate fit of the data using 
likelihood ratio tests. Consider the example data, ungroupcd and with 
w = 20 m, analysed using the uniform key with a single polynomial 
adjustment (Table 5. ! ). How was it determined that a single adjustment 
was required for this model? Let X0 be the value of the likelihood 
for fitting a uniform key alone, let :;f,1 be the maximum value of 
the likelihood when a single polynomial term is added, and X2 be the 
value after fitting two polynomial terms. Program DISTANCE gives 
loge {:;f,0) = - 394.986. loge(:;f,i) = - 381.239 and log.., (,;lz) = - 381.061. The 
likelihood ratio test of the hypothesis that the uniform key provides an 
adequate description of the data against the alternative that a single 
polynomial adjustment to the key provides a better fit is carried out by 
calculating 
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X2 = - 2 log, (;£,o/;£,i) 

= - 2[log, (;£,0) - log, (;£,1)] 

= - 2(- 394.986 + 381.239] 

= 27.49 

If the true model is the uniform key without adjustment, this statistic 
is distributed asymptotically as xi. In general, the dffor this test statistic 
is the difference in the number of parameters between the two models 
being tested. A value of 27.49 is much larger than would be expected 
if the distribution really was xf (p < 0.001), suggesting that a uniform 
detection function is not an adequate description of the data, a conclu
sion that is obvious from Fig. 5.3. Less obvious is whether an additional 
polynomial term should be fitted. The above test is now carried out. 
but with :£ 1 replacing :i.0 and :£2 replacing :£1: 

x" = - 2{log.. (.'.£1) - log~ (.:£2)] 

=0.36 

Again comparing with xL this test statistic is not significant (p = 0.55), 
so a further term does not improve the fit of the model significantly. 
Our experience suggests that a larger value than the conventional 
a= 0.05 is often preferable for the size of the test, and we suggest 
a= 0.15 (Section 3.5.2). 

If the likelihood ratio test indicates that a further term is not required 
but goodness of fit (below) indicates that the fit is poor, the addition 
of two terms (using DISTANCE option LOOKAHEAD= 2) rather than 
just one may provide a significantly better fit. Another solution is to change 
the default setting of SELECT= sequential to SELECT= forward or 
SELECT= all in DISTANCE. 

5.6.3 Akaike's Information Criterion 

Akaike's Information Criterion (ATC) provides a quantitative method 
for model selection, whether models are hierarchical or not (Section 
3.5.3). The adequacy of the selected model should still be assessed, for 
example using the usual x2 goodness of fit statistics and visual inspection 
of both the estimated detection function and the corresponding density 
plotted on histograms of the data, as shown in Figs 5.1 and 5.2. The 
plots allow the fit of the model near the point to be assessed; some lack 
of fit in the right tail of the data can be tolerated. 

AIC was computed for the four models for both grouped and un
grouped data. with truncation distance w set first to 20 m (13 observations 
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truncated) and then to the largest observation, selected so that no 
observations were truncated (Table 5.1 ). Three sets of cutpoints were 
considered for grouped analyses under each model. Set I had five equal 
groups, set 2 had 20 equal groups, and set 3 had five groups whose 
width varied, such that the number detected in each distance category 
was nearly equal. AIC cannot be used to select between models if the 
truncation distances w differ, or, in the case of an analysis of grouped 
data, if the cutpoints differ, so AIC values can only be compared within 
each of the eight sets of results in Table 5.1. 

The AIC values in Table 5.1 select the half-normal (true) model in 
four of the eight sets of results. The uniform key with cosine adjustments 
is selected three times, and the uniform key with simple polynomial 
adjustments once. Since the half-normal model is selected for the 
preferred analysis of ungrouped data, truncated at 20 m, the main analysis 
will be based upon it. However, the AIC value for the uniform + 
polynomial model is almost the same as for the half-normal + Hermite 
model, and might equally well be adopted on this basis. We examine 
the consequences of selecting this model later. The only model that 
might reasonably be excluded from further consideration on the basis 
of its AIC value is the hazard-rate+ cosine model. 

Table 5.3 Goodness of fit statistics for models fitted to the 
example data with w = 20 m and 20 groups 

Model 

Uniform+ cosine 
Uniform + polynomial 
Half-normal + Hermite 
Hazard-rate + cosine 

5.6.4 Goodness of fit 

x' 
20.34 
19.84 
19.20 
20.32 

df 

17 
17 
11 
16 

p 

0.26 
0.28 
0.32 
0.21 

Goodness of fit is another useful tool for model selection (Section 
3.5.4). Goodness of fit statistics for the example data without grouping, 
with w = 20 m, and using 20 groups of equal width to evaluate the x2 

statistic, are given in Table 5.3. These data were taken when all the 
assumptions were met, and all four models fit the data well. If a model 
was to be selected from these results, there might be a marginal pref
erence for the half-normal+ Hermite polynomial model, which we know 
to be the correct choice in this case. Heaping in real data sets generally 
means that fewer than 20 groups should be used, with perhaps six to 
eight usually being reasonable. If heaping is severe, fewer groups might 
be required, ideally with each preferred rounding distance falling near 
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the middle of each group. The grouped nature of the (rounded) data is 
then correctly recognized in the analysis. If cutpoints are badly chosen, 
heaping will lead to spurious significant x2 values. If data are collected 
as grouped, the group cutpoints are determined before analysis, although 
consecutive groups may be merged. 

5. 7 Estimation of density and measures of precision 

5.7.J The standard analysis 

The preferred analysis from the above considerations comprises the fit 
of the half-normal key without adjustments to ungrouped data, trunc
ated at w = 20 m. The variance of n is estimated empirically. 

Replacing the parameters of Equation 3.5 by their estimators and 
simplifying under the assumptions that objects at zero distance are 
detected with certainty, detected objects are recorded irrespective of their 
angle from the observer, and objects do not occur in dusters, estimated 
density becomes 

where n is the number of objects detected, k is the number of point 
transects sampled, and h(O) is the slope of the estimated density /(r) of 
observed detection distances evaluated at r = O; h(O) = 21t/V, where V is 
the effective area of detection. 

For the example data, and adopting the preferred analysis, program 
DISTANCE yields h(O) = 0.01019, with s"e{fr(O)} = 0.001233 (based on 
approximately n = 131 degrees of freedom). The units of h(O) are m- 2

. 

Thus 

, 13lx0.0IOl9 . 2 • 
D = = 0.00708 obJects/m or 70.8 obJects/ha 

21t X 30 

The estimator of the sampling variance of this estimate is 

where 

and 

vai-(b) =if-• {[cv(n)J2 + (cv{h(0)}]2} 

[cv(n)]2 = vai-(n)/n2 = 172.7/1312 = 0.010065 

[cv{h(O)}]' = var{h(O)}/(h(O)}' = 0.001233'/0.01019' = 0.01464 
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Then ~ ' ' var(D) = (70.8t [0.010065 + 0.01464] 

= 123.84 

and s"e(bl = ✓ vir(b) 

= I 1.13 

The coefficient of variation of estimated density is cv(b) = f.e(b)/ b = 
15.7%, which is likely to be adequate for some purposes. Note that 
even with a sample size of n = 131 after truncation, the coefficient of 
variation is over 15%. A 95% confidence interval could be calculated as 
b ± l.96(s"e(iJ)), giving the interval {49.0, 92.6]. Log-based confidence 
intervals offer improved coverage by allowing for the asymmetric shape 
of the sampling distribution of b for small n. Applying the procedure 
of Section 3. 7. I, the interval (52.1, 96.2) is obtained, which is wider than 
the symmetric interval, but is a better measure of the uncertainty in the 
estimate b = 70.8. In line transect sampling, the variance of b is usually 
primarily due to the variance in n, but this is less often the case in point 
transect sampling, where precision in h(O) can be poor; here, variance 
in n accounts for 41 % of the total variance estimate. 

If the uniform model with polynomial adjustments is adopted, estim
ated density is 60.9 objects/ha, with 95% log-based confidence interval 
(48.2, 77 .OJ. The true parameter value, D = 79.6 objects/ha, lies above 
the upper limit of this interval. We return to this example later, to show 
how the bootstrap may be used to estimate variances and to determine 
confidence limits that incorporate model misspecification uncertainty. 

For some purposes it is convenient to have a measure of detectability. 
For example, it may be useful to assess whether the detectability for a 
species is a function of habitat, which may have implications for survey 
design. The effective radius of detection p = ✓(vht), estimated by 
P = ✓ {2/h(O)}, may be used for this purpose. For long-tailed detection 
functions, p may be considerably larger than intuition would suggest, 
because large numbers of objects are detected at far distances, where 
the area surveyed is great, relative to close distances, where the surveyed 
area is small. A parameter that is unaffected either by this phenomenon 
or by truncation is r112, the distance at which the probability of detecting 
an object is one-half. For any fitted detection function §(r), it may be 
estimated by solving i(i1n) = 0.5 for i-1 11 • For the example with 
w = 20 m and p = 14.0 m and f112 = 13.0 m. 

We know that the true detection function is half-normal for the 
example. Using that knowledge, closed form estimators are available 
and the analysis is simple to carry out by hand, provided the data are 
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both ungrouped and untruncated. Using the results of Chapter 3, 
Section 3.4.4, 

' &2 = L rl12n = 94.81 m1 

is] 

It follows that 

h(O) = 21t/V = 1/0"2 = 0.01055 

and estimated density is 

b = 144 x h(0)/(21t x 30) = 0.00806 objects Im 2. or 80.6 objects/ha 

The effective radius of detection is estimated as P = ✓ (26: 2) = 13.8 m, and 
the radius at which probability of detection is one-half is estimated by 
f112 = ✓ (262 loge2) = I 1.5 m. These estimates are in excellent agreement 
with the true values of D = 79.6 objects/ha, p = 14.1 m, and r112 = 11.8 m. 

The results of Section 3.4 also yield variance estimates for this special 
case: 

. ' 
va'r{h(O)J = 4/L (r; - 20"2

): = 8.850 x 10-7, or St:[h(O)] = 9.407 x 10-• 
i~ I 

Thus [cv{h(0)}]2 = vai-{h(O)}/{h(0)}2 = 0.000940?2/0.010552 = 0.007951 

Also, [cv(n)]2 = 0.010065 from above 

so that vai-(b) = b2 
• {(cv(n)f + [cv{h(0)}]2} 

= (80.6)' [0.010065 + 0.007951] 

= 117.04 

and se(.b) = 10.82 

The 95% log-based confidence interval is then [62.0, 104.7] objects/ha. 

5.7.2 Boot!>·trap variances and confidence intervals 

The bootstrap is a robust method, based on resampling, for quantifying 
precision of estimates. One circumstance in which the bootstrap is likely 
to be preferred is when the user wishes to incorporate in the standard 
error the component of variation arising from estimating the number of 
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polynomial or Fourier series adjustments to be carried out. We recom
mend the following inplementation. 

Generate a bootstrap sample by selecting points with replacement 
from the k points recorded until the bootstrap sample also comprises k 
points. Repeat until B bootstrap samples have been selected. Typi
cally, B will be around 200 to l000. Density D is estimated from 
each bootstrap sample, and the estimates are ordered, to give b1n, 
i= I, ... , B. Then 

and 

while a 100(1 - 2a.)% confidence interval for D is given by [bu., b(d, 
with j"" (B + l)u and j' • (B + 1)(1 - a). It is convenient to select B so 
that j and j' are integer. Thus for n = 0.025, one might select from the 
following values: 199,239,279, ... , 999. The estimate b calculated from 
the original data set is usually used in preference to the bootstrap 
estimate bs, with se(.b) estimated by ✓ {vai'8 (.b8)}. Applying this to the 
example with B = 399 (so that (B + l)u = 10, an integer, for n = 0.025), 
we take a sample of 30 points at random and with replacement from 
the 30 in the example data set. Suppose this yields the following points: 
1, 1, 3, 5, 6, 6, 6, 8, IO, IO, II, 12, 15, 15, 17, 17, 17, 18, 18, 20, 21, 
22, 22, 25, 26, 26, 26, 28, 30, 30. The bootstrap sample therefore 
comprises each detection distance recorded at points 6, 17 and 26 three 
times, each distance recorded at points 1, 10, 15, 18, 22 and 30 twice, 
and each distance from points 3, 5, 8, II, 12, 20, 21, 25 and 28 once. 
Those for remaining points are excluded. This bootstrap sample is analysed 
in exactly the same way as the actual sample, to yield an estimate b 1• The 
exercise is repeated 399 times. The sample variance of these bootstrap 
estimates was 159.8, giving SC(b) = 12.6 objects/ha. After ordering the 
bootstrap estimates, the tenth smallest value (j = (B + l)o: = IO) was found 
to be b,10J = 53.6 and the tenth largest value was .b1.woJ = 100.7, giving 
an approximate 95% confidence interval for D of (53.6, 100,7) objects/ha. 
This compares with .b ± 1.96 • s"e(b) = (60.8, 100.4)ha by the more tradi
tional method. Assuming the distribution of b is log•normal and using 
the result of Burnham et al. (1987: 212), we obtain the interval (63.1, 
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102.9) objects/ha. Note that the lower limit is smaller for the bootstrap 
method. This is because cosine adjustments to the half-normal fit 
sometimes generated a fitted detection function with a flatter shoulder 
than that of the half-normal. Ir no adjustments to the half-normal fit 
are allowed. the bootstrap should duplicate the analytic method, except 
asymptotic normality is not assumed when setting confidence limits. 
Applying this with B = 399 gives 'se(iJ) = l0.8 and an approximate 95% 
confidence interval for D of (62.5, l02. 7), which is shifted slightly to 
the right of the symmetric analytic interval. reflecting the greater uncer
tainty in the upper limit, but agrees v,,ell with the interval calculated 
assuming the distribution of b is log-normal. 

Variances of functions of the fitted density, such as p or i 1, 2 , may 
be estimated using the methods of Section 3.4, or from the above 
bootstrap method, replacing the bootstrap estimate of density Dui by 
the appropriate estimate, such as p(,1 or ,\.;.,. Adopting the analytic 
approach, 

so that 

and 

'se(i1n) = SC(P) • ✓ (log,2) = 0.51 m 

By comparison. the bootstrap method yields s°e(j)) = 1.12 m, with 
95% confidence interval (12.62. 16.84) m, and secrli2) = 0.93 m, with 95% 
confidence interval ( 10.51. 14.02) m. If no cosine adjustments are allowed, 
as above, we get iie(j)) = 0.66 m. with 95% confidence interval (12.55, 
15.00) m, and §e(i1..-2) = 0.55 m, with 95% confidence interval (10.45, 
12.49) m. These results are in good agreement with the analytic results. 

We noted earlier that the AIC value for the preferred analysis of the 
example data was almost the same as that using the uniform key with 
a single polynomial adjustment. However, the latter model gave an 
estimated density of 60.9 objects/ha, with 95% confidence interval [48.2, 
77.0]. Thus the true parameter value. D"" 79.6 objects/ha, is outside the 
confidence interval. The bootstrap option within DISTANCE, was im
plemented with B = 200 replicates, to obtain a variance for h(O) that 
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allows for estimation of the number of polynomial terms required. It 
gave 8e{h(O)} = 0.000783, compared with the analytic estimate of 
8e{h(O)} = 0.000581. which is conditional on a single term adjustment to 
the uniform key. Thus the variance is larger as expected, and the revised 
95% confidence limit for D is (46.6, 79.3]. The true density is therefore 
still just outside the interval, probably because the uniform + polynomial 
model gives a negatively biased estimate of density for this data set. To 
attempt to improve the variance estimate corresponding to b = 60.9, a 
component of variance corresponding to model misspecification bias 
should be estimated. We do this by generating 199 bootstrap samples, 
and analysing each resample by the three models of Table 5.1 that gave 
competitive AIC values, namely uniform+ cosine, uniform + polynomial 
and half.normal + Hermite polynomial. In each resample, the bootstrap 
estimate of density is taken to be the estimated density under the model 
with the smallest AIC. Under this rule, the uniform + cosine model was 
selected in 49 of the 199 replicates, the uniform + polynomial model in 
92, and the half-nonnal + Hermite polynomial model in the remaining 
58. The 95% percentile confidence interval was [48.0, 94.5] objects/ha, 
which is wider than the intervals obtained by assuming that the selected 
model is the correct model, and comfortably includes the true parameter 
value, D = 79.6. 

In the above bootstrap implementations, the sampling unit was taken 
to be the individual point. This is valid if points are randomly dis
tributed through the study area, and provides a good approximation if 
points are arranged as a regular grid. To reduce tra\·el time between 
points, transect lines are sometimes defined. and counts are made at 
regular points along each line. If the spacing between lines is similar to 
the distance between neighbouring points on the same line, then the 
point may still be taken as the sampling unit. However, if separation 
between lines is large, then the line should be taken as the sampling 
unit. Thus lines are selected with replacement until the number of lines 
in the resample is equal to the number in the real sample, or, if the 
number of points per line is very variable, until the number of points 
in the resample is as close as possible to the number in the real sample. 
If a line is selected, the data from all points on that line are included 
in the resample. 

5.8 Estimation when the objects are in clusters 

If point transects are used for objects that are sometimes recorded in 
clusters during the survey period, the recording unit should be the cluster, 
not the individual object. and analyses should be based on clusters. In this 
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section, various options for the analysis of clusters are considered. If it 
is assumed that (i) probability of detection is independent of cluster size 
and (ii) cluster sizes are accurately recorded, or alternatively that they 
are estimated without bias at all distances. then E(s) may be estimated 
by the mean size of detected clusters. S. Estimated cluster density is then 

- n-h(O) 
D,= 

2xk 

and estimated object density is 

D=bs·S"'n 
-h(O)·S 
2xk 

Note that the formula for cluster density is identical to that for object 
density when the objects do not occur in clusters. The formula for the 
variance of b,. is also identical to that given for object density in Section 
5.7.1. The variance of object density is now estimated by 

val'{b) =fr. 

where 

" 
vai-(S) = l (s, - s/l{n(n - 1)) 

Id 

In practice, larger clusters often tend to be more detectable than small 
clusters at greater distances, so that E(s), and hence D, are overestim
ated. This is a form of size-biased sampling (Cox 1969; Patil and Ord 
1976; Patil and Rao 1978; Rao and Portier 1985). Bias can be negative 
if the size of a detected cluster at a large distance from the observer 
tends to be underestimated. If either bias occurs, then the above method 
should be modified or replaced. 

The simplest approach is based on the fact that size bias in detected 
clusters does not occur within a region around the point for which 
detection is certain. Hence, E(s) may be estimated by the mean size of 
clusters detected within distance v of the point, where g(v) is reasonably 
close to one, say 0.6 or 0.8. In the second method. a cluster of size s, 
at distance r; from the point is replaced by s; objects, each at distance 
r;. Thus, the sampling unit is assumed to be the object rather than the 
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cluster. For the third method, data are stratified by cluster size (Quinn 
1979, 1985). The selected model is then fitted independently to the data 
in each stratum. If size bias is large or cluster size very variable, smaller 
truncation distances are likely to be required for strata corresponding 
to small clusters. The final method estimates cluster density D, conven
tionally, as does the first. Then, given the r,, E(s) is estimated by 
regression modelling of the relationship between s; and r;. All four 
approaches are illustrated in this section using program DISTANCE. 

The data used to illustrate the four methods were simulated from a 
half-normal detection function without truncation, in which the scale 
parameter o was a function of cluster size: 

{cr(s)}2 = oi [1 + b. s - E(s)) 
E(s) 

where Go = 30 m, b = 0.75 and E(s) = 1.85 for the population. (In Chapter 
4, o(s) was assumed to be a linear function of s: for point transects, 
theoretical considerations suggest that it is more appropriate to assume 
{cr(s)} 2 is a linear function of s.) Cluster sizes s were generated by 
simulating values from the geometric distribution with rate E(s) - 1 and 
adding one, and a cluster of size s was detected with probability 

g(,ls)=exp[- ? ,] 
2{cr(s)} 

The expected sample size was E(n) = 96, distributed between k = 60 
points, with var(n) = 2.65 • E(n). True densities were Ds = 283 clus
ters/km2 and D = 1.85 x 283 = 523 objects/km2

• The bivariate detection 
function g(r, s) is monotone non-increasing in r and monotone non
decreasing ins. The detected cluster sizes are not a random sample from 
the population of cluster sizes; the mean size of detected clusters S has 
expectation > E(s). 

A histogram of the untruncatcd distance data shows a rather long tail 
(Fig. 5.4). Truncation at 70 m deleted just under 10% of observations 
(eight from 92), and allowed lhe data to be modelled more reliably. The 
same four models were applied as for Section 5.6: uniform + cosine. 
uniform+ polynomial. half-normal + Hermite polynomial and hazard
rate + cosine. All four models fitted the truncated data well. AICs for 
the four models were 691.8, 693.7. 692.6 and 693.1, which favour the 
uniform+ cosine model. We therefore use it to illustrate methods of 
analysis of the example data. 
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The uniform + cosine model for the untruncated data required three 
cosine terms to adequately fit the right tail of the data (Fig. 5.4). By 
truncating the data, only a single cosine term is required (Fig. 5.5), and 
the size bias in the truncated sample of detected clusters is reduced. The 
fit of the model was good ( xl = 4.51; p = 0.48). The estimated density 
of clusters was 258.1 clusters/km2 (iie = 52.2), compared with the true 
value of 283. The mean cluster size from the untruncated sample data 
was 2.293 (iIB = 0.165), which is biased high due to the size-biased 
sampling. The scatter plot of cluster size against detection distance (Fig. 
5.6) shows wide scatter, but a significant correlation (r = 0.272). Trun
cation at w = 70 m reduced this correlation to 0.180. Multiplying the 
density of clusters by the uncorrected estimate of mean cluster size from 
data truncated at 70 m (S = 2.202; &e(s) = 0.168), the density of individ
uals is estimated as 574.6 objects/km2 with &e= 115.1 and 95% con
fidence interval [389.6, 847.5], which comfortably includes the true 
density of 523 objects/km2

. 

5.8.I Standard method with additional truncation 

Observed mean cluster sizes and standard errors for a range of trunca
tion distances are shown in Table 5.4. The detection function g(r) was 
estimated using a truncation distance of w, while a truncation distance 
of v(v :,;;: w) was used to estimate mean cluster size. It seems that 70 m 
may be too large a truncation distance for unbiased estimation of mean 
cluster size, but an appropriate distance is difficult to determine, because 
mean cluster size does not stabilize as the truncation distance is reduced. 
Possible choices for truncation distance v range between 21.5 m, for 
which S = 1.650, and 46.9 m, giving S = 2.030. If strong size bias 1s 

Table 5.4 Observed mean cluster sizes and standard errors for various 
truncation distances v. Probability of detection at the truncation distance 
for cluster size estimation, k(v), was estimated from a uniform+ I-term 
cosine model with w = 70 m (Fig. 5.5) for v .;;; 70 m, and from a 
uniform+ 3-term cosine mode! with w = 120 m (Fig. 5.4) for v = 120 m 

Truncation 
distance, v(m) n ' se(s) 8"(v) 

120.0 92 2.293 0.165 0.005 
70.0 84 2.202 0.168 0.07 
46.9 67 2.030 0.183 0.30 
36.8 52 2.135 0.228 0.50 
31.9 38 2.079 0.243 0.60 
27.0 31 1.806 0.199 0.70 
21.5 20 1.650 0.232 0.80 
14.9 10 2.000 0.422 0.90 
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Fig. 5.4. Histograms of the example data using 20 distance categories for the 
case where cluster size and detection distance are dependent. The fit of a 
uniform+ 3-term cosine detection function to untruncated data is shown in (a), 
in which frequencies are divided by detection distance, and the corresponding 
density function is shown in (b). 
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Fig. 5.5. Histograms of the example data using five distance categories and 
truncation at w = 10 m for the case where cluster size and detection distance are 
dependent. The lit of a uniform+ I-term cosine detection function is shown in 
(a), in which frequencies are divided by detection distance, and the corresponding 
density function is shown in (b). 
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suspected, a reasonable compromise might be u = 21.0 m, so that S = 
1.806 with s"e = 0.199. Replacing the estimates ."f = 2.202 and §e = 0.168 
by these values, density is estimated as 471.2 individuals/km2, with 
§e = 101.5 and 95% Cl (310.4, 715.3]. In view of the difficulty in selecting 
u, and the sensitivity of the estimate to the choice, another approach 
seems preferable in this instance. 

5.8.1 Replacement of dusters by indMduals 

If a cluster of size s; is replaced by s; objects at the same distance, the 
assumption that detections are independent is violated, invalidating 
analytic variance estimates and model selection procedures. Robust 
methods for variance estimation avoid the first difficulty, but model 
selection is more problematic. One solution is to select a model taking 
clusters as the sampling unit, then refit the model (with the same series 
terms, if any) to the data with object as the sampling unit. Adopting 
this strategy, a uniform+ I-term cosine model was fitted to the distance 
data truncated at 70 m, and the following estimates obtained. Number 
of objects detected, n = 185. Estimated density, b = 526.2 objects/km', 
with analytic 5e = 104.6 and 95% confidence interval [355.3, 779.1]. These 
estimates are lower than those obtained assuming cluster size is inde
pendent of distance, and the point estimate is appreciably closer to the 
true density of 523 objects/km2

. Average cluster size can be estimated 
by the ratio of estimated object density (526.2) to estimated cluster 
density (258.1), giving 2.039. 

5.8.3 Stratification 

Stratification by cluster size can be an effective way of handling size 
bias. For the example data, if two strata are defined, one corresponding 
to individual objects and the other to clusters (;;,, two objects"), sample 
sizes before truncation are 36 and 56 respectively. If the second stra
tum is split into dusters of size two and clusters of more than two 
individuals, the respective sample sizes in the three strata before trun
cation are 36, 27 and 29. The data were analysed for both choices of 
stratification. 

Results are summarized in Table 5.5. As for the line transect example 
in the previous chapter, no precision is lost by stratification, despite the 
small samples from which /(0) was estimated. The estimated densities 
are lower than that obtained by assuming cluster size is independent of 
detection distance, as would be expected if size bias is present. Both 
stratifications yield similar estimated densities, and they bracket the 
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Fi,t. 5.6. Scatterplot of the relationship between cluster size and detection 
distance, The correlation coefficienl is 0.272 (w = oo). 

estimate obtained by the previous method. The true density is 523 
objects/km2

, very close to both estimates. Mean cluster size may be 
estimated by a weighted average of the mean size per stratum, with 
weights equal to the estimated density of clusters by stratum. Alterna
tively, E(s) may be estimated as overall b from the stratified analysis 
divided by b, from the unstratified analysis. For two strata, this yields 
i(s) ::= 534.3/258.! ::= 2.070, and for three strata, E(s) = 524.0/258.1 = 2.030. 
Both estimates are rather higher than the true mean cluster size of 1.85. 

5.8.4 Regression estimator 

Average cluster size can be estimated from a regression of cluster size 
on estimated detection probability. This procedure estimates the average 
cluster size for clusters close to the centreline, where detection is 
assumed to be certain, and thus size bias is reduced. The loss in precision 
in correcting for size bias using regression is generally small. The method 
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of regressing z; = loge(s;) on i(x;) (Section 3.6.3), applied to the example 
data, yields i(s) = l.772and §e{i(s)} = ✓ /vai"{E(s)}] = 0.125. The corres
ponding density estimate is 462.2 individuals/km2

, with §e = 91.6, 
cv = 19.8% and 95% confidence interval [313.8, 680.9). The estimate 
f(s) is close to the true parameter value of 1.85. The resulting density 
estimate (462.2) is low relative to the true density (523), although the 
confidence interval comfortably includes the true value. 

Table 5.5 Summary of results for different stratification options. Model was 
uniform with cosine adjustments; distance data were truncated at w = 70 m. 
D = 523 objects/km2 

True 

Cluster Sample size Efective search 
size after truncation radius (m) b 'se(b) 95% Cl for D 
All 84 41.3 574.6 115.1 (389.6, 847.5) 

I 35 39.2 120.8 24.7 
2-9 49 43.9 413.5 100,5 
All 534.3 103.5 (366.8, 778.3) 

35 39.2 120.8 24.7 
2 24 41.6 147,1 42.2 

3-9 25 46.0 256,1 80.9 
All 524.0 94.5 (369.0, 744.1) 

5.9 Assumptions 

The assumptions of point transect sampling are discussed in Section 2.1. 
There has been considerable confusion on whether objects must be 
assumed to be randomly distributed, both in the literature and among 
biologists. If objects are distributed stochastically independently from 
each other, but with variable rate depending on location, then the 
assumption that points rather than objects are randomly located suffices 
unless the rate shows ex:treme variation over short distances ( of the order 
of a typical detection distance). If the rate can change appreciably in a 
short distance or if the presence of one object greatly increases the 
likelihood that another object is nearby (thus violating the assumption 
that detections are independent events), then given random placement 
of points, reliable estimation may still be possible provided robust 
variance estimation methods are used and provided that the results of 
goodness of fit and likelihood ratio tests (which will tend to give 
spurious significances) are viewed with suspicion. The more serious the 
departure from random, independent detections, the larger the sample 
size required to yield reliable analyses. Robust empirical or resampling 
methods should always be used for estimating the variance of sample 
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size, as described in Section 5.7, to guard against the effects of clustered 
detections. The most extreme departures from a random distribution of 
objects are when the objects occur in well-defined clusters. In such cases, 
the above problems are avoided by taking the cluster rather than the 
object to be the sampling unit. Strict random placement of points can 
be modified. For example, stratification of the study area allows samp
ling intensity to vary between strata, or a regular grid of points may be 
randomly superimposed on the area. Use of a regular grid allows the 
biologist to control the distance between points. 

Surveys should be designed to minimize departures from the assump
tion that probability of detection at the point is unity (g(O) = 1). For 
example, the assumption is likely to be more reasonable for songbirds 
if the recording time at each point is long (giving each bird time to 
be detected) or if surveys are carried out in early morning, when 
detectability may be an order of magnitude higher (Robbins 1981; 
Skirvin 1981). We do not concur with the argument that early morning 
should be avoided when carrying out point transects. The reasoning 
behind it is that bird detectability varies rapidly during the first 
hour or two of daylight. Although detectability may vary less later in 
the day, it will also be lower, and densities of some species may be 
appreciably underestimated. Whenever possible, survey work should be 
carried out when detectability is greatest, and survey design should allow 
for variation in detectability. Models that arc robust to variable detect
ability (pooling robust) should be used to analyse the data. 

Time of season also determines whether it is reasonable to assume 
that probability of detection at the point is unity. For multiple species 
studies. it may be necessary to carry out surveys more than once, say 
early and late in the season. For any given species, the data collected 
closest to the time that it is most detectable can then be used. For many 
songbirds, it may be practical to survey only territorial males. 

For point transect sampling, we consider that it is necessary to assume 
that the detection function has a shoulder because we believe that 
reliable estimation is not possible if it fails, although small departures 
from the strict mathematical requirement that g'(O) = O need not be 
serious. Unlike line transect data, only a very small proportion of point 
transect distances is close to zero, because the area covered close to the 
point is small. Thus, there is a case for designing surveys to ensure that 
g(r) = I out to some predetermined distance. If there is an area about 
the point for which detection is perfect, then different point transect 
models will tend to give more consistent estimation. When g'(O) = 0 but 
g"(O) < 0, the stronger criterion of an area of perfect detection fails. 
Methods based on squaring detection distances (Burnham el al. 1980: 
195) and the method due to Ramsey and Scott (1979, 1981b) may then 
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perform poorly. Even when the criterion is satisfied, but the distance 
up to which detection is certain is close to zero, such methods can be 
poor. 

The mathematical theory assumes that random movement of objects 
does not occur. In line transect sampling, random movement prior 
to detection can be tolerated provided average speed of objects is 
appreciably Jess than (i.e. up to about one-third of) the speed of the 
observer (Hiby 1986). The problem is more serious for point tran
sects, for which the observer is stationary. Bias occurs because prob
ability of detection is a non-increasing function of distance from the 
point, so that objects moving at random arc more likely to be detected 
when closer to the point, leading to overestimation of object density. 
As noted above, the assumption that g(O) = 1 is more plausible if record
ing time at each point is large, but bias arising from random object 
movement increases with time at the point; thus recording time at each 
point is a compromi~e. and is typically five to ten minutes for songbird 
surveys. 

Response to the observer may take the form of movement towards or 
away from the observer, or of a change in the probability of detection 
of the object. Movement towards the observer has a similar effect on 
the data as random movement, and leads to overestimation of density 
(Fig. 5.7). Movement away from the observer tends to give rise to 
underestimation (Fig. 5.7), as docs a decrease in detectability close to 
the point, if this is sufficient to violate the assumption that g(O) ::: I. An 
increase in detectability, as when birds 'scold' the intruder, is generally 
helpful. However, if birds also move in response to the observer, or if 
females are seldom detected except very close to the point, the detection 
function might be difficult to model satisfactorily. The effects of re
sponse to the observer have been considered by Wildman and Ramsey 
(1985), Bibby and Buckland (1987) and Roeder et al. (1987). 

Bibby and Buckland (;Onsidered two 'neeing' models. In the first, each 
object was assumed to maintain a minimum distance (its 'disturbance 
radius' rd) between itself and the observer. The radius was allowed to 
vary from object to object, and was assumed to follow a negative 
exponential distribution. The detection function was assumed to be 
half-normal. If the data were to be analysed using a binomial half
normal model (Section 6.2.1) with the division between near and far 
sightings set at c1 = 30 m (Chapter 6), and if 50% of detections would 
fall within c1 in the absence of evasive behaviour, Bibby and Buckland 
calculated that the bias in b (evaluated by numeric integration) would 
be - 9% when the mean disturbance radius was IO m, - 20% for 15 m, 
- 30% for 20 m and - 55% for 40 m. In this case, bias might be deemed 
'acceptable' (< 10% in magnitude) if the mean disturbance radius was 
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Fig. 5.7. Plots of the real probability density function ( ······). the apparent 
function when there is movement away from the observer (- - -), and the 
apparent function when there i~ movement towards the observer (--). 
Estimated density of birds is proportional to the slope of the curve at zero 
distance from the point, so that density is overestimated when there is movement 
towards the ohserver and underestimated when movement ls away from lhe 
observer. 

of the order of one-third the median detection distance or less. In their 
second fleeing model, many objects close to a sample point become 
undetectable, because they either leave at the approach of the observer, 
moving beyond the range of detection, or take to cover, remaining silent 
until the observer has departed. The probability that an object at 
distance r is undetectable was modelled as half-normal. In otherwise 
identical circumstances to the first model, bias in b was found to be 
- 24% when the point at which 50% of objects become undetectable was 
10 m, - 44% for 15 m, - 61% for 20 m and - 88% for 40 m. They 
concluded that species for which the second model applied were unsuit
able for surveying by the point transect method, but considered that the 
first model, for which bias was Jess severe, would apply to most species 
of woodland songbird that show evasive behaviour. 

Roeder et al. (1987) also considered two models for disturbance, in 
which the probability of disturbance was ex:ponentially distributed, being 
one at distance zero. They then simulated data in which a 'disturbed' 
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object either moved exactly 10 m away from the observer (model I) or 
hid (model 2). Their conclusions, based on analyses using the method 
due to Ramsey and Scott (1979, 1981b), the Fourier series method on 
squared distances and an order statistic method, were consistent with 
those reported above. In cases where there is an area of perfect detec• 
tability well beyond any effects arising from evasive behaviour, Wildman 
and Ramsey ( 1985) showed that their method is still valid under a model 
in which objects move away from the observer, and can be modified if 
objects close to the observer are known to hide. 

The term 'doughnut' or 'donut' refers to a paucity of observations 
close to the point, and is generally attributed to object response of one of 
the above types to the observer. Wildman and Ramsey (1985) used data 
on the omao or Hawaiian thrush (Phaeornis obscurus) as a good example 
of this. In some instances, a poor choice of model can lead to erroneous 
identification of a doughnut; the empirical distribution function of 
detection distances is useful for assessing whether a doughnut really exists. 

Distances are assumed to be measured without error (or to be assigned 
to defined distance intervals without error), but the assumption is less 
problematic than for line transects in two respects. First, only the 
observer-to-object distance is required for modelling. This is often 
easier to measure or estimate than the perpendicular distance of the 
object from a transect, especially if a detected object is not visible or 
audible, or has moved, by the time the observer reaches the closest point 
on the transect to it, or if densities are high, so that the observer may 
need to keep track of several detections simultaneously. Second, to 
reduce the problems inherent in estimating perpendicular distances for 
line transect sampling, sighting distances and sighting angles are often 
recorded. Effort is often concentrated ahead of the observer, so that 
measurement errors in the angles often give rise to recorded angles, and 
hence calculated perpendicular distances, of zero. Such data are notori
ously difficult to model. Point transect data do not exhibit this problem; 
small observer-to-object distances are seldom recorded as zero, and 
few small distances occur. as the area surveyed close to a point is small. 

In songbird point transect surveys on Arapaho National Wildlife 
Refuge, locations of detected birds were marked, and were later 
measured to the nearest decimetre (Knopf et al. 1988). Such accuracy 
is not usually possible; for example, up to 90% of detections are 
purely aural in woodland habitats (Reynolds el al. 1980; Scott el al. 
1981; Bibby el al. 1985), so that the location of the bird must be 
estimated. Consistent bias in distance estimation should be avoided. If 
distances are overestimated by 10%, densities are underestimated by 
100(1 - 1/1.12

) = 17%; if they are underestimated by 10%, densities are 
overestimated by 100(1/0.92 

- l)""' 23°/4,. Bias in line transect density 
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estimates would be smaller (9% and I 1% respectively). Provided distance 
estimation is unbiased on average, measurement errors must be large to 
be problematic. Permanent markers at known distances are a valuable 
aid to obtaining unbiased estimates, and good range finders are effective 
over typical songbird detection distances, at least when the habitat is 
sufficiently open to use them. Scott et al. (1981) suggest that range 
finders are accurate to± 1% within 30 m, and to± 5% between 100 m 
and 300 m, whereas trained observers are accurate to ± 10-15% for 
distances to birds that can be seen. In our experience, range finders are 
often less accurate than ± 5% at distances close to 300 m. 

If most objects are located aurally, then the assumption that an object 
is not counted more than once from the same point may be problematic. 
For example, a bird may call at one location, move unseen to another 
location, and again call. It is seldom problematic if the same bird is 
recorded from different points, unless it is following the observer. 

5.10 Summary 

Relative to line transects. relatively few distances are recorded close to 
zero distance in point transect surveys. Thus estimation of the central 
parameter (h(O) for point transects and /(0) for line transects) is more 
difficult, and model selection more critical. This was seen for the first 
example. where estimation was satisfactory if the correct model was 
selected. but if the uniform + polynomial model was selected, underes
timation occurred, even though the model selection criteria indicated 
that the model was good. One of the contributory factors to this 
result was that the true detection function was the half-normal, 
which does not have an area of perfect detection around the point, even 
though it has a shoulder. Expressing this mathematically, g"(O) "T- 0, even 
though g'(O)"" 0. If field methods are adopted that ensure an area of 
perfect detectability, estimation is more reliable, and different models 
will tend to give very similar estimates of density. The hazard-rate key 
is best able to fit data that show a large area over which detection is 
perfect, because the hazard-rate detection function can fit a wide, flat 
shoulder. It performed relatively badly on the example data sets largely 
because it tended to fit a flat shoulder to the simulated data, which were 
generated from the half-normal, which possesses a rounded shoulder. 

To estimate densities reliably from point transect sampling, design and 
field methods should be carefully determined, following the guidelines 
of Chapter 7, and the data should be checked for recording and 
transcription errors. Histograms of the distance data are a useful aid 
for gaining an understanding of any features or anomalies. and give an 
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indication of how much truncation is likely to be required. Several 
potential models should be considered. and model selection criteria 
applied to choose between them. Special software is essential if efficient, 
reliable analysis is to be carried out. Variance estimation methods should 
be chosen for their robust properties; the model that gives the most 
precise estimate is not the best model if either the estimate is seriously 
biased or the variance estimate ignores significant components of the 
true variance. A strategy for data analysis is outlined in Section 2.5. 

Systematic error in estimated distances must be avoided. Observer 
training is essential if data quality is not to be compromised (Chapter 
7). If more than one observer collects the data. analyses should be 
attempted that stratify by observer, to detect observer differences. The 
importance of this is illustrated in Section 8.7. It may prove beneficial 
to stratify analysis by other factors, such as species, location, habitat, 
month, year, or any factor that has a substantial impact on detection 
probabilities. Hypothesis testing may be used to determine which factors 
affect detection, thus reducing the amount of stratification and increasing 
parsimony. If the factor is ordinal or a continuous variable, it might enter 
the analysis as a covariate. so that its effect on detectability is modelled. 

If objects occur in clusters, the location of the centre of each cluster 
and the number of objects in the cluster should be recorded. If clusters 
occur but are not well-defined, the observer should record each individual 
object, and its location, and use robust variance estimation methods. It 
is also useful to indicate which detected objects were considered to 
belong to the same cluster, so that a comparative analysis can be carried 
out by cluster. The location of the cluster can then be determined by 
the analyst, by calculating the geometric centre of the recorded locations. 

The checklist of stages in line transect analyses given at the end of 
Chapter 4 may also be used for point transect analyses. In that checklist, 
replace 'line' by 'point', 'perpendicular distance' by 'detection distance', 
and 'Section 4. *' by 'Section 5. *' Also, the rule of thumb for selecting 
a truncation point w for detection distances is that i(w) ~ 0.10, or less 
satisfactorily, that roughly 10% of observations arc truncated (Section 5.3). 
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6 

Extensions and related 
work 

6.1 Introduction 

In this chapter, we consider extensions to the theory described in 
Chapter 3, and we describe distance sampling methods that are closely 
related to line and point transect sampling. We also examine models 
that do not fit into the key + adjustment formulation or earlier chapters. 
The material on these other models is not exhaustive, but is biased 
towards recent work. and models that may see future use and further 
methodological development. Most of the older models not described 
here are discussed in Burnham et al. (1980). One of the purposes of this 
chapter is to stimulate further research by raising some of the issues 
that are not satisfactorily handled by existing theory. 

6.2 Other models 

6.1.1 Binomial models 

Binomial models are a special case of multinomial models, the theory 
for which is given in Section 3.4. We examine them briefly, since closed 
form estimators are available for some underlying models for the detec
tion function; these are sometimes used as indices of abundance, to 
assess change in abundance with habitat (Section 8.9) or over time. 

Line and point transect methods sometimes provide a quick and 
inexpensive alternative to census methods for generating population 
abundance indices of songbirds. In areas of thick cover, the observer 
may rely heavily on aural detection, with perhaps fewer than 10% of 
detected birds visible. Difficulty in both locating the bird and moving 
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through vegetation make measurement of each detection distance im
practical, and the disturbance would also cause many birds to move or 
change their behaviour. Bibby et al. (1985) stated: 

Recording the distance at which each bird was detected would have 
been desirable but was not practicable when so many were heard 
and not seen. Overcoming this difficulty might have risked swamp
ing the observer's acuity for other birds when an average of about 
nine birds was recorded at each five-minute session. A single 
decision as to whether or not each bird was within 30 m when first 
detected was easier to achieve in the field and sufficient to permit 
estimates of density. 

Sometimes, therefore, birds are simply recorded according to whether 
they are within or beyond a specified distance c1. To help classify those 
birds close to the dividing distance, pennanent markers may be posi
tioned on trees or bushes at distance c1. Only single-parameter models 
may be fitted to such data, and it is not possible to test the goodness 
of fit of any proposed model. The data may be analysed using the 
multinomial method for grouped data. Because there are only two 
groups (with the second cutpoint c2 = =). the sampling distribution is 
binomial. As for the models of Chapter 3, numeric methods will be 
required in general. but below we consider the half-normal binomial 
model for point transects (Buckland 1987a). for which analytic estimates 
are available. 

Define g(r) = exp{- (rlo)"}, 0.,; r <"" 

Then 

V = 1t(J2 

and 

Given the binomial likelihood, simple algebra yields the maximum 
likelihood estimate 

where n is the number of birds detected and n2 is the number beyond 
distance c1. 
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Thus, 

b = n • h(O) = n • loge(nln~) 
2rr,k cf1tk 

where k is the number of plots sampled. Suppose for the example of 
Fig. 5.1 that distances had been recorded simply as to whether they were 
within or beyond 15 m. Then c1 = !Sm, k = 30, n = 144 and n! = 46, 
yielding b = 0.00775 birds/m2, or 77.5 birds/ha. 

The asymptotic variance of h(O) is 

~ {h. O)) 4(1/n2 - 1/n) var(= 
4 c, 

so that the variance of b may be estimated using the methods of Chapter 
5. For the example, we obtain s"e(iJ) = 10.7 birds/ha, compared with 11.1 
birds/ha when exact distances are analysed. 

Two measures of detectability are r112 , the point at which the prob
ability of detection is one half, and p, the effective radius of detection. 
Further algebra yields 

• _ ✓{2 • log,2) r112 - , , 
h(O) 

while 

,,,...._ , 2 • (1/n2 - 1/n) 
var(p) = 

c1 · {ii(0)} 3 

Thus for the example we have f112 = 11.7 m, with s"e(r112) = 0.6 m, and 
p = 14.0m, with s"e(P) = 0.7 m. 

The efficiency of this binomial point transect model for estimating 
density relative to the half-normal model applied to ungrouped detection 
distances (Ramsey and Scott 1979; Buckland 1987a) is typically around 
65%--80% (Buckland 1987a). This loss is relatively small; more serious 
is that robust models with more than a single parameter cannot be used 
on binomial data, and there is no information from which to test 
whether the form of the half-normal model is reasonable. However, bias 
from fitting an inappropriate model may be consistent between years, 
so that the method can be useful for providing an index of relative 
abundance over time at low cost. 
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Buckland (1987a) also derived analytic results for a linear binomial 
model for point transects, and found that density estimates for a variety 
of species are similar under the two models (Section 8.9). In practice, a 
detection function is unlikely to be approximately linear, so we give just 
the half-normal model here. The linear model had been considered 
earlier by Jarvinen (1978), but only partially developed. 

The choice of c1 requires some comment. The value that minimizes 
the variance of h(O), of fw and of p is c1 = 1.78/✓h(O), which implies 
that roughly 80% of detections should lie within c1• Buckland (1987a) 
finds that estimation is more robust when around 50% lie within 
c1. Further, for simultaneously monitoring several species, an average 
value of 80% across all species may mean that few or no birds of 
quiet or unobtrusive species are detected beyond c1. A practical advant
age in selecting a smaller value for c1 than the optimum is that the 
observer will be more easily able to determine whether a bird is within 
or beyond c1. 

As a safeguard, two cutpoints, c1 and c2, with O < c1 < c2 < "", might 
be used, so that the sampling distribution is trinomial. The data could 
be analysed using the results for the general multinomial distribution in 
Section 3.4, but detection functions with at most two parameters could 
be used. Another option would be to use the above binomial model, 
first using cutpoint ci, then using cutpoint c2. If the two density estimates 
differed appreciably, this might be an indicator that the model is not 
robust. Otherwise the two estimates might be averaged. For surveys of 
several species, the first cutpoint might be used for quieter, more 
unobtrusive species, and the second for louder, more obvious species. 

Jarvinen and Vaisiinen (1975) developed three binomial models for 
line transects, in which the detection function was assumed to be linear, 
negative exponential or half-normal. The last of these is the most 
plausible, but a closed form estimator is not available for it. Program 
DISTANCE allows the user to implement this model using numeric 
methods. Otherwise, its limitations and advantages arc very similar to 
those of the binomial half-normal model for point transects, described 
above. 

Although the goodness of fit of a binomial model cannot be tested, 
the homogeneity of the binomial data can. Suppose each line or point 
transect is assigned to one of R groups, which might, for example, be 
R geographic regions or woods. Then an Rx 2 contingency table ana
lysis may be carried out, where the frequencies are niJ, i = I, ... , R, 
j = I, 2. Then n;1 is the total count within distance c1 for group i, and 
n,1 is the total count beyond c1• If a significant test statistic is obtained, 
then there is evidence that the detection function varies between groups. 
This method extends in the obvious way to multinomial models. 
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A variety of now outdated line transect methods is given in Burnham 
et al. ( 1980). In particular, a non•parametric binomial method once 
thought to have promise is the Cox method. derived by Eberhardt 
(1978a). We no longer recommend this method. However, as a matter 
of intellectual curiosity, we derived the analogue of the Cox method for 
point transect sampling. A linear detection function is assumed, so the 
model is very similar in concept to the linear binomial point transect 
model of Buckland (I 987a). The difference is that the Cox method 
assumes that data are truncated at a distance for which the linear 
detection function is non-zero, whereas the method of Buckland, in 
common with the linear line transect model of Jarvinen and Vii.islinen 
(1975), assumes data arc untruncated in the field; an estimate of the 
point at which probability of detection becomes zero is provided by the 
model. 

Let the distance data be grouped with the first two cutpoints being 
c, and ri. Let the corresponding counts in these two intervals be n1 and 
n2 with total n = n1 + n1. Let k be the number of points sampled. The 
Cox estimator is derived by assuming that g(r) = I + b • r is an adequate 
model over the range O ~ r ~ c2. (It would be better to assume a 
quadratic form, g(r) = I + b • r2

, but we use Eberhardt's formulation.) 
Of course the parameter b is negative. Based on just the counts in these 
first two intervals, we can get an estimate of b and hence an estimator 
of density, D. We do not provide the algebraic derivation here. The 
result is 

Alternatively, 

n • h(O) 

2sk 

from which one can infer fi(O). In the simple case of the two intervals 
having equal widths, ii (i.e. c1 = d and ci = 26), the result reduces to 

In Burnham e__t al. (1980: 169), the general Cox case was given for line 
transects. The f(O) in their publication is not in the same form as used 
here for fi(O). For comparison we provide the results below. 
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Cox estimator for point transects: 

Cox estimator for line transects: 

For this same context of two cutpoints and truncation at c2, if we 
assume the detection function has the generalized form g(y) = I + b • yP 
for O,.,,;: y,.,,;: c2 and where pis a known integer;,;, I, then relevant results 
for point and line transects are 

and 

Corresponding theoretical sampling variances are 

and 

where Pi= E(ni)ln, and is estimated by fi1 = n1ln. 

6.2.2 Empirical estimators 

Emlen (1971, 1977) developed a non-mathematical approach for line 
transect analysis of songbird data. He assumed that a characteristic 
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proportion of birds of any species will be detected in the surveyed area 
2wL. He called this proportion the coefficient of detectability. This 
corresponds to the parameter P~ defined in Section 3.1. The method 
typically uses data from only two to four distance categories, and an 
estimator of the product E(n) • /(0) is determined from a smoothed 
frequency histogram of perpendicular distances. The density estimate 
from this model is probably best considered as a rough index of relative 
abundance, and is not recommended (Burnham et al. 1980: 164). 

Ramsey and Scott (1979, 19Rlb) developed a point transect model 
similar to Emlen's (1971, 1977) line transect model. Suppose cutpoints 
are defined at distances c0 = 0, c, 2c, ... , kc, so that the truncation point 
w = kc. Let A(O, i) be the area of the circle of radius ic, and let A(i,j) 
be the area of the annulus with inner radius ic and outer radius jc. 
Thus, A(i,j) = xc\/ - i2

). Let n(i,j) be the number of birds counted 
within the annulus. Then the corresponding density D(i,j) may be 
estimated by 

iJc; .) = n(i,j) 
,J A(i,j) 

The value i is chosen to be the smallest value such that the likelihood 
of differing densities within the areas A(O, i) and A(i,j) is at least four 
times the likelihood of equal densities for all j > i. That is, i is the 
smallest value that satisfies 

[b(O, i)ru0
·i) • [b(i,j)]"(i.j);;,, 4 · [b(O,j)r(O,/) for all ; > i 

Having calculated i, 

with 

,,,..__ - b 
var(D) = A(O, i) 

This variance estimate is only valid if birds are randomly distributed 
throughout the study area, so is likely to be poor, but an empirical 
estimate may be obtained, for example using the bootstrap. The density 
estimate is only valid if there is an area of perfect detectability, assumed 
to extend out to distance ic. 
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Wildman and Ramsey (1985) developed the 'CumD' estimator, which 
is similar to the above, but estimates the distance out to which detection 
is certain without the need to group the data. The estimator is defined 
for both line and point transects. and observations are transformed to 
detection 'areas', defined as a= 2Lx for line transects and a= 1tr2 for 
point transects. These areas are ordered from smallest to largest, giving 
a 1 ,.,;; a2 .,;; • • • ,.,;; an, with empirical distribution function Fn(a). Let 
j(O) = aj{Oi = 0, and letj(l) be the largest integer such that 

Then for m = 2, 3, ... let j(m) be the largest integer such that 

d _j(m) - j(m - l) - \j- j(m - 1) I • > ., - 11} m- -max J Jm 
Oj(m) - Oj(m - 1) Gj - Oj(m - 1) 

Straight lines linking the points [aJ(mJ,J(m)ln], m = 0, I, 2, ... , form a 
convex envelope over F,,<.a), which is the isotonic regression estimate of 
F(a) (Barlow et al. 1972) and yields an estimated detection function that 
is a non-increasing function of distance from the point. The slopes dm 
are average estimates of density of detections within annuli of increasing 
distance from the point. These equate to estimates of object density if 
all objects within a given annulus are detected. Likelihood ratio tests 
of the equality of density between the first region and the next 
m - I, m = 2, 3, ... , are used to provide a stopping rule. The smallest 
value of m, m• say, is chosen such that the null hypothesis is rejected, 
and all objects within the corresponding radius a;•, where j* = j(m*), are 
assumed to have been detected, yielding an estimate of density. 

This innovative and intuitively appealing approach is computationally 
inexpensive and easily programmed. However, probability of detection 
should be at or close to unity for some distance from the point for the 
method to yield good estimates; because of the paucity of sightings close 
to the point, this distance must be appreciably greater for point transects 
than for line transects for comparable performance. Also. estimation of 
a distance up to which all objects are detected through hypothesis testing 
causes the method to underestimate density when sample size is small, 
as there are too few data for the tests to have much power. Bias in the 
method is therefore a strong function of sample size, at least for small 
samples. Investigation of how large sample size should be for the method 
to perform well would be useful. Wildman and Ramsey (1985) show 
that it must be very large if the true detection function, expressed as a 
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fuitction of area, is negative exponential. For point transects, this 
corresponds to the half-normal detection function, when expressed as a 
function of distance, and bias is still of the order of 23% for a sample 
size of 10 000. 

6.2.3 Estimator.f based on shape restrictions 

Johnson and Routledge (1985) developed a non-parametric line transect 
estimator based on shape restrictions for which they found 'a general 
improvement in efficiency over existing estimators.' The method has not 
seen wide use, but the recent release of software TRANSAN (Routledge 
and Fyfe 1992) makes it more accessible, and we encourage further 
evaluation. 

The density function f(x) is constrained to be non-negative and to 
integrate to unity. In addition, Johnson and Routledge added the 
monotonicity constraint that f(x) must be monotonic non-increasing 
and the shape constraint that f(x) must have a concave shoulder, 
followed by a convex tail. separated by a single point of inflection. The 
range of concavity must be determined, or guessed, by the user, and it 
is suggested that the percentage of detections that fall within the point 
of inflection might be as high as 90% or below 50%. 

The parameter /(0) is estimated by grouping the distance data, and 
using the frequencies in a histogram estimator of /(x). Let h; represent 
the height of the ith histogram bar, i = 1, ... , u. Find the adjusted 
heights, h; , by minimizing 

subject to the imposed constraints. Then /(0) is estimated by /(0) = 1i 1• 

Johnson and Routledge used a bootstrap approach to quantify preci
sion, but one that is more sophisticated than the general purpose 
bootstrap described in Section 3.7.4. For the single-parameter case, a 
guess can be made of say the lower 100(1 - 2a)% confidence limit for 
/(0), and bootstrap resamples generated. The parameter f(O) is estimated 
from each resample, and if the proportion exceeding the estimate from 
the true data is greater than a, then the current guess of the limit is 
estimated to be too large, and is reduced. The process is repeated until 
the true limit is located with adequate precision. Johnson and Routledge 
suggested that a more efficient search procedure might be developed. A 
general algorithm for evaluating confidence limits in this way for single 
parameter problems, which updates the estimated limit after each 
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resample, was given by Buckland and Garthwaite (1990). Its optimal 
properties were noted by Garthwaite and Buckland (1992). 

Johnson and Routledge based their conclusions on estimator perform
ance on a simulation study, in which the Fourier series and half-normal 
models were compared with the shape restriction estimator. H the 
procedures recommended in earlier chapters were implemented, more 
severe data truncation would have been carried out for some of their 
simulations, and the Fourier series and half-normal models would have 
been rejected as inappropriate in some. However, the shape restriction 
method proved to be robust to choice of truncation point and to the 
true underlying detection function, and therefore merits further invest
igation and development. 

6.2.4 Kernel estimators 

(a) Line transect sampling There are several methods for fitting prob
ability densities using kernels. They are based on the concept of replac
ing a point (a detection distance here) by a distribution, centred on that 
point. This is done for all observations, and the distributions are 
summed, to provide the estimated density function. Buckland (1992a) 
compared the kernel estimator of Silverman (1982) with the Hermite 
polynomial model for fittmg the deer data from survey 11 of Robinette 
el al. (1974). To force the algorithm to fit a symmetric density, differen
tiable at zero (and hence possessing a shoulder), each distance x was 
replaced by two, x and - x. The optimum window width for a normal 
distribution with standard deviation <J, i.e. h = 1.06<:Jn- 0

•
2
, yielded a 

comparable but less smooth fit to the data than the Hermite polynomial 
model. The kernel method is far less computer~intensive than the meth
ods recommended here, but the kernel estimate off(O) is highly sensitive 
to the choice of window width (Buckland 1992a). Further, the kernel 
method does not readily yield a variance for i(O), although the bootstrap 
may be used, either as described in Section 3.7.4 or using the more 
sophisticated approach of Garthwaite and Buckland (1992). noted in 
Section 6.2.3. A final disadvantage of the kernel method is that covari
ates cannot be incorporated, thus ruling out the methods of Section 
3.8.2. One advantage of the kernel method is that observations have 
only a local effect on the fitted density. For parametric or semi
parametric methods, if the model fails to fit the tail of the distribution 
welL its fit at zero distance may be adversely affected. 

Brunk ( 1978) developed a kernel method based on orthogonal series, an 
approach which is a close parallel to the key + adjustment formulation, 
especially if the adjustment terms are orthogonal to the key, as for the 
Hermite polynomial model. Buckland (1992a) found that Brunk's method 

182 



OTHER MODELS 

gave unstable estimation relative to the Hermite polynomial model when 
the data were simulated from a markedly non-normal distribution. 

(b) Point transect sampling Quang (1990b) proposed a method based 
on kernel techniques. As in his line transect developments, he assumed 
that perfect detectability occurs somewhere, but not necessarily at zero 
distance; that is, that g(r) = 1 for some value of r ,,e 0. Given g(O) = I. 
ii was noted in Chapter 3 that density estimation could be reduced to 
estimation of h(O) = limr-;0 /(r)/r. Under Quang's formulation, this gener
alizes, so that the maximum value of the ratio h(r) = f(r)lr over all r 
must be estimated. He used the kernel method with a normal kernel 
(Silverman 1986) to estimate /(r) and hence h(r). 

The concept of maximizing h(r) is also applicable to series-type 
models. Suppose a model is selected whose plotted detection function 
increases with r over a part of its range, thus indicating that objects 
close to the point are evading detection, either by fleeing or by remaining 
silent. Then h(O), which is the estimated slope of the density at zero, 
j'(O). may be replaced by the maximum value of h(r) = J'(r) in the point 
transect equation for estimated density (Section 3.7.1). 

6.1.5 Discrete hazard-rate models 

The hazard-rate development of Chapter 3 assumed that either the 
sighting cue or the probability density of flushing time is continuous. 
Often this is not the case. For example whales that travel singly or in 
small groups may surface at regular intervals, with periods varying from 
a few seconds to over an hour, depending on species and behaviour, 
when the animals cannot be detected. 

(a) Line transect sampling Schweder (1977) formulated both continu
ous and discrete sighting models for line transect sampling, although he 
did not use these to develop specific forms for the de1ection function. 

Let q(z, x) = pr{seeing the object for the first time I sighting cue at(:, x)} 

where: and x are defined in Fig. 1.5. Then if the ith detection is recorded 
as(!,,:,, x,), where I; is the time of the ith detection, the set of detections 
comprises a stochastic point process on time and space. The first-time 
sighting probability depends on the speed s of the observer so that 

q(,,x1,) ~ Q(,,x). Ef IT[l -Q(c;,x;)]l 
1<>1 
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where Q(z, x) is the conditional probability of sighting a cue at (z, x) 
given that the object is not previously seen; Q(z. x) is thus the discrete 
hazard. Assuming that detections behind the observer cannot occur, then 

g(xls) = So"" u(z, x)q(z, xls)dz 

where u(z, x) is the probability that a sighting cue occurs at (z, x), 
unconditional on whether it is detected; u(z, x) is a function of both 
object density and cue rate. 

More details were given by Schweder (1977, 1990), who used the 
approach to build understanding of the detection process in line transect 
sampling surveys. In a subsequent paper (Schweder et al. 1991), three 
specific models for the discrete hazard were proposed, and the corres
ponding detection function for the hazard they found to be most 
appropriate for North Atlantic minke whale data is: 

g(x) = I - exp[- exp{a' + b' • x + c' • log.,(x)}] (6.1) 

If wc impose the constraints b' ,,,; 0 and c' < 0, this may be considered 
a more general form of the hazard-rate model of Equation 3.7, derived 
assuming a continuous sighting hazard: 

g(x) = 1 - exp[- (x/crr bl 

When b' = 0, Equation 6.1 reduces to Equation 3.7 with a'= b · loge(<l) 
and c' = - b. Thus a possible strategy for analysis is to use Equation 3. 7 
(the standard hazard-rate model) unless a likelihood ratio test indicates 
that the lit of Equation 6.1 is superior. Both models are examples of a 
complementary log-log model (Schweder 1990). 

(b) Point transect sampling Point transects are commonly used to estim
ate songbird densities. In many studies, most cues are aural, and 
therefore occur at discrete points in time. Ramsey et al. (1979) defined 
both an 'audio-detectability function' g,f(r) and a 'visual-detectability 
function' gv(r). (Both are also functions of T, time spent at the point 
seeking detections.) 

Let p (r, t) = pr { object at distance r is not detected within time t} 

Then 
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g.(r) = 1 - p(r, T) = I - I (I - y(r)]ipr(j) 
j~l 

where j is the number of aural cues the object makes in time T, pr()) 
is the probability distribution of j, and y(r) is the probability that a 
single aural cue at distance r is detected. This assumes that the prob• 
ability of detection of an aural cue is independent of time, the number 
of cues is independent of distance from the observer and the chance of 
detecting the jth cue, having missed the first} - 1, is equal to the chance 
of detecting the first cue. Hence the audio.detectability function is of 
the form 

where 

w(s) = I s 1pr(j) 
j~O 

is the probability generating function of j. 
The visual detectability function, gv(r), is modelled in a continuous 

framework, and yields Equation 3.8: g(r) = I - exp(- k(r)T]. Ramsey et 
al. (1979) then combined these results to give 

g(r) = I - 'tf{l -y(r)) • exp[- k(r)T] 

A detectability function may be derived by specifying (I) a distribution 
for the number of calls, (2) a function describing the observer's ability 
to detect a single call, and (3) the function k(r) of visual detection 
intensities. Ramsey et al. considered possibilities for these, and plotted 
resulting composite detection functions. One of their plots shows an 
audio detection function in which detection at the point is close to 0.6 
but falls off slowly with distance and a visual function where detection is 
perfect at the point, but falls off sharply. The composite detection 
function is markedly 'spiked' and would be difficult to model satis• 
factorily. This circumstance could arise for songbird species in which 
females are generally silent and retiring, and can be avoided by estimat• 
ing the male population alone, or singing birds alone, if adults cannot 
easily be sexed. If data are adequate, the female population could be 
estimated in a separate analysis. 
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6.3 Modelling variation in encounter rate and cluster size 

6.3.1 On the meaning o/var(n) 

We have concentrated our modelling and data analysis considerations 
on the detection function g(y) and. where applicable, the mean duster 
size E(s). For both of these data components, we emphasize estimation 
of parameters as a way to extract and represent the structural (i.e. 
predictable) information in the data and thus make inferences about 
population abundance. However. it is also necessary to estimate the 
sampling variance of .iJ, var(.iJ), which involves at least one additional 
set of parameters, namely var(n), which may vary over strata and time. 
The variance of the counts, var(n), is intended to summarize the non
structural or residual component in the counts. By definition, var(n) = 
E[n - E(n)J2, thus we must consider whether the expected encounter rate 
is constant for each line or point. Expected encounter rate could vary 
over a sampled area, in which case there is structural information in 
the counts. We can go further with this idea by considering the infor
mation in the actual spatial positions (x-y coordinates) of detections in 
the sampled area, given the known distribution of effort (i.e. the 
locations of lines or points). This entails fitting a relative density 
distribution model to the large-scale spatial structure of object density 
as revealed through the spatial variation of encounter rate. 

This added level of analysis would require fitting E[n(x, y)], the 
expected encounter rate as a function of spatial position. Then var(n) 
is estimated from the residuals about this fitted model for encounter 
rate, denoted by i(n;/11) in the case of line transect sampling. (To obtain 
results for point transects, replace l; by 1 and L by k throughout this 
section.) If we have k replicate lines in a stratum, then var(n) should be 
estimated as 

~ i1, [9:-"(9:]J 
var(n) = L----~~ (6.2) 

k-1 

If we assume there is no variation in encounter rate among complete 
lines within a stratum or time period, then we ha"e 
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which is constant for all lines. Proper design can ensure that this 
assumption is reasonable. Relevant design features are stratification. 
orientation of lines parallel to density gradients (i.e. perpendicular to 
density contours) and equal. or appropriate. line lengths. When Equa
tion 6.3 is true, the appropriate estimator ofµ isµ.= nil, and Equation 
6.2 gives, within a stratum, 

I I; ['" - "-]' 
.,,-...__ i~I l; L 

var(n) = L k _ 
1 

(6.4) 

which we have already recommended. 
The critical point is that if Equation 6.3 fails to the extent that there 

is substantial variation in per line encounter rate, with 

then vai"(n) from Equation 6.4 is not appropriate as it includes both 
stochastic (residual) variation and the structural variation among 
µ1, ... , µk. This latter variation does not belong in var(n), as it repre
sents large-scale variation in the true object density over the study area. 
This variation is of interest in its own right, but it is difficult to model 
and estimate. We will return to this point in Section 6.3.3. 

A final comment on the meaning of var(n) is in order; as stated above, 
var(n) is meant to measure the residual (stochastic) variation in detection 
counts, n. There are two components to this stochastic variation. First, 
there is always the small-scale, hence virtually unexplainable, spatial 
variation in locations of objects. Thus even if detection probability was 
one over the strips or plots in which counts are made, there would be 
a substantial component to var(n) due to the small-scale sampling 
variation in the number of objects in the sampled area, a. Second, when 
detection probability is not one, then there is the further stochastic 
variation in the counts due to the particular detections made given the 
number of objects in area a. Although possible. it is neither necessary 
nor useful to partition var(n) into these two components. 

6.3.2 Pooled estimation of a common dispersion parameter b 

Often we can assume that the expected encounter rate µ; is constant for 
each replicate line or point within a stratum and time of sampling; thus 
we assume Equation 6.3. As noted above, this equation will hold under 
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proper design of the study. The subject of this section is efficient estimation 
of var(n); this is a concern when sample sizes per stratum are low. 

The basic idea of efficient estimation of var(n). once the µ1 are 
appropriately modelled, is that we can model the structure of var(n) 
over strata and/or time. The idea of modelling variances is not new to 
statistics (e.g. Carroll and Ruppert 1988) and the practice is becoming 
increasingly common. As a starting point to any such modelling, we 
recommend the representation 

var(n) = b • E(n) (6.5) 

and then modelling the dispersion parameter b. However. the only case 
we consider here is for when h may be constant over strata and/or time. 
This is a common situation in our opinion. 

Assume the data are stratified spatially and/or temporally into V 
distinct data sets. indexed by v = I •... , V. Within each data set, assume 
some replication exists, with line lengths 

luj,j= I, .. . ,kv, v ==I •...• V 

and corresponding counts nvJ• Nominally, we must now estimate V 
separate count variances var(n11), v = I, ... , V. The problem is there may 
be sparse data for each estimate, due to little replication within data 
sets (small ku) or few detections (small nv, perhaps under ten). Experi
ence. and some theory, suggests that the dispersion parameter b in 
Equation 6.5 will be quite stable and can be modelled, thereby reducing 
the number of dispersion parameters that must be estimated. If objects 
have a homogeneous Poisson spatial distribution by data set, then 
b = I. This is not a reasonable assumption: we should expect b > I, but 
still probably in the range I to say 4. 

An accepted principle in data analysis is that we should fit the data 
by a plausible but parsimonious model. i.e. a model that fits the data 
well with few parameters (e.g. McCullagh and Nelder 1989). This 
principle applies to dispersion parameters as well as to structural para
meters such as /(0), h(O}, E(s) and E(n). Below we provide formulae for 
estimating a common dispersion parameter across all V data sets. 

Separate estimates for each data set are found by applying Equations 
6.4 and 6.5: 
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where 
and 

with kv - I degrees of freedom. If bv = b for all V data sets, then under 
a quasi-likelihood approach (McCullagh and Nelder 1989). the estimator 
of b is 

' 

' L (k, - l)b, 
b = c'_"c' ___ _ 

' ICk,-1) 
'.' 

which has L<kv - I) degrees of freedom. 
'.' 

(6.6) 

The estimator b should have good properties because it is based on 
a general theory. There is, however, an obvious alternative moment 
estimator: 

(6.7) 

We performed a limited simulation comparison of these two methods 
(i.e. Equations 6.6 and 6. 7), and failed to distinguish one as inferior, in 
terms of bias or precision. 

The case of a common dispersion parameter and a pooled estimator 
is analogous to the analysis of variance assumption of homogeneity of 
error variance and use of the corresponding pooled estimator of error 
mean square. When bis so estimated, the squared coefficient of variation 
of n = n1 + ... + n,, is estimated by 

and for any one stratum. 

, b 
(cv(n)J- = n 
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' 6 [cv(rit,)] = -n, 

These squared coefficients of variation are then used in formulae for 
sampling variances of b and b0 ; in particular, we can get the best 
possible variance estimator of an individual stratum density estimate 
based on 

Assuming constant /(0) and E(s) over the V strata, which the above 
formula implicity does, the limiting factor on the precision of bv is just 
the sample size nu. 

Further comparative investigations of the two estimators of b would 
be useful. Use of such a pooled estimator is most compelling when 
sample sizes, nv, arc small, in which case weighting by sample size seems, 
intuitively, to be important. Yet in Equation 6.6, the weights ignore 
actual sample sizes. Perhaps when per survey sample sizes, nu, are smaller 
than the number of replicate lines or points, ku, Equation 6.7 would be 
better. 

Further thoughts on this matter arise by considering an average 
density estimate over temporally repeated surveys on the same area. 
Then an average density over the repeated surveys is estimated as 

where 

fj = " • 1,0) t,,) 
2L 

The sampling variance on D is provided by the usual formula but with 
[cv(n)]2 computed as 

,. 
L v'ar(nu) 

[cv(n)f = u_•_•~~- = b 
n' n 

where bis estimated from Equation 6. 7, thus supporting use of Equation 
6.7 for temporal stratification. However, this argument does not apply 
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to spatial stratification. (In computing this D, one shoul4 consider 
whether true density varies by time; if it does, then either D may not 
be relevant, or its variance should include the among Dv variation. which 
the above cv(n) does not do.) 

(a) An example In 1989 and 1990, Ebasco Environmental, under con• 
tract to the US Minerals Management Service, conducted 13 consecutive 
aerial line transect surveys for marine mammals offshore of the states 
of Oregon and Washington, USA (Green et al. 1992). The same set of 
32 parallel transects (i.e. k,- = 32 for all v) was flown each survey during 
an l8•month period. A given survey took about a week; surveys were 
a month or more apart in time. Two species of dolphin were of 
particular interest and generated enough detections to a!low density 
estimation: Risso's dolphin (Grampus griseus) and Pacific white-sided 
dolphin (Lagenorhynchus obliquedens). Most of the detections occurred 
during the eight spring and summer surveys (two in each season in both 

~ ' 
1988 and 1989). Table 6.1 presents summary results for var(n) and b 
from these eight surveys. 

Table 6.1 Encounter data and dispersion parameter estimates from the 
stu<ly reported on in Green et al. (1992) for Pacific white-sided and 
Risso's dolphins for the spring and summer surveys (indexed by v) in 
1988 and 1989 (surveys 5, 6, 7 and 13 were in autumn and winter, and 
spring survey 9 targeted grey whales). k" = 32 for each survey 

Pacific white-sided dolphin Risso's dolphin 

' "" 
~ 

var(nv) b, " "" 
~ 

var(nv) h, 

I 2 3.28 1.64 I 6 10.31 1.72 
2 14 58.46 4.18 2 11 37.33 3.39 
3 6 21.29 3.55 3 7 IO.SI I.SO 
4 5 3.81 0.76 4 10 25.30 2.53 
8 3 5.49 1.83 8 6 7.05 1.18 

10 5 33.47 6.69 10 20 66.71 3.34 
11 2 0.93 0.47 11 5 21.46 4.29 
12 3 2.23 0.74 12 0.72 0.72 

Totals 40 128.96 19.86 66 179.39 18.67 

Table 6.1 shows that individual survey estimates of the dispersion 
parameter are quite variable, ranging from 0.47 to 6.69 for Pacific 
white-sided dolphin and from 0.72 to 4.29 for Risso's dolphin. However, 
the corresponding sample sizes of total per survey counts are small, 
ranging from 1 to 20, and averaging, per survey, 5 and 8.25 for Pacific 
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white-sided and Risso's dolphin, respectively. Because of the small 
sample sizes for these data, most of the variation in the eight estimates 
of b for each species is surely sampling variation and not variation 
in true dispersion over time. We believe it is appropriate and desir
able to compute and use a single b for each species in this case. 
Equation 6.7 yields i, = 128.96/40 = 3.22 and 179.39/66 = 2.72 for Pacific 
white-sided and Risso's dolphins, respectively. Both estimates are close 
to the 'default' value b = 3 suggested by Burnham et al. (1980: 35--6) 
for when no estimates are available (such as in the initial planning of 
a study). 

(b) Basis for the theory The derivation of flv, bv and h (from Equation 
6.6) can be carried out in a quasi-likelihood framework (McCullagh and 
Nelder 1989: 323-8). The starting point is the model n01 = µ,i, • J,..; + £ 0 ; with 
£(£,,,) = 0 and var(£";)= bv • E(nu;) = b,, • µ0 • Iv; for i =I, ... , kv and 
v =I, ... , V. A special case of the model is to use bv = b for all v. Given 
independence over all i and v, then the optimal estimator of µv is 
obtained as the solution to the equation 

The solution is 

and this is true regardless of whether or not the dispersion parameter 
b varies by stratum. Direct application of quasi-likelihood theory gives 
the estimate of separate dispersion parameters as 

Applying the same theory to 
parameter produces the result 

the special case of a constant dispersion 
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b 

This is equivalent to 

= ---~,-----

In principle there are ways to test Ho: bu= b for all u. However, the 
motivation for getting a pooled estimate of an assumed constant disper• 
sion parameter is strongest with sparse data, in which case the tests we 
are aware or are not reliable. Testing H0 : b0, =bin this distance sampling 
context with sparse data is an area in need of research. 

6.3.3 Modelling spatial variation in encounter rate 

Total numbers. or density, in an area can be reliably estimated even if 
there are predictable trends in density over the area (though care must 
then be taken with the spatial allocation of lines or points). An example 
of predictable trends would be a consistent year-to-year density gradient 
with distance from coastline in some marine mammals, or a biologically 
significant association of, for example, some dolphin species with 
measurable oceanographic features such as surface temperature. The 
distance sampling methods presented in this book can be embedded in 
point process sampling theory to allow density surfaces to be fitted to 
the spatial coordinates of detection locations and even to relate such 
surfaces to measurable covariates. The information for this modelling 
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is contained in the spatial locations or detections as represented in an 
x-y coordinate system and in any covariates measured at those locations 
and elsewhere over the study area. 

When important trends in density exist within strata, the main effect 
on theory presented here is with respect to estimation or var(n) using 
Equation 6.4. Improved estimation or var(n) requires modelling en
counter rate to give reliable estimation or 

and then use or Equation 6.2 by stratum. With carefully designed studies. 
Equation 6.4 will be reliable. However, we think there is substantial 
benefit to be gained by the addition of biological information and 
understanding, made possible by modelling the density or the population 
over the study area. Thus, while the estimation ofvar(n) is our motivation 
for mentioning point process modelling of encounter rate, the benefits 
to be gained go beyond improved sampling variance estimators. 

Some basic theory for embedding distance sampling in a point process 
model or the population over the study area has been developed by 
Schweder (1974, 1977) and Burdick (1979). We give here our own view 
or how one can conceptualize this modelling or encounter rate; some 
simplifications are made below compared to a completely general theory. 
Again. we consider line transect sampling; theory simplifies for point 
transect sampling because points may be treated as dimensionless. 

Let D(x. r) represent the intensity function for a point process model 
or objects over area A. (One can think or D(x, )') • dx • dy as the expected 
local density about point x, y.) The density parameter D that we have 
focused on in this book can be defined by 

1 f { D(x,y)dxdy= D 

Note that D is really an average density over the study area; also, 
technically the above double integral gives E(NIA), whereas D = NIA. 
The symbol A is given a dual role here, both as the scalar size of the area 
and as a symbol for the set of points defining the study area. In a point 
process model, the expected number of points in any area a c A is 

E(Nla) = J la D(x, y)dx dy 
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For one realization of the process, the probability of finding one or 
more points in the area a is I - exp[- E(Nla)]. 

The relevant surveyed areas for line transects are the sample strips of 
length l; and width 2w, thus changing our symbolism some, we can write 

E(n;l/;)=ff D(x,y)p(x,y)dxdy 
lwl, 

The above still denotes an integral over an area. Now we have added 
p(x, y), which is the conditional probability of actually detecting an 
object at coordinates (x, y), given an object is there. To simplify the 
formulation of the problem, we translate the local coordinate system 
for the above double integral so that the x-coordinate is the transect 
centreline, and the y-coordinate is perpendicular to that line. (Given a 
straight line, this is a linear translocation-rotation coordinate transfor
mation.) Thus 

f 
''f w E(n;ll;)= 

0 
_.,.,D(x,y)p(x,y)dydx 

The next step is critical. In the above coordinate representation, for 
a given y, variations of p(x, y) in x (i.e. along the line of travel) either 
do not exist or are irrelevant (in the absence of covariates to explain 
such spatial variations). Therefore, we can now replace p(x, y) by the 
detection function g(y). In practice, the scale will always be such that 
!1 is at least an order of magnitude larger than w. Hence we can safely 
model the local intensity at any point x in this strip over which 
integration occurs as the intensity which applies on the transect centre
line; hence intensity is assumed to be independent of y. That is, in the 
strip of area 2w/;, we assume the model D(x) = D(x,y). Under these 
simplifying assumptions, the above double integral becomes 
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: 2wl, · Pa - D, 

where D, is the average density along the ith transect. Summing over 
transects, we get 

where 

E(nlL)=iJ-2wL-Pu 

D = _;_-~' ~~-
2wL 

is the average density along the sample of lines used. 
It is the above b that line transect methods actually estimate (Bu_!dick 

1979). Either the design of the line placement must PJOduce D:: D 
(random line placement has the purpose of achieving E(D) = D; expect
ation is with respect to randomization of line placement), or we must 
model D(x, y), fit the model from the sample data of spatial coordinates 
of detected objects, and compute the overall b(= f.tJA) from 

I J f - -A AD(x.y)dxdy=D (6.8) 

Also, from i>(x, y) and ft,, we can then get 

= 2wl; ·Pa· jj, 

If D; = i> for all i = I, ... , k, then per line encounter rates are constant 
and we have 
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and Equation 6.4 is valid. 
The additional information from distance sampling, which is relevant 

to D(x, y), is in the set of coordinates of detection locations, (xi1, y,1), 
j =I, ... , n1, i =I, ... , k, and any covariates taken at these locations. 
To extract this spatial information, these points are treated, concep
tually. as a sample of size n from the probability density function defined 
by 

D(x,y) d(x, y) = - ---~ 
2wL · D 

over the disjoint areas represented by the k lines traversed. Using some 
form of parametric model for d(x, y), one fits the mod~! to these 
(x, y) data by standard statistical methods, thereby getting d(x, y). This 
is not a trivial undertaking, but it is possible. The normalization of 
d(x, y) to integrate to one over the sample area of transects is necessary 
for identifiability reasons in the fitting of d(x, y). Using b( = b) obtained 
from standard line transect analyses, one obtains the desired rescaling: 

f>(x, y) = 2wL • D • d(x, y) 

If D(x, y), hence d(x, y), is taken as constant over the entire study area, 
then d(x, y) integrates over the study area to Al(2wL), and from Equa
tion 6.8, we get b = b. However, if D(x, y) varies substantially over 
the study area and lines are poorly placed. this approach used in 
conjunction with Equation 6.8 could give a much less biased estimate 
of D=NiA. 

We suggest simplifying the process of relating the (x, y) detection 
location data to D(x. y) by projecting each location perpendicularly onto 
the line and using that point as the recorded detection location. At the 
scale (much larger than w) over which important variations occur in 
density, this redefined detection location is acceptable. Detection loca
tions now become distances along the lines, and lhe problem is effect• 
ively reduced to one dimension and numerical scaling-integrations 
become one-dimensional line integrals. Now all the locational data 
(xij, y,j), j = l, ... , n,, i = I, ... , k, fall on a (disjoint) 'line' in the study 
area. Thus the pdf t(x, y), which is really one•dimensional, of a detection 
location is 

t(x, y) = D(x, y) 
y 
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where the normalizing y is the line integral 

r=±f D(x,y)dxdy 
'~ I /, 

Note that y is not identifiable from the (x, y) location data alone. Any 
parametric model for D(x. y I!!) now generates the parametric likelihood 

k "• 
~(!!l = n n r(xu,.v,11!!) 

I~ I j ~ I 

Standard numerical MLE and model selection methods can be applied; 
at each iteration, y must be recomputed by numerical line integra
tion. Once the MLE ~ is found, then y is estimated as L • fj from the 
usual line transect estimation of D and we can get 

f>(x, y) = l(x,yl~) • L · f> 

(A similar, but by no means identical, development of basic theory is 
possible for point transects.) More sophistication can be added if the 
parameters ~ affecting density are modelled as functions of covariates 
recorded at the locations of detections (and available for a grid of points 
over A). 

In many data sets, even when E(s) is also estimated. we see that the 
contribution of vai"(n) to va'r(b) is large, often greater than 50%, and 
sometimes in excess of 70%. We suspect that Equation 6.l often fails 
and a more detailed analysis of the data to estimate varying encounter 
rates would be useful. The scientifically critical part of this procedure 
is what to use as a model for D(x, y), or equivalently, t(x, y). The 
technically difficult part is computing the integrals that are needed, and 
fitting t(x, y) (or d(x,y), but that is unnecessarily harder). These integrals 
and the fitting will generally be done by numerical methods. Additional 
sampling variance is introduced by f>(x, v), so there must be a worthwhile 
reduction in the bias of va'r(n) and/or ·bias of D, and the detection of 
important spatial trends in density, to justify this additional analysis. 
General software and methods for these analyses need to be developed. 
We expect to see this subject area implemented for practical use in the 
next five to ten years. This spatial modelling in terms of x-y coordinates 
is a necessary first step to the incorporation of spatially varying covari
ates that affect object density. 
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63.4 Modelling variation in cluster size 

The modelling strategies for encounter rate outlined above may also be 
applied to cluster size. Spatial and temporal variation in mean cluster 
size is common. and as with encounter rate, this structural variation 
should if possible be modelled. A simple method of achieving this is to 
stratify in space and time before estimating mean cluster size. When 
sample sizes within strata are small, a common dispersion parameter 
c = var(s)/E(s) might be assumed. Suppose the stratification yields V 
data sets. If E(sv) = Sv, v = 1 .... , V, then the variance of E(sv) is esti
mated by the sample variance of observed group sizes, vai'(st,), divided 
by nv, The dispersion parameter is estimated by 

Then 

If size bias in the sample of detected clusters is suspected, then E(sv) 
and var(sv) should be estimated by one of the methods outlined in 
Section 3.6 before application of the above equation for C. That method 
yields estimators E(sv) and @[E'(sv)] = dv • va'r(sv) for some value dv, 
from which the variance of E(sv) is estimated by 

Modelling the spatial variation in cluster size may be seen a~ an 
alternative to dividing an area into geographic strata. The latter is an 
attempt to create sub-areas in which spatial variation in cluster size is 
small, whereas the former allows mean cluster size to vary as a continu
ous function through the area. Similarly, temporal variation in cluster 
size may be modelled. Having fitted a surface for mean cluster size, 
using perhaps generalized linear or generalized additive modelling tech
niques, mean cluster size can be estimated for the study area as a whole, 
or for any part of it, and if temporal variation is also modelled, mean 
cluster size can also be estimated at different points in time. 
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6.3.5 Discussion 

The spatial models described in general tenns in Section 6.3.3 and 
alluded to above are also applicable to the parameters f(O) (line tran
sects), h(O) (point transects) and g0 . Similarly, estimation of these par
ameters by individual strata, combined with the assumption of a 
common dispersion parameter, are options available to the analyst. 
However, these parameters are unlikely to vary spatially to the same 
degree that encounter rate and mean cluster size do. Additionally, 
estimation of j(O), h(O) or go is bias-prone when samples are small. 
whereas estimation of encounter rate and mean cluster size are less 
problematic. For these two reasons. the case for spatial modelling of 
the detection process, or for estimating f(O), h(O) or g0 separately within 
strata. is less compelling than for encounter rate and mean cluster size. 

In principle, it is possible to model the density surface. allowing for 
spatial and temporal variation in individual parameters, together with the 
effects of environmental conditions on parameters, effects of cluster size 
or observer on probability of detection, and so on. In practice, considerable 
software development would be necessary, and if the principle of parsimony 
was ignored, implementation of such general models would be prevented 
by numerical difficulties. Section 6.8 on a full likelihood approach lays out 
the philosophy and structure around which more general modelling could 
be developed. A simpler, if less comprehensive, strategy is to fit a spatial 
and, where relevant, temporal model for each parameter in turn. By fitting 
these models independently, with inclusion of covariates such as environ
mental factors where required, a spatial surface can be estimated for each 
of the parameters encounter rate, mean cluster size,f(O) or h(O), and. where 
relevant, g0• Density can then be estimated at any point in the study area 
(and at any time in the study period, if temporal variation is modelled) by 
combining the estimates from each surface at that point. Abundance can 
then be estimated for any selected part or the whole of the study area by 
evaluating the density estimate at a grid of points, and implementing 
numerical integration. Variances may be estimated using resampling 
methods, to avoid the assumption that the surfaces for the different 
parameters are independently estimated. 

6.4 Estimation of the probability of detection on the line 
or point 

For both line and point transects it is usual to assume that the prob
ability of detection on the centreline or at the point is unity; that is, 
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xo = I. In practice the assumption is often violated. For example, whales 
that travel in small groups or that dive synchronously may pass directly 
under a survey vessel without being detected, or birds in the canopy of 
high forest directly above an observer may be unrecorded unless they 
call or sing. As shown in Section 3.1, it is easy to include the component 
g0 in the general formula for line and point transects; far more dirricult 
is to obtain a valid estimate of go. Most of the methodological devel
opment for estimating g0 has arisen out of the need to estimate the 
size of cetacean stocks from line transect surveys, so that the effects of 
commercial or aboriginal takes on the stocks may be assessed. A 
summary of the evolution of ideas, mostly within the Scientific Com
mittee of the International Whaling Commission, follows. 

(a) Line transect sampling Early attempts to estimate g0 were based on 
the models of Doi (1971, 1974). These were exceptionally detailed 
models, incorporating the effects of whale dive times and blow times, 
whale aggregation, response to the vessel, vessel speed, observer height 
above sea-level. physiological discrimination of the observers, number 
of observers on duty, binocular specification and angular velocity of eye 
scanning. The models gave rise to estimates of g0 with very high 
estimated precision, but different model assumptions led to estimates 
that differed appreciably from each 01her (Best and Butterworth l 980: 
Doi et al. 1982, !983). In other words, by making many detailed 
assumptions, the estimator has high precision but at the expense of high 
bias, and the validity of the approach is questionable. 

Butterworth (1982a), using the approach of Koopman (1956), de
veloped a continuous hazard-rate model very similar to that described 
in Section 3.2, and used it to examine mathematical conditions under 
which gu < I. Butterworth et al. (1982) used this formulation to derive 
a formula for g0 that was a function of vessel speed: 

go(v) = I - exp(- alv) 

where v is vessel speed and a depends on the form of the hazard 
function. They argued that, if the whales were stationary and vessel 
speed zero, there would be infinitely many chances to detect whales on 
the centreline, so that g0(0) = I. If the true hazard is such that g0 (v) < I 
for v > 0, and if the specific hazard is independent of vessel speed, then 
the ratio of estimated whale density assuming gu = 1 at two different 
speeds will estimate the ratio of g-0 values at those speeds: 

bu, = io(V1) 

bu, io(V2) 
= 

I - exp(- alu1) 
I - exp(- a/v2) 
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Solving this equation for a and substituting in the above equation for 
g0(v) with v = V2 say yields an estimate of g0(v2). Surveys of minke whales 
in the Antarctic are generally carried out on board vessels travelling at 
12 knots. 

Butterworth et al. (1982) reported on variable speed experiments in 
which v 1 = 6 or 7 knots and v2 == 12 knots. They obtained estimates of 
g0(12) close to 0.7, but precision was poor, and estimates did not differ 
significantly from 1.0. Despite using a hazard-rate formulation, they 
assumed that the detection function was negative exponential, and 
Cooke (1985) criticized this; if the form is negative exponential at one 
speed, then it can be shown mathematically under the above model that 
the form cannot be negative exponential at the other speed. Cooke 
(1985) proposed a method based on the ratio of sightings rate at the 
two speeds. However, he noted that expected precision of estimates from 
this approach is low even when all the assumptions of the method are 
satisfied, and listed other reservations about the approach. Hihy (1986) 
also showed that random whale movement at a speed of 3 knots gener
ated large bias in the sighting rate of a vessel travelling at 6 knots. This 
bias could he corrected for if the true average speed of movement was 
known, but he questioned whether it could be reliably estimated. Butter
worth (1986) applied Cooke's approach, using four different methods 
of confidence interval estimation, to two data sets, both separately and 
combined. He found that most of the 95% intervals for g0(12) spanned 
the entire range [0.1], and in every case, the upper limit exceeded LO. 
[n one case the lower limit also exceeded 1.0. Given the unresolved 
difficulties, the method has not been used again. 

Zahl (1989) continued development of methods to analyse variable 
speed data, and put the use of variable numbers of observers on the 
sighting platform into the same theoretical framework. [n common with 
Schweder (I 990). he argued that discrete hazard-rate models are more 
appropriate than continuous models for whale data. He developed such 
a model in conjunction with a generalization of Cooke's (1985) method. 
While precision was improved (Zahl, unpublished), it remained poor, 
and he did not address the problem of random whale movement. 

Butterworth et al. (1982) also described a parallel ship experiment. 
Although designed for examining whether whale movement was affected 
by the presence of a vessel, they noted that the expected proportion of 
sightings seen from both platforms in such an experiment can be 
estimated from the fitted detection function. Their estimates were incon
sistent with results from the variable speed experiment, which they 
attributed to the use of the negative exponential for modelling perpen
dicular distances. Butterworth et al. (1984) extended the method to 
provide estimates of go. assuming a generali:ted exponential form for the 
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detection Function. Buckland (1987c) generalized their results to provide 
g0 estimates from parallel ship data using any model for the detection 
function, and allowing a different detection function for each vessel. He 
then analysed the data assuming the continuous hazard-rate model of 
Section 3.2. This resolved some of the inconsistencies observed in 
parallel ship data, but the observed duplicate sightings distribution 
departed significantly from the distribution predicted by the method. If 
some whales exhibit behaviour that makes them particularly visible 
relative to other whales, then the duplicate sightings proportion may be 
higher than anticipated at greater distances, and the observed data show 
such an effect. Two additional problems remained unresolved. The first 
is identification of duplicate detections (i.e. whether a sighting made by 
one platform corresponds with one made by the other), especially in 
areas of high whale density; the second is assessment of whether estim
ates of g0 from parallel ship experiments are valid for correction of 
abundance estimates derived from normal survey data. 

Schweder (1990) proposed new parallel ship experiments, in which one 
vessel is not only to one side of but also behind the other. He showed 
using a discrete hazard-rate model (Section 6.2.5) that sightings of cues 
from the two platforms cannot be considered independent. By placing 
one vessel behind the other, whales that are below the surface when the 
first vessel passes may be visible to the second vessel. Results from 
experiments advocated by Schweder, together with further methodologi
cal development, are given in Schweder et al. (1991), who estimated g~ 
for North Atlantic minke whales. They mapped out surfacings as re
corded by one observer in terms of relative position to the other, coding 
duplicate sightings as I and those missed by the reference observer as 
O. The hazard probability of sighting was estimated from these data, 
and integrated multiplicatively, using stochastic simulation. The surfac
ing pattern of minke whales was estimated from monitoring two whales 
to which a VHF transmitter had been attached. This allowed them to 
estimate g0 without the assumption that the observers detect animals 
independently. Instead, the assumption of independence is transferred 
to individual surfacings; conditional on an animal surfacing at a given 
location, the probability of detection of that surfacing is assumed to be 
independent between platforms. They obtained io = 0.43, with 95% con
fidence interval (0.32. 0.54). This interval took account of uncertainty 
in whether detections were duplicates. 

Several authors have noted that, if a negative exponential model is 
assumed for the detection function and a correction factor e is defined 
to allow for deviations of the true detection function from this 
model, then although neither e nor g0 can be estimated robustly or with 
good precision. their ratio, called the 'eh' factor, where h = I/go, can 
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(Butterworth et al. 1984; Cooke 1985; Kishino et al. 1988). However, 
the method is still sensitive to the assumption that sightings from 
the two platforms are independent. Following a comparison of the 
performance of the negative exponential, exponential power series, 
hazard-rate, Fourier series and Hermite polynomial models (Buckland 
1987b), the Scientific Committee of the International Whaling Com
mission adopted the hazard-rate model in preference to the negative 
exponential model. 

The variable speed and parallel ship methods both require special 
experiments. These take the vessels away from survey work, and g0 

during the experiments may not be typical of g0 values during normal 
survey mode; for example experiments are carried out in areas of high 
whale density, so that sample size is adequate. The field procedure most 
widely used currently is the 'independent observer' method; an addi
tional observation platform is used (for example a second crow's nest 
vertically below the main one), and observer(s) search independently of 
the observer(s) on the primary platform. Observers on one platform are 
not advised of sightings made from the other. Few resources beyond 
those needed for normal survey mode are required, and the method is 
therefore often incorporated into normal survey mode, 

The methods and problems of analysis are similar to those for a 
parallel ship experiment with inter-ship distance set to zero, and there 
is again a strong case for using discrete hazard-rate models in any future 
methodological development. Identification of duplicate cues is simpler 
than for two ships, since the bridge can more easily coordinate informa
tion from the two platforms, and matches are more easily made when 
both detections are observed from almost the same position. Exact 
recording of times of cues aids the identification of duplicate sightings, 
especially when the same cue is seen from both platforms; if feasible, a 
whale detected from one platform should be located say from the bridge 
and followed so that if it is later detected from the other platform. it 
may be more easily identified as a duplicate. 

Two further methods of examining independent observer data have 
arisen from the Southern Hemisphere minke whale subcommittee of the 
International Whaling Commission. The first uses one platform to 
confirm the positions of a sample of schools, and then plots the 
proportion of these sightings detected by the other platform by distance 
from the centreline, which should provide an empirical fit to the detec
tion function (with g(O) ,,,;: l) for the second platform. Butterworth and 
Borchers (1988) describe this approach, and apply it assuming a negative 
exponential detection function (their 'ONE' method). The second 
method does not require that duplicate sightings are identified, and is 
discussed in Hiby and Hammond (1989). It uses information on pairs 
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of sightings from between and within platforms that are definitely not 
duplicates to prorate sightings that may be duplicates, without the 
necessity to identify whether any specific pair of sightings is a duplicate. 
D.L. Borchers (personal communication) has noted a theoretical short
coming of this approach. and recommends that it not be used. 

One of the most troublesome aspects of estimating g0 is that different 
sources of heterogeneity can give rise to substantial bias. Bias in io 
might be positive or negative, depending on the type of heterogeneity, 
and how it is modelled. Observer heterogeneity can arise through 
different sighting efficiencies for different observers, and through vari
able sighting efficiency of a single observer through time. Platform 
heterogeneity is similar in nature. The same observer may have different 
sighting efficiencies from different p\atfonns, and the relative efficiency 
of different platforms may vary with environmental or other factors. 
Environmental heterogeneity affects the efficiency of both the observer 
and the platform, and environmental variables such as sea state and 
temperature are likely to affect behaviour of the whales. Individual 
animals will in any case exhibit heterogeneous behaviour, which leads 
to too many duplicate detections from double-counting methods, and 
hence to negatively biased estimates of abundance. Because of the 
confounding between the various sources of heterogeneity, it is usually 
not possible to model heterogeneity adequately even when carefully 
designed experiments are carried out to estimate g0. 

Traditional methods of handling heterogeneity include stratification 
and covariance analysis, and both arc potentially useful for reducing 
the effects of heterogeneity on estimates of g0 . Generalized linear model
ling provides a framework for implementing both approaches. For 
example, stratification by observer can be achieved by introducing one 
parameter per observer. and sea state (Beaufort scale) may be incorpor
ated as a regression variable (covariate). The method can be taken 
further. Suppose parameters are defined for each observer and each 
platfonn. Then interaction terms between observer and platform may 
be introduced. This method is more reliable if each observer is on duty 
for an equal time on each platfonn, according to an appropriate design. 
If observer performance is thought to vary with time, the time that the 
observer has been on duty (or function(s) of that time) may be entered 
as a covariate. However, problems arise in practice because different 
covariates may be highly correlated with each other. and because there 
may be considerable confounding between stratification factors. Further, 
the quality of data from which g0 might be estimated is often poor, so 
that a realistic model may have more parameters than the data can 
support. and unquantifiable bias may arise either through practical 
difficulties in data collection or through inappropriate model specification. 
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The methods developed for handling heterogeneity in closed population 
mark-recapture by Huggins (1989, 1991) and Alho (1990) are relevant 
whenever data from independent platforms are used to estimate g0. 

Indeed, probability of detection as a function of distance, estimated by 
i(x), is itself a covariate in this framework. The method is illustrated 
in a slightly different context in Section 6.12: adding i(x) as a covariate 
allows it to be applied here. 

We consider each source of heterogeneity, and use simple examples 
to illustrate the effects on estimation. For these examples, it is supposed 
that each detection function is flat and equal to g0 out to some distance 
d, and that g0 is estimated by the Petersen (1896) two-sample mark
recapture estimate. Although this approach is simplistic, it serves to 
illustrate concepts. Thus we have 

i1o=n;lil for platform i, i= I, 2 (6.9) 

' fro= l-TT[l-.fo]=fr1o+i20-i1oi20 (6.10) 
i= I 

for both platforms combined where n; = number of detections from 
platform i and 

N = n1n2
, with n12 = number of detections made from both platforms. 

ll12 

Suppose that there is a single observer on each of two platforms, one 
of whom sees all the whales on the centreline (gw = 1.0) while the other 
sees only one half (g20 = 0.5). Suppose further that in the first half of 
the experiment, 50 whales (or whale schools) pass within distanced of 
the vessel, and the observers see 50 and 25 of these whales respectively. 
For the second half of the survey, they switch platforms, and again 50 
whales pass, of which the first observer sees 50 and the second observer 
25. Then if g0 is estimated by platform using Equation 6.9, n1 = n2 = 75 
and n11 = 50, so that i10 = i20 = 2/3, and io = 8/9. In fact, go= 1, so that 
abundance is overestimated by 100 x (9 - 8)/8 = 12.5%. In this case, the 
problem may be solved by applying Equation 6.9 to observers instead 
of platforms, giving n1 = 100 and 111 = n" = 50, so that 8"10 = 1.0, iw = 0.5 
and io = 1.0. However, the above argument may now be reversed; if for 
a given observer go is less for one platform than the other, bias arises 
for exactly the same reason. A solution is to estimate go separately for 
each observer on each platform. This allows for an observer effect, a 
platform effect and an interaction between them. Data may be too sparse 
to support such an approach; Equation 6.9 and generalizations of it are 
unstable for small values of nil. Another solution is to assume th.ere is 
no interaction effect, so that g0 is assumed to be an additive function 
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of an observer and a platform effect. This solution may prove satisfac
tory when the time spent by each observer on each platform is subject 
to a randomized experimental design. However, it assumes that g0 for 
a single observer or platform remains constant throughout the survey. 

Platform heterogeneity arising from heterogeneity in environmental 
conditions would be problematic if for example sighting conditions were 
better from one platform in some conditions and from the other in 
different conditions. Thus renected sunlight may cause one vessel in a 
parallel ships survey to miss many whales that pass between the vessels 
and are detected by the other vessel. This will lead to negatively biased 
estimates or g0 and positively biased estimates of abundance, since each 
ship will be affected in this way during different periods of the survey; 
from a theoretical point of view, it is identical to the problem or the 
above example, for which platform efficiency changes when the ob
servers swap platforms. However, it is more difficult to design a survey 
to achieve balance for environmental effects, and appropriate parame
terization is problematic. 

Observer efficiency may vary over time due to factors such as mood, 
health, comfort, time on duty, etc. Both observer and platform efficiency 
will vary with environmental conditions. Bias from these sources will 
tend to be less; at any given time, implications are similar to the cases 
considered above, but over time, bias changes. If no observer or plat
form is consistently more efficient than another, average bias from this 
source may tend to be small. Additionally, environmental conditions 
might be introduced into the model as covariates. so that g0 is related 
to environmental conditions by a regression model, which might be a 
generalized linear or non-linear model. Again, data inadequacies may 
severely constrain the model options. 

The fourth class of heterogeneity is heterogeneous behaviour of ani
mals. If some whales are more easily detected than others, then double
counting methods suffer the same bias as two-sample mark-recapture 
experiments on populations with heterogeneous trappability. Obvious 
whales are likely to be seen by both observers, whereas unobtrusive 
whales may be missed by both. The number of whales is therefore 
negatively biased and io is positively biased. Suppose that of 160 whales 
passing within distance d of the vessel, 80 are certain to be seen from 
each of two platforms and g0 = 0.25 for both platforms for the remaining 
80 whales. Assuming independence between platforms, the expected 
numbers of whales detected are n1 = n2 = 100, n" = 85. Equations 6.9 and 
6.10 yield g 10 = g20 = 0.85 and g0 = 0.9775. In fact, g10 = g20 = 0.625 and 
g0 = 0.71875, so that abundance is underestimated by 26.5%. This prob
lem might be partially solved by stratifying detections by animal beha
viour, or by type of cue. 
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Both heterogeneity in whale behaviour and cues that occur only at 
discrete points in time generate positive bias in the g0 estimate if the 
effects are not allowed for, whereas heterogeneity in observer ability and 
in ease of detection from the respective platforms may lead to negative 
bias. Schweder's (1990) methods, referenced above, remove the bias that 
arises from heterogeneity in whale behaviour due to differential diving. 
If sufficient data are available, the effects of observer heterogeneity 
might be removed by adding a separate parameter for each observer to 
the model from which g0 is estimated, for example using generalized 
linear models (Gunnlaugsson and Sigurj6nsson 1990), although it must 
still be assumed that a single observer is consistent in ability relative to 
other observers both within and between watch periods. If there is more 
than one observer on each platform, another option is to select teams 
of observers so that each team is of comparable ability. Data analysis 
should then include a test of whether it is reasonable to assume that 
each team was equally efficient at detecting whales. It may also be 
necessary to introduce platform-specific parameters, or at least to test 
whether such parameterization is required. 

Methodological development to solve these difficult problems is con
tinuing, and an innovative paper by Hiby and Lovell (unpublished) 
proposes a sophisticated approach which allows for response by the 
whale to the vessel and does not assume stochastic independence be
tween the platforms. The approach uses data on duplicate cues rather 
than duplicate animals, and can be used in conjunction with either line 
transect sampling or cue counting methodology. However, it does re
quire surfacing rate to be estimated, and whether the effects on the 
sightings data of both g0 < I and response to the vessel are simulta
neously quantifiable has yet to be assessed. 

We provide below theory from Buckland (1987c), which allows esti
mation of g0 given independent detections from two platforms a distance 
d apart; d > 0 corresponds to parallel ship surveys, where the ships are 
separated by a distanced. and d= 0 corresponds to independent observer 
platforms on the same vessel or aircraft. The theory for the latter case is 
also given in Hiby and Hammond (1989). A continuous sighting cue is 
assumed. The method is subject to potentially serious biases, especially if 
time periods between cues are not short (say over five minutes for ship
board surveys). Also given is a method described by Buckland and Turnock 
(1992), which is an extension of ideas utilized by the ONE method 
(Butterworth and Borchers 1988) mentioned above. The latter approach is 
more robust to the effects of animal heterogeneity and of animal movement. 

Suppose the two platforms are labelled A and B. with B a distance d 
to the right of A (Fig. 6.1 ). If both platforms are on the same vessel, 
then d = 0. Suppose a cluster of whales is detected at perpendicular 
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Fig. 6.1. Illustration of parallel platform method. The platforms are a distance 
d apart, so that a detection at distance x from the centreline of platform A is 
a distance d - x from the centreline of platform B. If the detected object ls to 
the left of A's centreline, x is negative. A truncation distance of 1r from the 
centreline of the farther platform is used. 

distance x from A, where x is negative if the detection is to the left of 
A, and positive if it is to the right. Let the probability that A detects 
the cluster be gA(lxl). In terms of notation used elsewhere in this book, 
gA(lxl) corresponds to g(x) · go; thus gA(O) is not assumed to be unity. 
but is the value of g0 for platform A. Further, let the probability that 
B detects the cluster be g,(ld - xi), assumed to be independent of 
gA(lxl). Then the probability that the cluster is detected by both plat
forms is gA(lxl) • go(ld- xi). 

Now suppose that detected clusters within a distance w of each 
platform are analysed, where dl2 < w < oo. Define 

µA= fw g.t(lxl) · dx 
,-w 
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and 

µ,,s = J"' g,,(lxl) • Ks(ld - xi) • dx 
d-• 

Further, let 

v,, = --1!:L Vs=___&_ and v,,s = µ,,s 
g,,(0)' Ks(O) g,,(O) • gs(O) 

Standard line transect analysis of the data from each platform, or of 
the pooled data from both platforms if the detection function can be 
assumed to be the same for both, yields estimates of g(lxl)/g{O) for each 
platform. Hence v ,,, Vs and V,10 are estimated using numerical or analytic 
integration. If n,, clusters are detected within the strip of width 2w - d 
(Fig. 6.1) from platform A, n8 from Band n,,a from both, then n,rnlns 
estimates µ,,alµB. 

Hence 

Similarly. .ia(O) = ~" • n,,a 
V,19' ll,1 

Variances for these estimates may be found for example using the 
bootstrap. 

If w is chosen such that g{lxl) is more or less constant for O ,s; x ,s; w, 
then v"=Va=VAa=lw-d, so that 

g,,(O) = n,,a and 
n, 

which may be obtained directly from the two-sample mark-recapture 
estimate of Petersen (I 896). 

The following method_, due to Buckland and Turnock (1992), is more 
robust. Suppose an observer or team operates normal line transect 
sampling techniques from a primary platform (platform A), and an 
independent observer or team searches a wider area from a secondary 
platform (platform B), ahead of the normal area of detectability for the 
primary platform. making no attempt to detect most animals close to 
the line. The method docs not require the assumption that probability 
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of detection on the centreline is unity. 1f detections from the secondary 
platform are made before animals move in response to the presence of 
the platforms, the method is unbiased when responsive movement occurs 
before detection from the primary platform. Further. if sighting distan
ces and angles of secondary detections are measured without error. 
the method is unbiased when sighting distances or angles recorded by 
the primary platform are subject co bias or error. For example, if the 
primary platform is a ship and the secondary platform is a helicopter 
hovering above a detection, ship's radar may be used. 

Data from the primary platform are used to estimate the encounter 
rate (number of detections per unit distance), while data from the 
secondary platform allow the effective width of search from the primary 
platform to be estimated. The secondary platform may be thought of 
as confirming the position of a sample of animals. and the proportions 
of these detected by the primary platform allow estimation of the 
detection function. without the necessity to assume g0 = 1.0. 

The probability of detection of an animal from one platform should 
be independent of whether the animal is detected by the other. Detec
tions made by observers on the secondary platform should be at least 
as far ahead of the primary platform as the maximum distance at which 
animals are likely to move in response to the presence of the observation 
platforms. Any secondary detections that occur at shorter distances 
should be truncated before analysis. Secondary observers should also 
search out as far as the greatest distance perpendicular to the transect 
line from which animals would be able to move into the normal 
detectable range of the primary platform. For animals that are only 
visible at regular points in time. such as whales with a regular dive cycle, 
the normal detectability range of the secondary observers should exceed 
the distance travelled by the primary observers during the course of a 
single. complete cycle. Conceptually, duplicate detections are expected 
to be sighted from the secondary platform first, but if the above 
conditions are met, the analysis may include duplicates first sighted from 
the primary platform. 

Of those animals that pass within the normal detectability range of 
the secondary observers, the proportion actually detected need not be 
high, although if few duplicate detections occur, precision will be poor. 
If the secondary platform cannot be in operation throughout the survey, 
it should operate during representative, preferably random, subsets of 
the survey effort. 

Secondary observers need not detect all animals on the centreline of 
either platform. However. the perpendicular distance of each secondary 
detection from the centreline of the primary platform must be recorded. 
It is also necessary to determine whether any animal detected by the 
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secondary platform is also detected by the primary platform. Thus, any 
animal detected by one platform should be monitored by that platform, 
or by a third platform, until either the other platform detects the animal 
or it passes beyond the area searched by the other platform. If animals 
occur in groups, group size should be recorded by both platforms. either 
to help identify duplicate detections or, if duplicates are reliably identified 
and animal groups are well-defined, to validate group size estimates. 

Suppose for the moment that both platforms operate throughout the 
survey. The sightings data from the primary platform are analysed 
independently of the data from the secondary platform, to yield a 
conventional line transect density estimate DA, calculated assuming no 
movement and go= I. If animals occur in groups, we define these to be 
group densities (number of animal groups per unit area), rather than 
animal densities. The estimates may be biased either because of move
ment in response to the observation platforms or because probability of 
detection on the centreline is less than unity. However, for the subset 
of duplicate detections, the position of the animals prior to any response 
to the platforms is known. A detection function may therefore be fitted to 
the distances, as recorded by the secondary platform, of duplicate 
detections from the centreline of the primary platform. In addition, a 
detection function, relative to the centreline of the primary platform, is 
fitted to all secondary detections. An asymptotically unbiased density 
estimate, b,,, is calculated as follows. 

Let g,i(x') = probability that an animal detected from the secondary 
platform at perpendicular distance x' from the centreline of 
the primary platform is subsequently detected from the 
primary platform, with g..i(O) :s;;; 1.0 

w = truncation distance for perpendicular distances x' 
f 1(x') = probability density of perpendicular distances, prior to 

responsive movement, of animals subsequently detected by 
the primary platform 

= g,i(x')fµ, with µ = J: g,i(x') dx' 

n8 = number of secondary detections 
n,1 8 = number of detections made from both platforms (duplicate 

detections) 
n,1 = number of primary detections 

f 8 (x') = probability density of perpendicular distances from the 
primary platform centreline for secondary detections 
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fAB(x') = probability density of perpendicular distances from the 
primary platform centreline for duplicate detections, as 
recorded by the secondary platform 

/(x) = probability density of perpendicular distances x recorded 
from the primary platform 

L = length of transect line 

Then the conventional (biased) estimate of density is 

and the asymptotically unbiased estimate is given by 

where 

and 

!A(O) = --•~· ,~<~0)~_ 

J: iA(x') dx' 

iAx') = nAB • JAs(x') 
nB • jB(x') 

The probability densities f.,,_B(x') and / 8(x') are estimated by standard 
line transect methods. The critical assumptions of the method are as 
follows. 

I. No animals beyond the range of detectability of the secondary 
platform are able to move into the range of detectability from the 
primary platform. 

2. It is always possible to determine whether an animal detected by the 
secondary platform is also detected by the primary platform. 

3. Given that an animal passes the secondary platform at perpendicular 
distance x', its probability of detection from the primary platform is 
independent of whether it was detected by the secondary platform. 
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4. Perpendicular distances of animals detected by the secondary plat
form from the centreline of the primary platform are measured 
exactly. or at least without bias. 

If the secondary platfonn is not in continuous operation. the above 
procedure is carried out on data collected while both platfonns were in 
operation and a correction factor is calculated as 

b, 
C = -.-

D, 

Density for the entire survey area is estimated by c • b, where b is 
estimated from the sightings data from the primary platform for the full 
survey, calculated assuming g0 = I. To estimate the variance of b,, or of 
c ani_!.lytically, the correlation between the estimated densities jB(x') 

and f.,lB(x') and between n,fe and both n 8 and nA must he accounted for, 
and a robust method should be used to estimate the variance in sample 
sizes. Variance can be estimated more simply and more robustly by 
applying a resampling method. For example, bootstrap v2riances may 
be obtained by resampling from the sightings and effort data from both 
platforms by day or by search leg (Section 3.7.4). 

In the presence of random or responsive movement, i,t(O) is not a 
valid estimate of go, since animals close to the centreline when detected 
by the secondary platform may have moved away from it before detec
tion by the primary platform. and similarly, some away from the 
centreline may approach it. Thus fr,i(O) is biased low for go (Buckland 
and Turnock, 1992). In this case, the method provides a single correction 
for both sources of bias; stronger assumptions are required to separate 
the two components of the correction. 

The above methods were applied to Dall's porpoise data. The fitted 
densities J0(y) and _lB(y), estimated assuming a hazard-rate model, are 
shown in Fig. 6.2. The estimate of g,i(O) was 0.597, and the multiplicative 
correction factor was 0.130 (fie"" 0.050; 95% percentile confidence interval 
[0.075. 0.2621). Thus the corrected density estimate is less than one 
seventh the uncorrected estimate. For these data, the combination of 
strong attraction of porpoise towards the ship and the close approach 
most porpoise were able to make before detection by the shipboard 
observers led to an estimate of porpoise density that was an order of 
magnitude too high. 

The approach outlined above is relatively insensitive to observer, 
platform and environment heterogeneity, provided the secondary plat
form is in operation continuously. or at least during a representative 
sample of time periods in the survey. Animal heterogeneity is more 
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Fig. 6.2. Fitted densities to all helicopter sightings (upper curve) and to duplicate 
sightings (lower curve), Dall's porpoise, 1984. The hatching indicates the number 
of duplicate detections in each perpendicular distance interval (as recorded by 
the helicopter), and the open bars correspond to detections made by the 
helicopter alone. 

problematic, but if the method of detection from the secondary platform 
is such that the probability of detection from the primary platform is 
independent of, or only weakly dependent on, whether an animal was 
detected by the secondary platform, then estimation should be reliable. 
It may prove necessary to stratify by behaviour of the animal or, if 
animals occur in groups, by group size to satisfy this requirement. 

The field methods of our example, for which a helicopter searches 
ahead of a survey ship, illustrate one application of the method. ff it is 
not practical to use a helicopter, but normal survey mode is to search 
with the naked eye, then a simpler solution might prove effective. 
Suppose an independent observer platform is available on the same 
vessel or vehicle as the primary platform. Instruct the independent 
observer to scan through binoculars, searching at distances beyond those 
typically scanned by the other observers. It does not matter 1hat the 
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restricted field of view may cau~e the observer to miss many animals 
close to the centreline. He or she should follow any detection until either 
the other observers detect it or it has passed abeam. If bis or her average 
detection distance is substantially greater than that of the other ob
servers, the method might prove satisfactory for the case of diving 
species, provided the dive cycle is sufficiently short that each animal 
group surfaces within detectability range at least once. He or she should 
strive to detect animals beyond the maximum distance they are likely 
to respond significantly to the vessel, even at the expense of reducing 
the overall number of detections made. He or she should concentrate 
effort ahead of the vessel, because the above method corrects for 
non-uniform effort, and effort searching abeam is wasted, since the other 
observers are unlikely to detect any animals at large perpendicular 
distances. If normal searching mode is through hand-held binoculars. 
the secondary observer could use powerful, tripod-mounted binoculars. 
By ensuring that the secondary observer searches beyond the normal 
detectability range from the primary platform, bias from heterogeneity 
between animals is reduced, especially if the mode of searching from 
the secondary platform is very different from that from the primary, as 
would be the case if the secondary platform is a helicopter and the 
primary platform is a ship or is ground-based. 

In practice, it may prove difficult to operate a secondary platform. 
especially in poor sighting conditions. Even if sufficient detections can 
be made at distances beyond the range over which animals respond to 
the observer, it may not be possible to track detected animals, to 
determine whether they are also detected by the primary platform. In 
designing line transect surveys. priority should be given to ensuring that 
go is as close to unity as possible and that detections are made prior to 
responsive movement. Only if go might be appreciably less than unity 
or if substantial responsive movement prior to detection is suspected 
should the methods outlined above be considered. 

The methods of Huggins (1989, 1991) and Alho (1990), developed for 
mark-recapture models, provide a flexible framework for estimation of 
g0, which may prove superior to the above methods. As noted earlier, 
their application is illustrated in a similar context in Section 6.12. By 
first fitting a detection function to the pooled perpendicular distance 
data, the estimated probability of detection for an object at distance 
x, i(x), can be included as a covariate. The method used in Section 6.12 
then yields an estimate of the probability of detection unconditional on 
x, and hence of g0• We encourage further development of this approach. 

(b) Poim uansect sampling Estimation of g0 has seldom been con
sidered for point transect sampling. although in their hazard-rate for-
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mulation, Ramsey et al. (1979) note that g0 need not be unity. In 
particular, if only aural cues are recorded, then birds that do not call 
or sing will not be detected, irrespective of their position. The cue 
counting method for estimating whale numbers (described later) is very 
similar theoretically to point transects, and g0 estimation is more im
portant in this context. Problems are similar to the line transect case, 
and are well described by Hiby and Ward (unpublished), who propose 
a model that allows for the discrete nature of cues and yields estimates 
of g0. 

6.5 On the concept of detection search effort 

The detec1ion of objects in distance sampling requires some type of 
active search effort. This will often be visual, so that observers must 
have some visual search pattern. Koopman ( 1980) discusses ideas on the 
search and detection process. We suggest that it is useful to consider 
some concept of search effort, and we pursue this suggestion here for 
line transects. (Detections are often by aural cues in point transects, in 
which case it is not clear to us how to model search effort other than 
as time spent at the point.) 

Conceptually, searching effort has its own distribution about the 
centreline for line transects. Can we separate this concept of search 
effort from some concept of 'innate' detectability? To a limited (but 
useful) extent, we think the answer is 'yes'. Let e(x) be relative searching 
effort at distance x, and let E be total absolute effort over all perpen
dicular distances. Then the perpendicular distance distribution of total 
effort is E(x) = E • e(x). Total absolute effort, E, is conceptual because 
we do not precisely know what constitutes total effort, given that there 
are subjective aspects to the detection process; we do not know how to 
measure Eon a meaningful scale. However, relative effort at distance 
x . dx could be the relative time spent searching at perpendicular dis
tance x • dx. This measure of e(x) is sensible and could be measured, in 
principle. Usually, we require that total effort Eis sufficient to ensure 
g(O) = l. Therefore, we will use the nonn e(O) = I to scale e(x). We 
maintain, and a.ssume, that e(x) should be non-increasing in perpendicu
lar distance x. 

We consider here some useful heuristic thinking, while recognizing 
that this is not the best mathematical approach. Use of a hazard-rate 
approach is coherent, but is not required for the points we wish to 
make. For the detection function, write 

g(x) = d(x) • e(x) (6.11) 
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where d(x) is some innate, or standard, detection function, as for 
example for some optimal effort, e0(x). By assumption, both d(O) and 
e(O) are unity and both functions are non-increasing in x. Based on 
Equation 6.11, g'(x) =d'(x) • e(x) +d(x). e'(x), so that g'(O) =d'(O) 
+ e'(O). It follows that if both effort and innate detectability have a 
shoulder, then so does g(x). However, if effort is poorly allocated 
perpendicular to the line, then we can get g'(O) < 0, i.e. no shoulder in 
the distance data, even when d'(O) = 0, which means that a shoulder is 
innately possible with a proper search effort design. 

For line transect surveys in which there is visual searching for objects, 
especially aerial and ship surveys, histograms of the detection distances 
all too commonly have the shape of Fig. 6.3. It seems unlikely that the 
innate detectability would drop off this sharply; it is more likely that 
the data reflect an inadequate distribution of search effort or another 
field problem, such as heaping at zero distance or attraction of animals 
to the vessel before detection. We focus on effort here. 

In order to pursue this idea mathematically, we need to be able to 
conceptualize innate detectability, d(x). Although we may want to think 
of d(x) as detectability under some optimal searching pattern e0(x), it is 
not possible to define an actual detection function, g(x), free of some 
implicit or explicit underlying detection effort distribution. For x ,,;; w, 

Perpendicular distance x 

Fig. 6.3. Line transect da1a exhibiting a shape that is encountered too often; 
the idealized histogram estimator of the density func1ion /(x) ~uggests a narrow 
shoulder followed by an abrupt drop in detection probability, and a long, 
heavy tail. 
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we mighl allow e(x) to be distributed as uniform (0, w). but this becomes 
unreasonable for large w, and impossible as w ➔ oo. Still, for small to 
moderate w, we could define e0 (x) to be unifonn. Then for a survey 
with this effort function, g(x) would reflect the innate detectability of 
the object at perpendicular distances x ,;-;; w. 

Our intuition that detectability should not fall off sharply with in
creasing distance should be applied to d(x). In most line transect 
sampling with which we have experience, the assumptions that 
d(O) = I and that d(x) has a shoulder, i.e. d'(O) = O, seem reasonable to 
us. (Many marine mammal surveys are exceptions to the first assumption 
(Section 6.4), and potentially to the second.) When the observed data 
appear not to exhibit a shoulder, we should bear in mind that the data 
really came from the detection function 

g(x) = d(x) • e(x) 

and hence the probability density function of the observed perpendicular 
distance data is 

/(x) a 
d(x) · e(x) 

J; d(x) • e(x) dx 

If g(x) is as shown in Fig. 6.4. the data may primarily reflect effort e(x), 
not innate detectability d(x). For any data set, we would like to know 
the general nature of the effort distribution e(x) to assess our faith in 
the assumptions that g(x) has a shoulder and satisfies g(O) = I. 

Desirable patterns for search effort should be addressed at the design 
stage, and observers should be trained to follow them; Fig. 6.4 suggests 
that the search pattern was poor. We suspect that in aerial and ship 
surveys, there are often two distinct search modes occurring simulta
neously: (I) intense scanning of the area near lhe centreline for much 
of the time, and (2) occasional scans at greater distances and over large 
areas, with more lateral effort. This may occur because one observer 
'guards' the centreline, searching with the naked eye, while another scans 
a wider area with binoculars, or a single observer may search mostly 
with the naked eye, with occasional scans using binoculars. Data then 
come from the composite probability density function, as indicated in 
Fig. 6.5. In this case, most choices of histogram inlerval will obscure 
the shoulder. 

For the innate detectability, d(x), a shoulder should exist. Assume that 
an object on the centreline is moved jusl off the line. In an aerial transect 

219 



EXTENSIONS AND RELATED WORK 

1.0 

Perpendicular distance x 

Fig. 6.4. An undesirable relative effort function e(x) can give rise to the detection 
function shown here, and hence to data that exhibit the features of Fig. 6.3. 
Relative effort should be expended to ensure that the detection function has a 
wider shoulder relative to the tail than is shown here. 

survey (Fig. 6.6), the maximum angle of declination to the object would 
change from 90° to perhaps 89° or 88°. Assuming the observer's view 
is not obstructed, the perceived properties of the object and detection 
cues will barely change. There is continuity operating, so that g(x) will 
be almost the same at x = 0 as at a small increment from Lero. Given 
continuity, we maintain that it is not reasonable for d(x) to be spiked 
(i.e. d'(x) < 0), 

We turn our attention now to considering what an optimal e0 (x) might 
be. We consider an aerial survey (Fig. 6.6), although the theoretical 
approach applies more generally. In Fig. 6.6_ the angle of declination 
\jl is also the angle of incidence of vision, with m'2 ;:,,- ljl ;;,: 0. lf objects 
are assumed to be essentially flat and detection probability is propor
tional to the perceived area of an object, then the same object when 
moved further away shows less area and so is less detectable. The best 
you could achieve in this case is an innate detectability d(x) proportional 
to 

cos(0) = cos [tan-'( i] 
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This only allows for the loss in perceived object area due 10 1he oblique 
view of the object as iv decreases. Using heuristic arguments, if we add 
the effect of perpendicular distance off the centreline and generalize the 
result, we get the form 

co,[tan •(~] 
d(x) = [I - e-M] • -~-~~ 0 < x and for some scale factor o, 

I +(~J 
as a plausible innate detection function. Here, 0 is the true area of the 
object. We would want 'A.O such that d(O) = I, in which case the tail 
behaviour of d(x) (i.e. as x gets large) is 

1.0 

I 
d(x) = -

1 
+-( ~-) 

Perpendicular distance x 

Fig. 6.5. The detection function c, which is the same as in Fig. 6.4. can arise 
from a mixture of curves a and b corresp-0nding perhaps to two observers, one 
(a) 'guarding' the transect line and the other (b) scanning laterally; such minimal 
overlap of effort is undesirable. 
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Perpendicular distance x 

Fig. 6.6. The distance h represents (eye) height of an observer, and detections 
at various perpendirnlar distances x, indicated by the dashed lines, occur for 
angles of declination. 'I', For some types of visual cue, the cue strength depends 
critically upon \If. 

This is a very slow drop-off in detection probability. In fact, it cannot 
be used as a basis for general theory because it corresponds 
to f d(x) dx ➔ ""· This d(x) does, however. give some sort of plausible 
upper bound on innate detectability, hence on possible effort. That is, 
we have reason to expect for any effort e(x), properly scaled on x, 

cos[tan· 1(x)J 
e(x) :es: , 

I + x· 

Also, note that in this simple situation, innate detectability would have 
a definite shoulder. 

Motivated by an aerial line transect mode of thinking, we could 
express our effort in terms of a distribution on the angle '\jl (Fig. 6.6). 
To make derivations easier, we focus on u, 0,;;; u,;;; I, where 

2 2 _ ,lxl u=n·1¥""x•tan h 

and define q(u) as the pdf of u. For greater generality, we use 

u ""~ , tan·'( "ij'} now the distribution of effort is proportional to 

q[u(x)] 
dx 
du 

222 



ON THE CONCEPT OF DETECTION SEARCH EFFORT 

where dx!du is evaluated at u = ¾ . tan- 1( ~} giving 

O..;;x 

The proportionality constant is determined by the convention that 
e(O) = I. 

Let the effort be uniformly distributed over 'I', so lhat q(u) = I for all 
u and 

If effort is uniform on coS(o/), then we spend more time looking away 
from the centreline, and the result is 

It is interesting that if either o/ or cos(w) is uniform, the tail behaviour 
of the induced effort distribution is 

Note that for the hazard-rate model of g(x) for large x 

223 



EXTENSJONS AND RELATED WORK 

which of course includes the case of b = 2. Because effort decreases 
at large perpendicular distances, we would expect the applicable b to be 
;;,, 2. 

It is also useful to consider total effort. E. and its likely mfluence on 
g(x) near x = 0. Now Equation 6.11 must be replaced by the more 
coherent form (justified by a hazard-rate argument) 

g(x) = I - e- £· e(x) (6.12) 

with e(O) = 1, but where e(x) is not mathematically identical to the e(x) 
function considered above. Consider what happens at x = 0 as a function 
of total effort,£: g(O) = I - exp(-£). Some values of g(O) as E increases 
are as follows: 

E g(O) 

I 0.6321 
2 0.8647 
4 0.9817 
8 0.9997 

10 1.0000 

It is obvious upon reflection, as the above illustrates, that if effort is 
inadequate, detection probability on the line can be less than unity even 
if innate detection probability at x = 0 is one. More interesting is what 
might happen to a shoulder under inadequate detection effort. Analyti
cally from Equation 6.12, we have 

g'(x) = {I - g(x)} • £ • e'(x) 

and with E finite. we can write 

g'(O) ~ (I - g(O)) · E · e'(O) 

If total effort is large enough to achieve g(O) = I, we are virtually sure 
that g'(O) = 0, regardless of the shape of the relative effort, e(x) (provided 
e(x) is not pathologically spiked at x = 0, with e'(O) = - oo). Also if e(x) 
has a shoulder, then g'(O) = 0. This could occur with insufficient total 
effort, E. to ensure g(O) = I, hence the presence of a shoulder in the 
data is no guarantee that g(O) = I. 

The case in which relative effort has no shoulder is interesting. As 
noted above, it is possible that e'(O) < 0 and yet g'(O) == 0. As an example, 
consider the spiked relative effort e(x) = e-x for E = 15, so that 
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and 

A few values are given below: 

X K(X) g'(x) 

0.0 1.0000 - 0.00001 
0.1 1.0000 - 0.00002 
0.5 1.0000 - 0.00102 
1.0 0.9960 -0.02215 
1.5 0.9648 -0.11778 

Even though effort is spiked at x = 0, g(x) has a distinct shoulder. 
However, if total effort is decreased, this shoulder will vanish and 
g(O) = I will fail. 

The result illustrated above is due to a threshold effect. Once effort 
is large enough to achieve g(O) = I, more effort cannot push g(O) higher, 
but it can increase g(x) for values of x > 0. We conclude that if there 
is sufficient total effort expended, then a shoulder is expected to be 
present even with a spiked relative effort function. The converse is 
disturbing: if total effort is too little, we can expect g(O) < 1, and there 
may be no shoulder. We emphasize the implications of guarding the 
centreline; if this is done, then as total effort decreases, more of the 
relative effort is likely to go near the centreline. This forces e(x) to 
decrease more quickly, ultimately becoming spiked. The end result might 
be that we would have g(O) < I, and g(x) might be spiked (no shoulder). 
The data analysis implications are that if i(x) is, or is believed to be, 
spiked, then there is a basis to suspect that g(O) is less than one. 
Conversely, if there is a shoulder, then there is a greater chance that 
g(O) = I. 

6.6 Fixed versus random sample size 

6.6.1 Introduction 

Theory and application of distance sampling has been almost exclusively 
in terms of fixed line lengths (and a fixed number of replicate lines) or 
fixed time spent at each point, for a fixed number of points. This 
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aod 

A few values are given below: 

X g(x) g'(x) 

0.0 1.0000 - 0.00001 
0.1 1.0000 - 0.00002 
0.5 1.0000 - 0.00102 
1.0 0.9960 - 0.02215 
1.5 0.9648 -0.11778 

Even though effort is spiked at x = 0, g(x) has a distinct shoulder. 
However, if total effort is decreased, this shoulder will vanish and 
g(O) = I will fail. 

The result illustrated above is due to a threshold effect. Once effort 
is large enough to achieve g(O) = I, more effort cannot push g(O) higher, 
but it can increase g(x) for values of x > 0. We conclude that if there 
is sufficient total effort expended, then a shoulder is expected to be 
present even with a spiked relative effort function. The converse is 
disturbing: if total effort is too little, we can expect g(O) < 1, and there 
may be no shoulder. We emphasize the implications of guarding the 
centreline; if this is done, then as total effort decreases, more of the 
relative effort is likely to go near the centreline. This forces e(x) to 
decrease more quickly, ultimately becoming spiked. The end result might 
be that we would have g(O) < I, and g(x) might be spiked (no shoulder). 
The data analysis implications are that if i(x) is, or is believed to be, 
spiked, then there is a basis to suspect that g(O) is less than one. 
Conversely. if there is a shoulder, then there is a greater chance that 
g(O) = I. 

6.6 Fixed versus random sample size 

6.6.1 Introduction 

Theory and application of distance sampling has been almost exclusively 
in terms of fixed line lengths (and a fixed number of replicate lines) or 
fixed time spent at each point, for a fixed number of points. This 
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approach means that line lengths /1, .•• , fk (and k itself). and of course 
L, are a priori fixed measures of sampling effort; that is, they are known 
before traversing the transects. It is then sample size n (overall and per 
line) that is random. Similarly, for point transects, k is fixed. time spent 
at each point is fixed and number of detections is a random variable. 
In principle it is possible to do the reverse: fix the total sample size to 
be achieved and traverse the line(s) until that predetermined n is reached, 
or count at a point until a predetermined sample size is reached. This 
sampling scheme results in L. or time at the point, being a random 
variable. 

The purpose of this section is to provide some results comparing the 
cases of random and fixed n, under simplistic but tractable assumptions, 
and to comment upon this alternative design. We conclude that the two 
schemes (fixed L and random n, or fixed n and random L), under some 
idealized conditions, are not importantly different in their statistical 
properties. Primarily, field (i.e. applied) considerations dictate the choice 
between sampling schemes. 

A common example contrasting fixed and random effort sampling is 
provided by the (positive) binomial and negative binomial distributions. 
For the binomial distribution, sample size is fixed at n and we record 
the number of successes, .Y, in n independent binary trials. For the 
negative binomial, we fix the number of successful trials (y) and sample 
the binary events until y successes occur, so that the number of trials, 
ii, is random. (The added notation,'~', is needed here to indicate which 
variable is random.) The corresponding probabilities, expectations and 
variances are given below for the positive and negative binomial cases 
respectively; 

E(y') = np 

var(.Y) = np(l - p) 

E(iip) = y 

var(flp) = E(iip)(l - p) 

Despite the differences in the two sampling schemes, the sampling 
variances are essentially the same. 1n particular, with reference to a fixed 
n under the direct (binomial) sampling approach, if we could select y 
for the inverse sampling such that y = np, then both sampling methods 
would have the same sampling variance. 

Moreover, the respective MLEs and their variances are, for the 
positive binomial, 
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. y 
p = n , 

and for the negative binomial, 

. y 
p =--::; 

n 

. p(l-p) 
var(p)= - -

n 

var(p) = p(l - p) 
E(ii) 

Thus, again, if we design the inverse sampling so that E('ii) = n, there 
is no important large sample difference between the two approaches. 

Another example more related to distance sampling is use of randomly 
placed quadrats versus a sample of random points, with the data being 
distance to the nearest plant (e.g. Patil et al. 1979b). In quadrats, the 
area is fixed and counts are random. In nearest neighbour sampling, 
the plant count is fixed but the area sampled is random. Under an 
appropriate matching of the effort expended under the two schemes, the 
corresponding density estimates have almost equal large sample samp
ling variances when plants are randomly distributed (Holgate 1964). 

We surmise that this relationship holds for most positive and negative 
sampling schemes, i.e. there exist pairs of schemes such that the sampling 
variance of the parameter estimator is almost the same under either 
approach. In line transects, we have either L as fixed and n as random, 
or we fix n and traverse a random line length until n detections are 
made. To be consistent with the usual definitions of direct (positive) 
and indirect (negative, or inverse) sampling, we label these as below: 

Positive case 
Negative case 

n fixed 
;; random 

L random 
L fixed 

Comparability of sampling variances requires that comparable effort be 
used in both schemes; this translates into the pair of relationships 
E(Lln) = L and E('iilL) = n, 

6.6.2 Line transect sampling with fixed n and random I, under 
Poisson object distribution 

We examine here some properties of b under such comparable si:hemes 
assuming a homogeneous Poisson distribution of objects, a constant 
detection function everywhere in the sampled area (spatially invariant 
g(x)), and independent detections. For the (usual) L-fixed case under 
these assumptions, n has a Poisson distribution with mean 2LDlf(O). 
For L random, we assume a random starting point for the line and we 
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move along it until n detections are made. Thus, there are n - l random 
inter-observational segments, of length l, which add to i. The first 
segment is from the starting point to the point perpendicular to the 
first detection. In general, the ith segment of length /; is the distance 
travelled between points perpendicular to detections i - 1 and i, where 
i = 0 is defined to be the starting point. Assuming that the number of 
objects in any area of size a, including the total area (a= A), is Poisson 
with mean aD, then it can be shown that 7 is an exponentially distributed 
random variable with mean E(/) = /(0)/(2D). The pdf of 7 is 

- 2D [ 2/Dl f;(I) a f(O) • exp - f(O) 

By the assumptions we have made here, the 71, •.. , 711 are independent. 
Because Z is the sum of independent exponential random variables, it 
is known that 

is distributed as a gamma [n, f(O)J(2D)] distribution, so it has pdf 

It is also easily established that 

E(Lln)an•f(O) 
2D 

which leads to the estimator 

(613) 

/(0) is compute_d conditional on n exactly as in the case of fixed L and 
random n, so /(0) is the same estimator in either sampling scheme. 

Compare the estimator in Equation 6.13 to that when n is random: 
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• ;; i(O) 
D=--

2L 
(6.14) 

Under a sampling theory approach, the two esl!mators have different 
expressions for small sample bias. For random L. from Equation 6.13, 

Given a Poisson distribution or objects and constant g(x), it is reason
able to assume that 7 and x are independent. Then the above becomes 

Under the gamma distribution or I, 

which yields 

When L is fixed, 

E(D) = n _n I . D. E[/(O)ln] 
/(0) 

E(D) = D. 
E[/(O)ln] 

/(0) 

so there is little difference between the two sampling schemes for large 
n in this example. For I random, the bias associated with Ill could be 
eliminated by using 

0 = (n - I) /(0) 

2l 

This adjustment for bias when n is fixed and I is random seems generally 
appropriate. 
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An asymptotic formula for the variance of Din Equation 6.13 is 

,ar(D) = [/(0).· n ]'. [ ,ar~Lln) l + [ n_ ]'. var[j(O)ln] 
2E(Lln) (E(L In)]' 2E(Lln) 

= D' • [icv(L))' + [cv { ico In)} 1'] (6.15) 

For the Poisson distribution of objects and a spatially invariant g(x), 
so that 7 is exponential, we have 

and 

var(Zln) =n • [~ir 
Using these results and Equation 6.15 gives 

The variance of b in Equation 6.14 is 

,ar(D)=D'[ .
1 

+[cv{i(Oln)ll'] 
E(n I L) 

Under comparable effort, in which case £(Zin)= Land E(ii'IL) = n, it is 
clear that for large samples, var(D) ~ var(b). 

The condition under which the two sampling schemes have almost the 
same variance for estimated density is that the coefficients of variation 
for ii and l are equal: 

var(iilL) var(Zln) 
----=----
(E(nlL)J' [£(Lin)]' 

This relationship holds for the above case. 
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6.6.3 Technical comments 

Assuming independent detections, then a general formula for the cumul
ative distribmion function of 7 is 

(6.16) 

The probability of moving distance 7 and detecting no objects is 
I - Fi(h Assume the area examined for detections is of width± w about 
the line. Then the unconditional probability of detecting an object is 
1/[w • /(0)]. The event that there are no detections in distance 7 happens 
if there are no objects in the area of size 2w7, or if there is one object 
but it is not detected, or there are two objects and both remain 
undetected, and so forth. The joint probability that there are i objects 
in the area of size 2w7 and all are undetected is (under the assumptions 
made) 

[
1 1 ]; Pr(N=ila=2w7} - w·/(0) • 

For i = 0, I, 2, .. , these events are mutually exclusive, hence we get 
Equation 6.16. For the Poisson case, 

Thus 

~ ~ exp(- 2w7D) • (2w7D/ 
Pr{N = ila = 2w/} = ., ,. 

exp(- 2w/D) · (- 2w7Di ., ,. 

= I - exp[- 2w7D] • exp ![1 - 1 ] · (2w/D)l 
\ w ·/(0) 

= I - exp[- 27DJ/(O)] 

which is the cdf of an exponential distribution. Notice also that w drops 
out of P;(7) in this example. 
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Closed form results can also be derived if a negative binomial dis
tribution is assumed for Pr{N== ija= 27wf (Burnham et al. 1980: 197). 
However. we have not perceived a simple way to derive results for the 
random Z case without making strong assumptions about Pr{.N = 
ila = 2w7} and independence of detections. 

Finally, we describe how to find Pr(rilL), as this is needed to compare 
the two schemes. Let N be the number of objects in the searched strip 
of area 2wL. The event ,i = i arises as the sum of mutually exclusive 
events: N = i and all i objects are detected, .N = i + I and only i are 
detected, N = i + 2 and only i are detected, and so forth. The probability 
formula is 

Pr(iilL) = I,Pr{ii = il.N} • Pr{fvla = 2wL} (6.17) 

For example, under the assumptions of a spatially constant detection 
function and independent detections, Pr{ii"" iliv} is binomial: 

For the Poisson case, 

Pr{ivla = 2wL} = exp(- 2wL~) • (2wLD/1 

N! 

Applying Equation 6.17 with these distributions gives 

Pr(filL) = exp[- 2LD/f(~~] ,. 

which is a Poisson distribution. 

6.6.4 Discu.uion 

· [2LD//(O)J' 

Having fixed n and random Z is often not a practical design in line 
transect sampling. [n particular, when planes _or helicopters are used, 
you cannot set out to fly a random distance; L cannot exceed the fuel 
capacity of the plane. For most methods of traversing the line(s), the 
distance to travel must be specified in advance. This also allows an 
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accurate cost estimate for a study, which is generally necessary. Further, 
in most studies, if effort ceased when the required sample size was 
reached, the observer would have to return to some point at the study 
boundary, and it would be wasteful not to seek and record detections 
for the maximum possible time in the study area. 

Representative coverage of the area being sampled is also an import• 
ant consideration. Lines, or points, are allocated so as to achieve a 
representative sampling of the area. This is critical to allow valid 
inference from the sample to the entire area. If Z was random, one 
might finish before completing the a priori determined sample of lines, 
or finish the sample of lines and still need to sample more. With random 
line length, it is difficult to assure a representative sample over the area 
of interest; thus there is more danger of substantial bias in i5 due to 
unbalanced spatial coverage. 

Point transect sampling is potentially more amenable to a fixed n 
strategy. The fixed n can be set on a per point basis. Then a repre
sentative sample of k points can be selected and every point can be 
visited. The amount of time at each point will vary. An upper bound 
could be put on time, leading to a mixed strategy: stay at a point until 
n detections are made, or until the maximum time is reached. There is 
potential to develop the theory for such a strategy. However, it is still 
not especially practical to ask a recorder to be aware of when n total 
detections are made, and then to stop effort. Also, should this n be a 
total for all species, or for one target species? 

We have not here presented any theory for point transects with fixed 
n and random time, as that theory is more difficult to conceptualize. 
For the typical application to birds, detections depend on cue gener
ation, which would have their own temporal distribution. This adds 
another level of complexity to the case of a scheme with fixed n and 
random time. 

Even for a fixed line length scheme, there is information in the 
interobservational distances as defined here. For example, the I; may 
be used to assess the spatial distribution of objects (Burnham et al. 
1980: 196-8). Under the (unlikely) hypothesis of a Poisson spatial dis
tribution and constant g(x), 7 is an exponential random variable. There 
arc many tests available for the null hypothesis that a random sample 
is from an exponential pdf. The distribution of 7 under other object 
distributions can be determined by methods presented here. The infor
mation contained in the I; is reduced in practice, because they are likely 
to be serially correlated. However, if independence can be assumed, the 
information in the /; might be used to provide better estimates of the 
residual variation in the ii; this subject may he worthy of study. The 
concept is that 
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~ - [")' ~ -var(nlL) = L • var(Lln) 

might hold true. Given independence of the interobservational distances, 

" - - ' LU,- Un) 
,,,-.... ~ i ■ I 

var(Lln) = =-n---
1
--

thus giving an alternative estimator of var(iilL). The above variance 
estimator for L also provides the basis for an empirical estimator of 
var(.i5) for the fixed n scheme if such sampling is practical and valid. 

A final important comment is required about the relative merits of 
random and fixed line lengths. Often, lines are a priori of fixed (fre
quently equal) length, in which case all the fixed length (and random 
n) theory holds. However, designs or field practice often result in 
unequal line lengths, for example when lines are placed at random but 
then cross from one side to the other of an a priori defined area, or 
when bad weather causes effort termination during a ship survey. so 
that a transect is shorter than intended. Either of these instances gives 
the appearance of some stochasticity in line length, hence one might 
consider that the set of lines has a random component that should be 
accounted for in variances (and perhaps biases) of estimates (Seber 
1979). We disagree with this thinking; it is entirely appropriate to 
condition on achieved line length in these and other cases. provided the 
stochastic variations in length are unrelated to the density of objects, 
or if it is not possible to fit a model that relates variation in line length 
to object density. 

It does not follow that random line length theory applies, simply because 
the survey design or field protocol results in varying line lengths. The theory 
applies only if there is information about density D in the probability 
distribution of line lengths. Even in the case of randomly placed lines 
running across a predefined area, there is no information about object 
density in the probabilistic distribution of line length by itself. Moreover, 
in this case the line lengths are known before they are ever traversed, hence 
there is every reason in theory to consider line length as a fixed ancillary 
(i.e. it affects the precision of b but contains no direct information about 
D) in all the usual designs and field protocols. 

Once we consider line lengths as known and fixed prior to data 
collection, or after the fact we condition on actual line lengths when 
appropriate, then some potential statistical methods are not relevant. 
For example. it is not relevant to apply finite population sampling ratio 
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estimation theory to encounter rate: such ratio estimation theory leads 
to slightly different formulae for var(n) than we give in this book. The 
key point here is that line lengths/; may often differ; this does not make 
them random in any sense that concerns us, especially if we know the 
actual line lengths before they are traversed. It is proper to take these 
line lengths as fixed unless there is a probability distribution on possible 
line lengths which depends on the density parameter of interest. The 
latter is only likely to be true under the scheme of fixed n, in which 
random linear effort continues until n detections are made, or under 
adaptive sampling schemes, in which sampling effort increases when 
areas of high density are found. 

6. 7 Efficient simulation of distance data 

6.7.1 The general approach 

To produce simulated distance data requires the Monte Carlo generation 
of sample size n, detection distances y = x or r, and for the clustered 
case, duster sizes s. The efficient way to do this is first to generate 
sample size according to some discrete distribution, p(n), then generate 
n distances and cluster sizes based on the bivariate sampling distribution 
of distance ands. The alternative is first to generate spatially distributed 
clusters, and independently for each cluster. a cluster size s. Then 
determine for each cluster whether it gets detected according to some 
detection function, g(y Is). This method is indirect and inefficient. The 
purpose of this section is twofold: to show how to simulate distance 
data directly and to outline explicitly how the simulated data of Chap
ters 4 and 5 were generated. 

The following general approach is recommended. First, decide on a 
detection function; it will be bivariate if cluster size is to vary and there 
is to be size-biased detection. Otherwise, g(y) depends only on distance. 
For the clustered case, decide on a probability distribution, 1t(s), of 
cluster sizes in the yet-to-be-sampled population. Also select a sampling 
distribution for sample size, p(n), such as Poisson or negative binomial. 
It is then possible to specify the exact parameterization of p(n). To 
simulate data for k replicate lines or points, first generate independent 
sample sizes n1, ... , nk according to p(n). If objects do not occur in 
clusters, just generate n; independent distances, i = 1, ... , k, according 
to the probability density function of distances, /(y). This function is 
determined by, and computed from. g(y), and the context (line or point 
transects). If cluster size varies but detec1ion is independent of size, then 
for each generated distance y, produce independently a value of the 
random variable s according to 11:(s). 
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The case of size-biased detection requires a two step process of either 
generating y from its marginal density function, then s from the size
biased distribution 1t'(.tlyJ, or the reverse (which we recommend): gener
ate an observed duster size from the marginal size-biased distribution 
of detections, n· (s), then generate y fromf(y js). The detailed theory for 
these distributions, given g(yls) and n(s), is in Section 3.6.6. 

The distribution of n, p(n), must have, at least implicitly. E(n) as one 
of its parameters, where 

E(n) = 2 LDs (line transects) 
f(O) 

E(n) = 21tkDs (point transects) 
h(O) 

(n by itself refers to 3.14159 ... ). The density D, denotes density of 
clusters. We use /(0) and h(O) in these representations to facilitate the 
case without truncation (w = 00). 

We now summarize quantities that must be specified to simulate 
distance data. These quantities are interrelated and hence cannot be 
independently set; in particular, we recommend that either E(n) or 
sampling effort (L or k) is specified, and the other quantity is computed. 
Constants to be specified are w and k, and for line transects, line lengths 
I,, i= I, ... , k, which sum to L. Separately specified parameters are 
D, and E(s), and any additional parameters in p(n) other than E(n). 
Fundamental distributions to specify are p(n) and 1t(s). Finally. there is 
the detection function, g(yls), which, in conjunction with 1t(s), deter
mines the sampling distributions of y and s. In general we would need 
to compute/(0), h(O), n*(s),f(xls) andf(xls) numerically. From Section 
3.6.6, formulae necessary in simulation of line transect data are 

f(Ols)=-~-

f:·g(xls)dx 

x'(s) = [ /(O) ]x(s) 
/(Dis) 
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and 

f(x(s) = /(Ojs) • g(x(s) (6.21) 

Formulae necessary in simulation of point transect data are 

h(O(s) = (6.22) 

I:, • g(rls)dr 

h(O) = (6.23) -I: •<s!_ 
s~, h(Ols) 

1t' (s) = -- 1t(S) 
[ 

h(O) l 
/J(Ols) 

(6.24) 

aad 

j(rls) = h(Ojs) • r • g(rls) (6.25) 

If the distribution of n is assumed to be Poisson, then 

(6.26) 

A useful parameterization of the negative binomial is 

p(n) = r(e + n) (I - "t)n • r.6, 0 < 0, 0 < -r < I, 0,;;; n (6.27) 
[(0) [(n + I) 

which has 

and 

E(n) = 0 · I - • 

' 

E(n) 
var(n) = --

' 
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In point transects all with a fixed observation time, 1 and 0 can be the 
same over different points (within a stratum). For line transects, the 
/; usually vary, and we recommend keeping 1 constant while letting 0 
vary by line length, because this gives coherent results: n1 + ... + nk 

is then distributed as negative binomial with parameters 1 and 01 + 
... + 0k, Thus, we can arbitrarily vary the line lengths and still have 
sample sizes (individually and totals) as negative binomial random vari
ables. Under this strategy, 1/1" is the variance inflation factor relative to 
a Poisson (random) spatial distribution of objects. For the case of 1 = 1, 
use the Poisson distribution for Monte Carlo generation of sample sizes. 

Consider the line transect case with one long line (i.e. ignore replicate 
lines) of length L and objects not clustered. We would first specify 
g(x), then compute f(O), by numerical integration if need be. It is 
important to keep straight the units of measurement in a simulation, 
because with real data, detection distances and line length are often 
in different units, such as metres and kilometres. Also, the units of 
f(O) arc the reciprocal of the distance units used for x. Say we get 
f(O) = 10, with units on x taken as kilometres. Then effective strip width 
is 0.1 km or 100m. 

In this hypothetical example, next we specify Ds = 2 clusters/km2 and 
E(n) = 70. Now we detennine L from E(n) = 2LD,!f(O): 70 = 2 • 2 • L/10, 
or L = 175km. If we want n to be Poisson, then we generate it from a 
Poisson with mean 70. Given n, generate x 1, .•• , x,, from the pdf 
f(x) ~ f(O) • g(x). 

We illustrate the approach in more detail for the simulation generation 
of examples in Chapters 4 and 5. 

6.7.1 The simulated line transect data of Chapter 4 

The half-normal bivariate detection function may be taken as 

where we model the scale parameter. cr, as a function of cluster size (c.f. 
Quinn 1979; Drummer and McDonald 1987; Ramsey et al. 1987; Otto 
and Pollock 1990). In particular, the form a(s) = cr • .t· has been much 
used. We think this is a reasonable model for data analysis; however, 
for simplicity of theory, we used a linear form for line transects: 
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subject to the constraint 

b ,-;;; E(s) 
E(s) - 1 

and assuming O ,,;;; b, although to a limited extent, negative values of b 
are mathematically possible. This form is also suggested by us because 
it puts the problem into the framework of generalized linear models 
(McCullagh and Nelder 1989). The case b = 0 corresponds to detection 
probability independent of cluster size. For w = 00, f(O Is) and.f(x Is) are 
closed form: 

/(x\s)=[ ✓,.]•-' •exp[-l(---"----]'] n cr(s) 2 cr(s) 
(6.29) 

Applying Equation 6.19, we have 

/(0)=[✓~]. I =[✓¾]E{~(s)} 
2. tt(s) • cr(s) 

$; I 

The form of cr(s) in Equation 6.28 is convenient because we can explicitly 
evaluate its expectation with respect to n(s); in fact, E{cr(s)} = cro for 
any value of the parameter h. Thus, for any extent of size bias under 
this model, 

From Equation 6.20, 

n• (s) = [ f(O) ] x(s) = cr(s) n(s) 
f(O\s) Oo 

[ 
s - E(s)l = I +h • E(s) - 1t{s) s= 1,2, ... (6.30) 
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The expected value of s in the sample of delected clusters is 

var(s) 
E*(s) = I,s • 1t*(s) = E(s) + b • --

E(s) 

A simple choice for 1t(s) is to let s - I have a Poisson distribution 
with mean E(s) - I: 

e-(E(s)-11. [E(s)- Jr-1 
s(,)----~~~~- s-1 2 

(s-1)! - ', ••• 

We used this 1t(s) in the Chapter 4 examples and then created a table 
(in lhe computer) of the values of n*(s), from Equation 6.30, for specified 
E(s), b and 0-o. Then a value of a detected cluster size was generated by 
standard Monte Carlo methods. Given a value of s, then x was generated 
according to the distribution of Equation 6.29. This was done by 
generating a ·/ variate on 1 df and calculating x = cr(s) • ✓ x2. 

The distribution of sample detections in Chapter 4 was negative 
binomial, set up with 't = 0.4, so that the variance inflation factor is 2.5. 
The choice of 12 replicate lines was arbitrary. Other choices made: 
cr0 = !Om and E(n) = 96. It was then convenient to use L = 48km and 
keep the encounter rate constant over replicate lines (whose lengths 
varied). These choices and decisions produce, by design, the result 

I - s 
E(n;) = 91--= 2/; i= I, ... , 12 

' 
which implies 8; = 64/;/48. 

In metres, /(0) = 0.0798, hence with a conversion factor to units of 
per km2

, density of clusters is 

96 X 0.0798 
D = 

8 
x 1000 = 79.8 clusters/km2 

2x 4 

The simulation was set up in such a way that density of individuals is 
79.8 • E(s) = 239.4 regardless of the value of b; b only determines the 
degree of size bias. Values of b used were O and l (with the same set 
of n1, ... , nd. 

6.7.3 The simulated size-biased data of Chapter 5 

The generation of the simulated data for point transects with size bias 
used the same half-normal bivariate detection function as for the line 
transect case: 
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g(,1,) =exp[-!(-' J' J 2 cr(s) 

However, the relevant formulae are now Equations 6.22-6.25. In par
ticular, we have for w = oo, 

and 

I 
h(Ols) = [cr(s)]2 

(6.31) 

Using Equation 6.23 with the above expression for h(Ols), we have 

I 
h(O)=----~ 

f n(s) • {cr(s)} 2 

I 
E({cr(,)J'l 

Thus we choose to parameterize Cf(s) as 

{O"(s)}2 =m. [1 +b. s- E(s)l 
E(s) 

subject to the constraint 

This model gives 

and 

b ,,;; E(s) 
E(s) - I 

h(O) = _I_ 

"' 
h(Oi,)= [ ,-£(,)] 

(To. l+b-
E(,) 
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Hence, from Equation 6.24, 

, [ h(Oi l a(,) 
1t (s) = h(Ols) n:(s) = OQ. x(s) 

s = l, 2, ... 

which is the identical x'(s) in the line transect case in Equation 6.30. 
For the Chapter 5 size-biased example data, we choose 1t(s) to be the 

geometric distribution, 

0<13< I s = l, 2 .... 

For this distribution, E(s) = 1113. From the above expression for n:'(s), 
we have for this example 

1t (s) = I + b · ~~~ . • [ ,-£(,)] 
£(,) 

s = l, 2, ... (6.32) 

Note that b = l corresponds to considerable size bias and gives the 
simple form 

s=l,2, .. 

For the example in Section 5.8, we used E(s) = 1.85, hence 
13 = 0.54054, and b = 0.75. These values serve to specify n:*(s) completely. 
Also, we set <J0 = 30m, which, together with b = 0.75, serves to specify 
g(rls), h(Ols) and /(rls). The latter is given by Equation 6.31; that 
density function has cumulative distribution function 

f(,1,J = I - exp[-
1 
(-' )'] 2 cr(s) 

Consequently, for this example, a random r, given an s drawn from 
Equation 6.32, was produced as 

r = - 2 • <J(s) • log,{l - u) 

where u is a uniform pseudo-random variable on the interval O to I. 
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The variation in counts, n, was generated from the negative binomial 
distribution with variance inflation (dispersion) factor set at 2.65, so 
that 't = 0.37736. The encounter rate per point was set at 1.6 and then 
k was set at 60 points to give, overall, E(n) = 96. In terms of Equation 
6.27 and associated results, this means that on a per point basis (which 
is how the random counts are generated), we specified 

and 

I - T 
E(n;) = 8 -- = 1.6 

T 

E(ni) var(n;) = -- = 2.65 E(n;) 
T 

i=l, ... ,k 

Hence, T is as above and 8 = 0.52416. As a consequence of the choice 
of model and parameters in this example, the density of clusters is 

96 x [l/3o]2 x 1 000 000 = 283 clusters/km2 

21t X 60 

and density of individuals is 1.85 x 2.83 = 523 objects/km2
• 

6.7.4 Discussion 

We have recommended simulating the pair (y, s) by generating s from its 
marginal distribution 1r*(s), and then y from the conditional distribution, 
/(yls). The algebra for this was straightforward in the above two examples. 
Consider, however, the reverse process for the point transect example 
above: generate r from/(r) thens from 1r*(slr). The relevant formulae are 

and 
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Use of these formulae would entail much more computing than the use 
of n•(s) and /(rls). Heuristically, this is because there is only a finite 
(and small, usually) number of possible values for s, whereas infinitely 
many values of r can occur. Therefore, with each new r, one must 
recompute the entire distribution 1t*(slr) before scan be generated. 

In some real applications, cluster sizes potentially range from one to 
thousands, for example dolphin surveys on some species. To simulate 
the essence of such applications, it is not necessary for s to vary over 
this set of values. A set of a hundred (or fewer) values should suffice 
(e.g. staking values 1-10, 15, 20, 30, 50, 75, 100-900 by 100, 1000-5000 
by 500). Keeping the range set of s small will greatly speed up simula
tions. 

Closed form expressions underlying simulations will be the exception. 
Even in the above line transect examples, if we take w as finite, 
numerical integration must be used to find the necessary quantities given 
by Equations 6.18 to 6.21. Expect to use numerical integration; fortun
ately for purposes of simulation, the numerical methods need not be 
highly sophisticated. 

Sometimes we only want to explore statistical properties of estimators 
of f(O), h(O), g(xls), g(rls) and E(s), and not properties of Ds and b. 
In this event, it is not necessary to generate a random sample size n for 
each replicate. In fact, it is better to fix n and do, say, 1000 replicates 
at that n, and repeat the process over a set of values of n. 

6.8 Thoughts about a full likelihood approach 

6.8.J Introduction 

In principle, analysis of distance data could be based on a full likelihood, 
~(D.!D, for all data components. The focus is on average density Din 
the study area; we represent all the other parameters by ~- These other 
parameters appear in the probability components for n, y = x or r, and 
s. An advantage of having a full likelihood is that it allows the 
computation of profile likelihood intervals for D. The disadvantages are 
the need to specify probability models for n and s. We have avoided 
assuming any probability model for n by using an empirical estimator 
of var(n), and getting confidence intervals assuming b is log-normally 
distributed. Similarly, a point estimator and sampling variance of E(s) 
can be obtained in a regression framework, so no probability model is 
required for 1t(s) or 1t'(s) (the distribution of s in the entire population, 
and in the detected sample, respectively). Probability models, and likeli
hood inference. have only been used for the distance part of the data, 
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and we use generalized approaches to ensure robust inference for n 
and s. The purpose of this section is to demonstrate how a full likeli
hood approach could be used, to make some comparisons of profile 
likelihood intervals to traditional and log-based intervals, and to com
ment on other advantages of a full parametric (likelihood) approach. 

6.8.2 Full likelihood for line transects: simple examples 

(a) Half-normal g(x), Poisson n Assume that objects are spatially 
distributed as a homogeneous Poisson process, that the detection func
tion is half-normal, that w = =, and that objects are single entities (i.e. 
we take s = I). Then data from replicate lines may be collapsed into just 
the total count, n, for total line length L, and the perpendicular distances 
X1 .•.• , Xn. The detection function g(x) and pdf f(x) are 

g(x)•exp{-½(!J} 

and /(x) • [ ✓ ,~ l exp 1-½[ ~ J} 0 « x < -, 0 < cr 

The probability distribution of n is 

P,(n). e,p{- 2LD//(0)} • {2LD//(O)}" 
n' 

(Section 6.6). We have 

/(0). ✓-'
•ri' 

so there are only two parameters, a and D, although it is sometimes 
simpler to leave /(0) in the formulae. The full likelihood is 

• 
exp {- 2LD//(O)} 
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We define 

and simplify 5£(D,o) by collapsing terms where possible and by dropping 
some multiplicative constants, giving 

or simplified as much as possible, 

(6.33) 

Note that we ignore multiplicative constants in the likelihood function. 
The joint MLEs from Equation 6.33 are 

and 

i>= l ✓-"- = n. f<O> 
L 2rr:T 2L 

Standard likelihood theory can be used to derive the theoretical variance 
of b, which may be expressed in a variety of ways: 

var(b) = 1.5D • f(O) = D1 
2L [ i(:)]- D' [ E!n) + 2i(n)] 

~ D' [{<'(nil'+ {c,(i(O))}'l 

Thus, these results are all exactly the same as what are derived by the 
'hybrid' method of using E(n) = 2LD!f(O), the Poisson variance of n, 
and a likelihood only for the distance data. 

In general, the hybrid approach with empirical estimation of var(n) 
will be almost fully efficient for .iJ and is more robust as no distribution 
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need be assumed for n. One advantage of a full likelihood approach is 
the possibility of using a profile likelihood interval for D. Such intervals 
can be expected to perform better than b ± l. 96 iie(b) or log-based 
intervaJs because the likelihood function encodes information about the 
sampling distribution of b, thus allowing for non-normality of b (or 
log.,(b)). Below, we give some general explanation of profile likelihoods, 
then derive the profile log-likelihood function for D for the above 
example. 

(b) Profile likelihood intervals Let :£(D, ~) be the full likelihood such 
as that given in Equation 6.33. The profile likelihood is symbolically 

:£(D, El(D)) = maximum value of :£(D, 0) over 0 for any given value of D - - -

This is then a function of just the single parameter D. For computing 
profile likelihood intervals, it is convenient to use the following function: 

(6.34) 

In Equation 6.34. !f(b,f) is equivalent to :£(b,f(.b)), where b is the 
MLE of D. The function ljl(D) is a pivotal quantity, asymptotically 
distributed as a single degree of freedom chi-square, xi. This approxi
mate distribution of ()l(D) holds better at small sample sizes than the 
assumed normality of .b underlying the use of .b ± 1.96 s°e(.b). A 
100(1 - a)¾ profile confidence interval for D is given as the set of all 
values of D such that ljl(D) ,,;;; xf<a), where xf<o:) is the I - a percentile 
point of the xf distribution (3.84 for a 95% confidence interval). We 
only need the interval endpoints, which are the two solutions to the 
equation 

$(D) = 2 {loge!f(b.~) - loge!f(D, ~(D))} = xf(o:) (6.35) 

Barndorff-Neilson (1986) described the theory underlying the method, 
including ways to improve on the approximation of ljl(D) as a xi random 
variable. 

(c) Profile formulae, half-normal g(x), Poisson n Starting with the like
lihood in Equation 6.33. we first must find the maximum for a given 
any fixed value of D. The steps are summarized below: 
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and 

From the above equation, 

• D T 
o-( ) = [ LD✓(2x) ]'" 

The joint MLEs iJ and ci are given above, hence finding the expression 
in Equation 6.34 is now merely algebraic manipulation: 

from which 

Reduced to a very simple form, we get for this example 

$(D) = 3n • ((D!iJ)211 
- I - log., {(DJ.b)213

}] (6.36) 

To get a profile likelihood interval for D, we substitute the values 
of b and n in Equation 6.36, tabulate ljl(D) for a range of D, and pick 
off the two solutions to Equation 6.35. It can be useful to plot (fl(D), 
as is shown in another context by Morgan and Freeman (1989). 

Below we look at some numerical examples comparing different 
confidence intervals. However, first we determine Equation 6.34 expli
citly for a few more examples. These, and the above, are overly simplistic 
compared to real data, but only very simple cases lead to analytical, or 
even partially analytical, solutions for (fl(D). 

(d) Negative exponential g(x), Poisson n The negative exponential 
g(x) is not a desirable detection function, but for w = oo and a Poisson 
n, we can derive closed form results for this case. Some formulae are 
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/(x)=±·exp{-f} O~x<oo, O<A 

and /(0) = I IA. The full likelihood is 

5£(D, A)= exp{- 2LD/f(O); 
n. 

• {2LD!f(O))" 

Defining 

" T= L X; 
;~ I 

we simplify ~(D, A) to 

5£(D, A)= e,p {-(2LDA + f ll · IY' 

• T ~ n2 n .i(O) 
The joint MLEs are A=---;; and D = 

2
LT = ~ 

From likelihood theory, 

• D [2] • var(D) =LA= fY • E(n) = D2 
[{cv(n)}

2 + {cv(/(0))}
2
] 

Fixing D in ~(D, A), we find i(D) as follows: 

and 

so that 
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Finally, we derive 

(6.37) 

(e) Negative exponential g(x), Poisson n. Poisson s To the above 
example, we add the feature of varying cluster size, but with detection 
probability independent of cluster size, s. Let s be Poisson with mean 
K. The parameter D is the density of individuals, not clusters. In the 
Poisson model, as given above, for counts of clusters, the density 
parameter is cluster density, Ds, not D. To parameterize this likelihood 
component in terms of density of individuals, we must replace Ds by 
DIK. The full likelihood for this model is 

Using S to denote mean cluster size and .i c=. Tin, this likelihood can be 
reduced to 

and 

2LDA, T 
loge,;l:(D, A, K) c=. - -,- - i" - nK + n • loge(D) + n(S- I)· lo~(K) 

The hybrid and full likelihood results agree here; in particular, 

A n • s 
Da-

2L.'? 

vac(DJ = D' [-
3 

] 
E(n) 

To get the profile likelihood, we need ~(D) and l.(D). Closed form 
results do not seem to exist. However, from the two partial derivatives 
set to zero, 

and 
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we can derive the equations 

and 

. 5i 
K(D)=-.-+S-1 

1.(D) 

The function 4i(D) can be written as 

(6.38) 

(6.39) 

[• [(DJ'"] [(ii:(D)l'"]] 4'(D) = 6n • K(D) - S - log,. b - (S - I) • loge ~ (6.40) 

To compute 4'(D), choose a value of D, solve Equation 6.39 iteratively 
(easily done as i(D) is a stable fixed point), compute K(D), then compute 
Equation 6.40 (also using b, which is closed form). 

6.8.3 Full likelihood for point transects: simple examples 

(a) Negative exponential g(r), Poisson n Results for point transects can 
be obtained for a couple of simple cases. Here we assume a Poisson 
distribution for n, a negative exponential detection function, g(r) = 
exp{- r/'A.), and k randomly placed points. Basic theory then gives 
E(n) = 2rtkD')..2, and the pdf of detection distance r is 

O<r,O<l 

The full likelihood is 

which simplifies to 
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oi(D,).) • exp l-(2•kD1.' + f )} -II' 

The log likelihood is thus 

logeXW, A)= - 2rr.kDA2 -f + n • log.,(D) 

Standard likelihood theory now leads to 

' T r "/..•-•-
2n 2 

• )i 
var(A) = ---

2E(n) 

var(D) • D' [-
3
-] 

E(n) 

In order to find the profile likelihood, we solve 

getting 

~(D) • [ 4,:D J" 
Using the above to form loge:£(D, A(D)) allows us to find the expression 
for log .. X(b, 5..), from which we construct a simple representation of 
•CD): 

(6.41) 

(b) Half•normal g(r), Poisson n Instead of a negative exponential g(r), 
let us assume g(r) is half-normal; other assumptions are as in the above 
case. Now basic theory gives E(n) = 2rr;kDa2, and the pdf of detection 
distances is 
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f(,) = 

The full likelihood is 

:£(D = exp{ - 21tkDcl} • {2xkDclr 
, crJ ' n. 

which simplifies to 

" for T defined as the total, T = L ?; 
i • I 

Standard likelihood theory now leads to 

ci=L 
2n 

b=-"- =n • h(O) 
2xka2 21tk 

To find the profile likelihood, we solve 

O<r,O<cr 

cr' var(o-2) = -
E(n) 

,a,(Dl =II. [-
2
-] 

E(n) 

Clloge.:t'(D, o) = - 4xkDcr + I._= 0 
dcr o 3 

getting 

Carrying through the algebra and simplifications, we have 
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(6.42) 

Notice that Equation 6.42 is identical to 6.37; this we expected, because 
there is a duality in the mathematics between the case of line transects 
with a negative exponential detection function and point transects with 
a half-nonnal detection function, both with n distributed as Poisson and 
with w = ""· 

6.8.4 Some numerical confidence interval comparisons 

We used the above results on <HD) and var(b) to compute a few 
illustrative numerical examples of profile, log-based and standard con
fidence intervals (nominal 95% coverage). To facilitate comparisons, 
what is presented are the ratios, (interval bound)/ b. Thus, the standard 
method yields relative bounds as I ± 1.96 cv(b), and the log-based 
relative bounds are 1/C and C, where 

C = exp [L96 ✓loge{\ + [cv(b)f}] 

Some of our results are based on sample sizes that are smaller than 
would be justified for real data; our intent is to compare the three 
methods, and the differences are biggest at small n. The actual coverage 
of the intervals is not known to us; we take the profile likelihood 
intervals as the standard for comparison. Results are shown in Tables 
6.2, 6.3, 6.4 and 6.5. One reason for the comparisons is to provide 
evidence that the log-based intervals are generally closer to the profile 
intervals. 

Table 6.2 Some relative 95% confidence intervals, b1owerfi, and 
buppe,ib, for the profile, log-based and standard method, for line 
transects with a half-normal detection function, 11: = "", and Poisson 
distributed sample size n. Equation 6.36 is the basis of the profile 
interval; results are invariant to the true D and G 

" Profile interval Jog-based interval Standard interval 

5 0.296 2.610 0.366 2.729 - 0.074 2.074 
JO 0.437 2.014 0.481 2.081 0.241 1.759 
20 0.565 1.660 0.590 1.694 0.462 l.537 
40 0.673 1.439 0.687 1.457 0.621 1.380 
70 0.744 1.321 0.752 1.330 0.713 1.287 

100 0.781 1.263 0.787 1.270 0.760 1.240 
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Table 6.3 Some relative 95% confidence intervals, b,0 ,.,.,1b and 
buppnlb, for the profile, log-based and standard method, for line 
transects with a negative exponeotial detection function, w = "", and 
Poisson distributed sample size fl, Equation 6.37 is the basis of the profile 
interval; results are invariant to the true D and A 

" Profile interval log-based interval Standard interval 

5 0.251 3,076 0.321 3.117 - 0,240 2.240 
10 0.389 2.264 0.433 2.309 0.124 1.877 
20 0.520 1.803 0.546 1.831 0.380 1.620 
40 0.635 1.526 0.649 1.542 0.562 1.438 
70 0.711 1.380 0.720 1.390 0.669 1.331 

100 0.753 1.3 I I 0.759 1.318 0.723 1.277 

Table 6.4 Some relative 95% confidence intervals, blower! i> and 
buppe,lb, for the profile, log-based and standard method, for point 
transects with a negative exponential detection function, w = =, and 
Poisson distributed sample size fl. Equation 6.41 is the basis of the profile 
interval; results are invariant to the true D and A 

" Profile interval log-based interval Standard interval 

5 0.19! 4.056 0.261 3.833 -0,518 2.518 
10 0.319 2.754 0.366 2.729 - 0.074 2.074 
20 0.453 2.072 0.481 2.08] 0.241 1.759 
40 0.575 1.684 0.590 1.694 0.463 1.537 
70 0.660 1.487 0.669 1.494 0.594 1.406 

100 0.708 1.395 0. 714 1.401 0.661 1.339 

Table 6.5 Some relative 95% confidence intervals, b1owe,lb and 
buppe,lb, for the profile, log-based and standard method, for line 
transects with a negative exponential detection funcfion (parameter A.), 
w = "", Poisson distributed sample size fl, and cluster size as Poisson, 
mean K. Equation 6.40 is the basis of the profile interval; results are 
invariant to true D and A, but depend weakly on true i,.; 1("' 3.0 was used 
for these results 

" Profile interval log-based interval Standard interval 

5 0.230 3.440 0.261 3,833 -0.518 2.518 
10 0.365 2.440 0.366 2. 729 - 0.074 2.074 
20 0.497 1.900 0.481 2.081 0.241 1.759 
40 0.614 1.583 0.590 1.694 0.463 1.537 
70 0.693 1.419 0.669 1.494 0.594 1.406 

100 0.737 1.341 0.714 1.401 0.661 1.339 
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Table 6.2 corresponds to the line transect case in which g(x) is 
half-normal and objects have a Poisson distribution. The relative 
interval endpoints in that table depend only upon sample size n, so 
these results are quite general under the assumed model. The invari
ance property of the ratios b1awe,liJ and Duppe,liJ applies also to 
Table 6.3 (line transect, negative exponential g(x) and Poisson n) and 
Table 6.4 (point transect, negative exponential g(x) and Poisson n). The 
log-based interval is slightly to be preferred to the standard method 
in Table 6.2, and more strongly preferred for the cases of Tables 6.3 
and 6.4. The choice in Table 6.5 (line transect, negative exponential 
g(x), Poisson n and Poisson s) is unclear. Note that the results in 
Table 6.3 for line transects with a negative exponential g(x) are identical 
to results for the same values of n for point transects with a half
normal g(r). 

These sort of results on confidence intervals would be interesting to 
compute for other scenarios. We present the above specific formula for 
4l(D) to illustrate the ideas; in particular, the negative exponential 
g(y) is used only because it is very easy to work with. 

Table 6.5 reflects a case where the population of objects is clustered. 
The relative confidence intervals are for density of individuals. This is 
an interesting case because the log-based and standard relative con
fidence intervaJs do not depend upon D, A. or K (because the relative 
intervals do not depend upon the specific values of X or S). The relative 
profile intervals do not depend upon D or A. (thus the results in Table 
6.5 are independent of the choice of D and A.), but they do depend 
weakly upon JC because the specific value of S (three in this example) 
affects even the relative profile intervals. Heuristically, this seems to be 
because the sample size of number of individual animals detected 
increases as S increases and the likelihood function uses this information. 
To illustrate this point, we give below relative profile interval endpoints 
(based on Equation 6.40 and 95% nominal coverage) for a few values 
of S at n = 20: 

" ., Profile interval 

20 1.25 0.465 2.023 
20 3.00 0.497 1.900 
20 30.00 0.518 1.813 
20 300.00 0.520 1.804 

There is quite a noticeable effect here of average group size and this is 
an effect that is not found in either standard or log-based methods. We 
speculate that in realistic likelihood models, the profile interval would 
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be generally more sensitive to information in the data than simpler 
confidence interval methods. 

(a) One more example Consider line transect sampling, in which g(x) 
is half-normal, clusters have a homogeneous Poisson distribution, and 
cluster size is a geometric random variable. Further assume that 
go < I, but that it can be estimated by an independent source of 
information, from which it is known that, of m clusters 'on' the line, z 
are detected. We assume that z is distributed as binomial (m, g0). The 
counts, n, wi!l be Poisson with mean E(n) = 2LDgo/{K/(0)} where 
JC= E(s) and D is density of individuals. The geometric distribution is 
used here in the form rt(s) = p'-1(1 - p), hence K = 1/(1 - p). Also, 
/(0) = _1_ • ✓<2!1t), so that we have 

" 
E(n) = fucrLDg0(1 - p) 

Maximum likelihood estimators are 

and 

2Lio 

, S - I 
p=---

' 

and the asymptotic estimated var(b) is 

The full likelihood of the data entering into b is given by the pro
ducts of the likelihoods of the independent data components: 
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exp{- [-./2ncrLDg0(l - p)]} · {'121taLDg0(1 - p)}" '£(D,a,p,go) = ---- - -------, ------ ----- - -- -- ------- x 
n. 

Dropping constants and otherwise simplifying this likelihood gives 

'£(D, cr, p, g0) = [ exp {-( fucrLDgo(I - p) + 
2
~)}] x 

[D" · p"(i - l)(I - p)2"(got(I - Ko)m - :] (6.43) 

Closed form expressions for O'(D), f(D) and io(D) do not seem possible, 
but 4>(D) can be computed using numerical optimization. A slight 'trick' 
simplifies the process of getting 4>(D). 

By setting the partial derivatives of '£ with respect to cr, p and Ko to 
zero, and with D arbitrary, we derived the following results: 

and 

5- I 
p(O) = T 

S+1-
m;' 

T n+z--
nd 

go(O) = ---~Tc 
n+m-

nd 

D= T 
..f2"i cr' Lgo(cr) • (I - p(cr)) 

While we cannot easily select D and compute «!>(D), we can specify values 
of cr and compute the unique associated p(cr) and g0(cr) that apply for 
D, which is then computed. These are then the values of O"(D), f(D) 
and io(D) to use in computing «!>(D) for that computed value of D. All 
we need do is select a range of o which generates a range of D, and 
then we treat ;f(D, <J,p, g0) as a function of D, not of o. The MLEs are 
known, so the absolute maximum of;;£ is known, thus normalizing ;;£ 
to 4> is easy. 
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Table 6.6 Some relative 95% confidence intervals, i>1o,.,~rtb and 
i>uppe,I b, for the profile, log-based and standard method, for line 
transects for the likelihood in Equation 6.43. Sample size n is Poisson, 
x is half-normal, s is geometric, and go is estimated from z 
~binomial {m, go) 

" Profile interval log-based intervaJ Standard interval 

5 0.238 4.009 0.289 3.457 - 0.376 2.376 
10 0.365 2.688 0.395 2.535 0.015 1.985 
20 0.488 2.054 0.501 1.996 0.287 1.713 
40 0.593 1.721 0.595 1.680 0.472 1.528 
70 0.663 1.568 0.658 1.521 0.576 1.424 

100 0.700 1.503 0.690 1.449 0.626 1.374 

Table 6.6 gives a few numerical results for the model considered here. 
Sample sizes n and m are the dominant factors influencing the Table 
6.6 results. In fact, these results do not depend on true D, L or cs. 
However, they do depend on E(s) and go too strongly to draw broad 
conclusions here. Inputs to the likelihood used for Table 6.6 were 
Tin= I (so MLE (J = 1), S= 10 (fi = 0.9) and z = 16, m = 20(fro = 0.8). The 
Jog-based intervals are closer to the profile intervals than are the 
standard intervals. 

It is also worth noting that if n (i.e. the line transect sampling effort) 
is increased while m is fixed, the estimate of go is the weak link in the 
data. Studies that estimate g0 need to balance the effort for the two data 
types. It would be best to collect data on go during the actual distance 
sampling study to achieve both such balance of effort (with respect to 
n and m) and relevance of fro to the particular study. If in this example 
for n = 100 we also put z = 80 and m = 100, then the three relative 
intervals are more similar, especially profile and log-based: 

Profile interval Log-based interval Standard interval 

0.726 1.377 0.728 1.373 0.681 1.319 

In practice, it is unlikely that such a high proportion of detections (80%) 
could be considered as 'on' the line, necessitating the use of methods 
that utilize detections off the line (Section 6.4). 

(b) A general comment on precision The relative !;Onlidence intervals in 
Tables 6.2-6.6 have been computed in a variety of cases: line and point 
transects, some with clustered populations, different detection functions, 
and one case with an adjustment for g(O) < l. A general conclusion is 
that sample size has the overwhelming effect on relative precision of 
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b. Relative confidence intervals are quite wide at n = 40, being roughly 
± 45% of b. At n = 70 and 100, the intervals are roughly ± 35% and 
± 25%, respectively. This level of precision is under very idealized 
conditions that will not hold in practice for real data. With comparable 
sample sizes, we expect that relative interval widths will exceed the 
tabulated values. These results and our experience in distance sampling 
suggest strongly that reliable, precise abundance estimates from distance 
data require minimum sample sizes around 100. Coefficients of variation 
of around 20% (i.e. intervals of± 40%) are often adequate for manage
ment purposes; the results presented here indicate minimum sample sizes 
of 40-70 in this circumstance. 

6,8.5 Discussion 

Reliable analysis of distance sampling data is possible without a full 
likelihood approach. We recommend a robust approach of empirical 
estimation of var(n), a semiparametric, likelihood-based estimation of 
/(0) or h(O) from the marginal distance data, and finally, estimation 
of E(s) conditional on the observed distances y;, using a regression 
approach. Other strategies are possible and use of a bivariate model for 
g(y. s) is closer to a full likelihood approach. The difficult modelling 
aspect is to specify general probability models for n ands and it is those 
steps we bypass. 

There are, however, reasons to develop a full likelihood approach: 
(I) intellectual curiosity, (2) efficiency of estimators and tests if the 
assumed model is correct, (3) availability of well-developed likelihood 
based theory for profile likelihood intervals and for model selection such 
as AIC, (4) the convenience of further developing such models by having 
parameters as functions of covariates (effort, environmental, spatial 
factors), and (5) as a necessary part of a Bayesian approach to distance 
sampling. We consider some of these points and difficulties of the 
approach. 

Models for the marginal function g(y) are abundant and choices also 
exist for bivariate versions, g(y, s) (e.g. Quinn and Gallucci 1980; 
Drummer 1985, 1990; Drummer and McDonald 1987; Thompson and 
Ramsey 1987; Otto and Pollock 1990), and for the distribution 1t(s) of 
cluster size in the sampled population. Any probability model of a 
discrete random variable on s = I, 2, ... is a candidate for 1t(s), and if 
s can take on hundreds of values (such as for dolphin schools), con
tinuous models could be used (such as a log-normal distribution for s). 
Good probability models for n are more problematic. 

The Poisson distribution for n is not reasonable. The negative bino• 
mial model might be tenable, but in general, a reasonable model for 
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Pr(n) may need more than two parameters. The negative binomial is 

given by 

r(0 T n) n & 
Pr(n) = r(O) . r(n + I) • (I - 't) • 't, 

which has 

I - t E(n)=0 · -
t 

E(n) 
var(n) = --

t 

0 < 0, 0 < t < I, 0,:;;: n 

Pr(n) is not used as parameterized, but rather the relationship 
E(n) = 2LD/f(O) (line transects). or E(n) = 2rtkD/h(O), must be imposed 
on the parameters in the distribution. With a multiparameter Pr(n), such 
as the negative binomial, there is no obvious unique way to reparame
terize Pr(n). We suggest it will instead be necessary to optimize the 
log-likelihood function subject, for example, to the constraint 
E(n) = 2LD/f(O), where .f(O) is replaced by its form as a function of the 
parameters in the detection function g(x). In some cases, it might be 
meaningful to associate one parameter in Pr(n) with E(n), such as having 
't a free parameter. and setting 

e = 2LD't 
/(0) • (l -t) 

There are other generalized distributions possible for n, see for example 
Johnson and Kotz (1969). 

Constructing the full likelihood in the general case is complicated, but 
not fundamentally difficult, if strong assumptions of independence are 
made. These independence assumptions are often not reasonable, but 
robust variances can be found by appropriate quasi-likelihood or boot
strap methods. Under independence and k replicate lines, the probability 
model for the data (from which the likelihood is derived) is symbolically 

(6.44) 

where 
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n*(s) = j(O) - - 1t(s) 
/(01,) 

is the distribution of cluster sizes given the cluster is detected and 
n(s) is the probability distribution in the entire population. It is 1t(s) we 
suggest modelling. For point transects, we have k points and 

Pr(n,, r1J,Sij,j= I, ... , ni, i= I, ... ,k) 

where 

n"(s) = h(O) - 1t(s) 
h(OI,) 

(6.45) 

More on the theory of /(xls),/(rls) and n•(s) 1s given in Section 6.7 
along with the explanations of /(0), h(O),/(Ols) and h(Ols) and their 
relationship to g(-ls). 

Theory development in capture-recapture is in some ways more ad• 
vanced than in distance sampling; capture-recapture is also in some 
ways a simpler statistical problem. The state of the statistical art in 
capture-recapture for survival estimation is represented by Lebreton el 
al. (1992), in which inference is based on (full) likelihood models, and 
model selection is based on Akaike's Information Criterion (AIC: Akaike 
1985). We have made use of AIC in model selection for the marginal 
detection function, but only for that model component. Drummer (1991) 
uses AIC in a bivariate detection function, g(x, s). The full likelihood 
approach to capture-recapture is very powerful. Also, using such explicit 
parametric models allows meaningful modelling of embedded parameters 
as functions of auxiliary information. These approaches could be simi
larly useful in distance sample and deserve to be explored. 

Survival analysis in capture-recapture deals with only two classes 
of parameters: survival rates and capture rates. A fully parametric 
approach to distance sampling woul<l <lea] with D. the parameters 
in Pr(n) (say~), in g(-) (say~), and in n(s) (say ll- Moreover, ir the 
locational information in spatial coordinates of detected objects is 
used. then D is in effect expanded into a fourth class of parameters. 
Thus in its most general form, distance sampling deals with more classes 
of parameters than capture-recapture and is in that sense a harder 
problem. 
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If Bayesian methods are to be fully developed for distance sampling, 
they will require likelihoods as in Equations 6.44 and 6.45 to augment 
to priors on the parameters. In either case of a full likelihood or a 
Bayesian approach, there will be a need for numerical optimization and 
integration methods, possibly on objective functions with a dozen, or 
many more, parameters. Even 50 or 100 parameters are not too many 
for numerical optimization methods (MLEs and profile likelihoods), so 
this scope of problem is numerically feasible now. 

6.9 Distance sampling in three dimensions 

Conceptually, line transects can be considered as one-dimensional dis
tance sampling, because only distances perpendicular to the line of travel 
are used, even though objects are distributed in two dimensions. Point 
transects sample distances in those two dimensions because radial de
tection distances are taken at any angle in what could be represented 
as an x-y coordinate system. In principle, distance sampling can be 
conducted in three dimensions, such as underwater for fish, or in space 
for asteroids, where objects can be located anywhere in three dimensions 
relative to the observer. The observer might traverse a 'line', and record 
detection distance in two dimensions perpendicular to the line of travel, 
or remain at a point, recording data in three-dimensions within the 
sphere centred at the point. Given the assumption of random line or 
point placement with respect to the three dimensional distribution of 
objects, the mathematical theory is easily developed for the three-dimen
sional case. In practice, the third dimension may pose a problem: there 
may only be a thin layer in three dimensions, and in the vertical 
dimension, objects may exhibit strong density gradients (e.g. birds in a 
forest canopy, or fish near the sea surface). Operational problems could 
be difficult; we do not claim this extension to three dimensions has 
application, but it is interesting to consider. 

Assume that we follow a line randomly placed in three dimensions. 
Now we sample volume, not area, so D = objects/unit volume; line 
length is still L. Assume we record distances r for all objects detected 
out to perpendicular distance w. Counting takes place in a cylinder of 
volume u = 1t1iJ L, rather than a strip of area a= 2wL. The statistical 
theory at a fixed slice through the cylinder perpendicular to the line of 
travel is just like point transect theory. This sort of sampling (i.e. a 
'tube transect') is like 'pushing' the point transect sampling point a 
distance L in three dimensions. 

Aside from volume u replacing area a, we need little new notation: n 

is the sample size of objects detected in the sampled cylinder of radius 
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w; Pu is the average probability of detecting an object in the cylinder of 
volume v; g(r) = probability of detecting an object that is at perpendicu
lar distance r, 0 ,,;; r ,;;; w; D is the true density of objects in the study 
space. 

A basic starting place to develop theory is the formula 

E(n) = D • V ·Pu= D • 1tW
2 

• L · Pv 

The unconditional detection probability is easily written down because 
objects are, by assumption, uniformly distributed in space within the 
cylinder. Therefore, the pelf of the radial distance r for a randomly 
specified object (before the detection process) is 

u(r) = 21tr 
1tW2 

The unconditional detection probability is Pv = E[g(r)], where expecta
tion is with respect to pdf u(r). This is a weighted average of g(r): 

f w I f w Pu : u(r) • g(r) dr = - 2 21tr • g(r) dr 
0 1tW 0 

Notice that this Pv is identical to the unconditional detection probability 
in point transects. 

A direct approach can be used to derive E(n). Let Ve be a small volume 
in the cylinder centred at distance r and position l along the line 
(0 ,;;; l,..; L). Thus D • Ve= the expected number of objects in volume 
Ve= 21tr dr di, and the expected count of these objects is then 
g(r) • D • vE. E(n) can now be expressed as 

E(n)= L'- lwg(r) • D· 21trdrdl=L • D •L"2nr ·g(r) dr=L · D - n:w2 •Pv 

An estimator of D is 

where 

b = -,----"--:-
1ew

2 
• L • fav °' 

. n 
D=--

L· µ,,, 
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The sample of distances to detected objects is ri, _ .. , rn- The pdf of 
distance r to detected objects is 

f 
21tr - g(r) r • g(r) 

( r) = --------'"'-'- = 
µ. s· r·g(r)dr 

0 

This result is identical to that for point transects and can be proven 
using the same theory. In fact, slight modifications of point transect 
theory suffice as a complete theory for line transect sampling in three 
dimensions. Jo particular, 

J'(r) = 21t • g(r) + 2nr • g'(r) 
µw µ,., 

so if g'(O) is finite and g(O) = I, thenf'(O) = 2n/µ,.,. For consistency with 
point transects. we use 

and hence we have 

h(O) = f'(O) = 2" 
µ. 

, n · h(O) 
D = 21tL 

Compare this with the point transect estimator, 

, n · h(O) 
D = 21tk 

The only difference is that L replaces k. 
In fact, all the theory for point transects applies to line transect 

sampling in three dimensions if we replace k by L. Thus, estimation of 
h(O) or p., could be done using program DISTANCE and treating the 
detection distances, r1, as point transect data. The case of objects as 
clusters poses no additional problems, giving our general formulation: 
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b = n • k(O) . i(s) 
2rtLcko 

where c is the fraction of the circle, around the line, in which detections 
are recorded (c = q>!21r for some sector angle qi in O to 2rt). For the 
clustered case, all the theory in Section 3.6.6 for point transects applies 
to line transects in three dimensions with k replaced by L. We do not 
know of any data for three-dimensional line transects as described here; 
however, if any such studies are ever done, we note· that a complete 
theory for their analysis already exists. 

Point transect sampling in two dimensions ~an be extended to three 
dimensions. (To people who use the term variable circular plots, such 
extension becomes a variable spherical plot.) Now the detection distan
ces r are embedded in a three-dimensional coordinate system. There is 
no existing theory for this type of distance sampling, although theory 
derivation methods used for line and point transects are easily adapted 
to this new problem, and we present some results here. 

In this case, the observer would be at a random point and record 
detections in a full (or partial) sphere around that point. For a sphere 
of radius w, the volume enclosed about the point is 

4 
V=-1t1J 

3 

Given truncation of the data collection process at distance w, the 
expected sample size of detections at k random points is 

E(n) = k • D • v • Pv 

To derive Pv, we note that the pdf of radial distance for a randomly 
selected object in the sphere is 

and Pv = E[g(r)] with respect to u(r) 

f • I f • Pv = u(r) • g(r) dr = 3 4rtr2 • g(r) dr 
o 41tw/3o -

so that 
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E(n) = k · D • .± 1tw3 • Pv = k'- D • f,., 41tr2 
• g(r) dr 

3 " 

An alternative derivation is to consider that the volume, ue, of space 
in the shell at distances r to r + dr is 41tr2dr (to a first order approxi
mation, which is all we need as we let dr ➔ 0). Thus, 

E(n) = k • D • Lw g(r) · Ve dr = k · D • f
0

w 41tr2 · g(r) dr 

Now define µw as 

µw = f: 4rtr2 • g(r) dr 

so that 

The pdf of detection distance r is 

O<r<w 

Taking second derivatives, we get 

Hence, if g(O) = 1 and both i((O) and g"(O) arc finite (preferably zero as 
then the estimators have better properties), then 

For simplicity of notation, we define d(O) = /"(0), so that 

• n·d(O) 
D = 81tk 
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The estimation problem reduces to fitting a pdf f(r) , as given above, 
to the detection distances r1, ••• , rn based on some model for the 
detection function, g(r). This will lead to d(O) and vai°{d(O)} by any of 
a variety of statistical methods. Because the variance of d(O) is condi
tional on n, 

vai-(b) = b2 ([cv(n)]2 + [cv{ d(O) }]'] 

As with point transects in two dimensions, the theory for three 
dimensions can be transformiid to look like line transect theory in one 
dimension. The transform is from radial distance r to the volume 
sampled, Tl= 1 ttr3

, giving the pdf oft] as 

where 

0 4 ' < Tl < V = -1tW 
3 

Then, if g(O) = I, f(O):::: llµw, As for two-dimensional point transects, 
we do not recommend that analysis be based on such a transformation 
(c.f. Buckland 1987a). 

The case of objects as clusters with size-biased detection can be 
developed for this three-dimensional point transect sampling using the 
methods of Section 3.6.6. First, we would have a conditional detection 
function, g(rls), and a distribution of cluster sizes in the entire popula
tion. 1t(s). The following result holds for each cluster size: 

D )
- E[n(,)] • d(OI,) 

(s - 81tk 

The density of clusters irrespective of size is 

D = E(n) • d(O) 
-~8-x7k-

Thus, 'dividing' the first by the second of these two formulae, we get 

D(s) = tt(s) = E(n(s)] . _d(_Ol_s) = n'(.v). d(Ols) 
D E(n) d(O) d(O) 
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where 1t'(s) is the distribution of detected cluster sizes. Summing both 
sides or the above leads to 

d(O) = L •• (s) • d(O Is) 

whereas rearranging the formula and summing produces 

where all summations are over s = I, 2, 3, ... 
Thus 

and 

L,s · 1t•(s) • d(Ols) 
E(s) = -~---

L •'(s) • d(Ols) 

from which expressions, estimators of 1t(s) and E(s) are evident. 
Straightforward expressions for d(O) and d(Ols) are 

d(OJ=--2-

Sow r1-g(r)dr 

d(Ois)=---2-

Sow ,2.g(rls)dr 

Two more formulae are just stated here: 

g(r) = L,g(rls) • 1t(s) 

r 2 
• g(rls) 

f(rls) =--~~-

f'
w ' r • g(rls) dr 
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Also of interest are conditional distributions of cluster size given detec
tion distance, r. These tlistributions are useful for exploring £(sir), 
where now the s is from the size-biased detected sample. The result is 

1t*(slr) = g(rls) • 1t(s) ;;:g(ris) • 1t(s) 

L,g(rl.~) • 1t(s) g(r) 

This is exactly the same as for either line or point transect results given 
in Section 3.6.6. 

Perhaps some day three-dimensional point transect data will be taken 
in deep space or oceans. 

6.10 Cue counting 

Cue counting (Hiby 1982, 1985; Hiby and Hammond 1989) is a method 
developed for estimating whale numbers that has very similar design 
considerations as line transect sampling - and in fact is sometimes carried 
out simultaneously with line transect sampling - yet theoretically is much 
more closely related to point transects. An observer scans a sector ahead 
of the viewing platform - usually an airplane or the bow of a ship - and 
records the distance to each detected cue. The cue is usually defined to 
be a whale blow. Cues are recorded irrespective of whether the whale 
was previously detected, and it is not necessary to estimate school 
(cluster) size. The method yields estimates of cue density, which can only 
be converted into whale density by estimating the cue or blow rate, p, 
from separate surveys. Cue density is estimated mu.ch as bird density is 
estimated from point transect data. The observer records only radial 
distances. Perpendicular distances are not needed, and angles only d~ter
mine whether a cue is within or outside the observation sector. To 
estimate cue rate p, individual whales are followed, and the observed rate 
is used as an estimate of the cue rate for the whole population. This is 
the main weakness of the approach, as relatively few whales can be 
monitored for sufficiently long periods to obtain reasonable cue rate 
estimates. Further, these whales may not exhibit typical cue rates; for 
example whales with high cue rates arc less likely to be 'lost' before an 
estimate can be obtained, and whales monitored over a long time period 
may change their cue rate in response to the vessel. 

Suppose cues are recorded out to a distance w. For cue counting, as 
for point transect sampling, the area of a ring of incremental width 
Or at distance r from the observer is proportiot-1al to r. It follows that 
/(r) = 21trg(r)/v, where v = 2xfo"'rg(r) dr. Given that a cue occurs in the 
sector of area c • a, where q> is the sector angle and a= 1tw2

• so that 
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c = 4>!21t, let the probability that it is seen be Pa. Then this probability 
is v/(1tw2

). Thus a. Pa= v, which holds as w ➔ ""°· Assuming all cues 
very close to the observer are seen (g0 = I), Equation 3.1. with 
E(s) = 1, yields the following estimate of cue 'density' per unit time (i.e. 
the number of cues per unit area per unit time): 

A 21tn 
Dc=-,-

ovT 

where n is the number of cues recorded in time T. The constant T is 
the total time that the observer is searching (i.e. 'on effort'), and 
corresponds to the line transect parameter, L. If the cue rate is estimated 
as p cues per unit time per animal, then estimated whale density is 

As for point transects, V = 21t/h(O), where h(O) = lim/(r)/r, so that 
,~o 

The value of h(O) may be obtained by modelling the recorded distances 
to cues, as if they were distances from a point transect survey. DIS
TANCE has a cue count option to carry out the above analysis (below). 
Because successive cues from the same whale, or cues from more than 
one whale in a pod, may be counted, the distances are not independent 
observations. This does not invalidate the method, but analytic variances 
should not be used. The bootstrap, applied by taking say cruise legs as 
the sampling unit, provides valid variance estimation. 

Linc transect sampling of whale populations is beset with problems 
of how to estimate g0, especially for aerial surveys, where a whale may 
be below the surface while it is in range of the observer, and for species 
such as sperm whales, which typically dive for around 40 minutes at a 
time. Cue counting does not require that all whales on the centreline 
are detected. Instead, it assumes that all cues occurring immediately 
ahead of the observer are seen. Thus, of those on the centreline, only 
whales that are at the surface when the vessel passes are assumed to be 
detected with certainty. In practice, whales may show vessel avoidance, 
so that the recorded number of cues very close to the vessel is depressed. 
Because the area surveyed close to the vessel is small, the effect of vessel 
avoidance might be expected to be small, unless avoidance occurs at 
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Fig. 6.7. Histograms of the cue count data. Also shown are the fits of the 
hazard-rate model to the data without left-truncation (a and b) and with 
left-truncation (c and d). The fined detection functions are shown in (a) and (c) 
and the corresponding density functions in (b) and (d). 
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relatively large distances. If avoidance is suspected, the distance data 
may be left-truncated. This solution should prove satisfactory provided 
the effects of vessel avoidance only occur well within the maximum 
distance for which the probability of detecting a cue is close to unity. 

If cues immediately ahead of the vessel might be missed, double-counting 
methods similar to the independent observer analyses given in Section 6.4 
(with d:,: 0) may be used. This has the advantage over those analyses in 
that it is easier to identify whether a single cue is seen from both plalfonns, 
for example by recording exact times of cues, than to identify whether a 
single animal or animal cluster is seen by both platfonns, since the two 
platfonns may see different cues from the same animal. 

Cue counting has been used in aerial surveys to estimate fin whale 
densities near Iceland (Hiby et al. 1984) and in shipboard surveys to 
estimate whale densities in the North Atlantic (Hiby et al. 1989) and 
minke whale densities in the Antarctic (Hiby and Ward 1986a, b; Ward 
and Hiby 1987). We use here data from Hiby and Ward (1986a) to 
illustrate the method. Annual surveys of Southern Hemisphere minke 
whales have been carried out since the 1978-79 season. The first attempt 
to use cue counting during shipboard surveys occurred on the 1984-85 
cruise. Hiby and Ward considered that cues close to the vessel were 
under-represented, possibly because whales showed vessel avoidance 
behaviour or because blows close to the vessel were under-recorded by 
observers. We therefore analysed the data both with no left-truncation 
and with left-truncation at 0.4 n.m. (nautical mile). The data were 
right-truncated at 3 n.m. Under the hazard-rate model, frequencies at 
distances less than 0.4 n.m. are not significantly below expected frequen
cies. and truncation makes little difference; the only anomaly is the 
relatively high frequency at 0.8-1.0 n.m. (Fig. 6.7), which may be chance 
fluctuation, or, more likely, preferential rounding to that distance inter
val. Hiby and Ward (1986a) appear to have interpreted these data 'too 
pessimistically, suggesting that detections close to the vessel are too few 
because (1) blows arc less visible at short distances, (2) whales show 
vessel avoidance behaviour, or (3) observers did not appreciate the need 
to record all cues at short distances. Because successive cues are not 
independent, goodness of fit tests are likely to give spurious signilicant 
results. If they are carried out regardless for the hazard-rate model, they 
are not significant at the 5% level, so Hiby and Ward's conclusion that 
the data cannot be analysed seems pessimistic. Data sets collected more 
recently suggest that the method perfonns adequately. 

The fits of the hazard-rate model to the data both with and without 
left-truncation are shown in Fig. 6.7. In these~trials, both blows and 
sightings of the body of the whale were counted as cues. Hiby and Ward 
(1986a) estimated the cue rate at 34.98 cues per whale per hour 
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(!se = 4.74). Supplying this estimate to DISTANCE, together with an 
estimate of time on effort of 35.8 hours (430 n.m. divided by an average 
speed of around 12 knots), yields an estimated density of 0.24 whales/ 
n.m.2 from untruncated data and 0.26 whales/n.m.2 from the truncated 
data. The goodness of fit statistics are xi= 11.7 and x3 = 7.3 respectively. 
The p-values for the goodness of fit tests are invalidated by the lack of 
independence between successive cues from the same animal or animal 
cluster. Similarly, the analytic estimates of variance are invalid. Without 
the raw data. it is not possible to apply either the bootstrap or the 
empirical method to obtain valid variance estimates, because cue counts 
are not given by cruise leg in Hiby and Ward. In Fig. 6.8, the fits of 
the Fourier series model to these data, with and without left-truncation, 
are shown. It yields an estimated density of 0.24 whalesln.m.2 without 
truncation and 0.31 whales/n.m.2 with truncation, with respective good
ness of fit statistics ofx~ = 18.9 and xj = 9.1, indicating a worse fit than 
the hazard-rate model. Again the p-values corresponding to these stat
istics are invalid, and we do not present them. The flatter shoulder of 
the hazard-rate model enables it to fit the counts at short distances more 
closely. The estimate of density from a line transect survey carried out 
at the same time as the cue rate trial was 0.37 whalesln.m.2. 

6. 11 Trapping webs 

The estimation of population size (N) from capture data is usually 
formulated as a capture-recapture problem (e.g. White et al. 1982). 
There, traps are positioned, often at intersections of a rectangular 
grid, and animals are captured, marked, and released for possible 
recapture on a subsequent trapping occasion. If the trapping grid is 
enclosed or the trapped area samples the entire area of interest, then 
density= number/area can be estimated. However, the usual case is that 
an area surrounding the trapping grid contains animals that are subject 
to being captured and thus the effective area being sampled is larger 
than the area of the grid. One might nai"vely estimate density as N1A 8, 

where Ag= the area covered by the trapping grid. However, density is 
then overestimated because grid area is smaller than the area actually 
sampled by the traps. This problem has been well known for over half 
a century (Dice 1938). The use of a trapping web (Anderson et al. 1983) 
is an attempt to reformulate the density estimation problem into a 
distance sampling framework, where density is estimated directly. rather 
than separately estimating population size and effective area (but see 
Wilson and Anderson 1985a for an alternative). 
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Fig. 6.8. Histograms of the cue count data. Also shown is the one-term Fourier 
series fit to the data with no lefl-truncation (a and b) and the two-term fit to 
the left-truncated data (c and d). The fitted detection functions are shown in 
(a) and (c) and the corresponding density functions in (b) and (d). 
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Trapping webs are a special case of point transect theory useful in 
estimating density or animal populations where 'detection' is accom
plished by trapping. Animals are trapped in live, snap-trap or pitfall 
traps. Mist nets or other devices can be employed. Such trap devices 
are placed in a 'web' such that the density of traps is highest near the 
centre (Fig. 6.9), thus attempting to assure that g(O) = I. 

The web design consists of m lines of equal length, o:7, and each of 
T traps, radiating from randomly chosen points. A useful rule of thumb 
is to ensure that m x T:;;, 200. The traps are located along each of the 
m lines, usually (but not necessarily) at some fixed distance interval 0, 
starting at distance o:1 = 0/2. Points b, are defined along each line, 
halfway between traps, for i = I, 2, ... , T, with b0 = 0 representing the 
web centre, and br the boundary of the web beyond the last trap. The 
traps are then at distances o:; = 0(i- 0.5) for i = l, 2, ... , T, and the b; 
are at distances i0 for i = 0, l, 2, ... , T. 

Thus. traps are placed in rings of increasing radius from the web 
centre at equal distances along the m lines (Fig. 6.9). All captures in 
the ith ring of traps are considered to be detections of objects at distance 
o:, from the centre of the web. The distance data are analysed as 
grouped data. That is. the total number of captures arising from the 
ring of traps at distance o:, are treated as grouped data over the interval 
from distance b, _ 1 to b;. The total area of the web out to interval i 
is c, = -rtbf and the area trapped by the ith ring of traps is then 
8 1 = Ci - c1 _ 1• Generally, only first captures (removal data) are recorded 
and used in the estimation of density. This procedure reduces the impact 
on estimation of heterogeneity in trap response due to trap-happy or 
trap-shy animals. 

Traps can be placed easily by trained technicians using a stake driven 
in the ground at the web centre and a rope with knots tied to indicate 
trap spacing (the o:,,). Disturbance of the site should be minimized while 
traps are being placed in the sampled area. Several trapping webs would 
be required to sample an area of interest adequately. If only initial 
captures are of interest, then captured animals can be given a batch 
mark. to indicate that they have been 'removed', and released back into 
the population. Sampling is carried out on I occasions (often consecutive 
days or nights), where typically t is between three and eight. 

6.11.1 Assumptions 

Analytic theory for the trapping web is an application of point transect 
sampling theory and the general assumptions apply. The three major 
assumptions of distance sampling are slightly restated here for the 
trapping web: 
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Fig. 6.9. Trapping web with 16 lines (m = 16), each of equal lenglh «rand 20 
traps per line (T=20), giving in total 320 traps. The traps are at distances 
o.1, ... , Ctr from the centre of the web. The points along each line, halfway 
between traps, are denoted by b1, i = 0, ... , T, where bo = 0 is the centre and 
br is the boundary of the web, just beyond the last trap. Captures in the eleventh 
ring of traps are assigned to the shaded ring ti. 11, which has area c11 - c1o, where 
c;=1t·bl. 

I. All animals at the centre of the web are captured at least once during 
the t occasions. Thal is, trapping continues until evidence exists that 
no new animals are being caught near the centre of the web. 

2. During the trapping period, animals move over distances that are small 
relative to the size of each web. Thus, migration through the web is 
not allowed. Trap spacing iS an important consideration and is species
dependent, taking account of the size of home ranges or 'territories'. 

3. Distances from the centre of the web to each trap are measured 
accurately. This assumption is trivial if the trap spacing has been 
carefully laid out. 
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Assumption 1 is critical but can be monitored by examining the 
number of new individuals trapped near the web centre over trapping 
occasions. Animals near the centre should be captured with probability 
one. However, if substantial movement occurs over the t occasions 
(assumption 2), animals that are initially away from the centre of a web 
may move, eventually to be caught where the trap density is highest. 
This situation is analogous to point transect sampling where the obser
vation period is long and birds move around the study area. Such 
movement causes detections near the point to increase and leads to 
positive bias in the estimator. Bias is worse if animals are attracted to 
the point or web centre. 

6.11.2 Estimation of density 

The basic data are the number of first captures in traps in ring j of web 
i on trapping occasion /, n,jl, where i = I, 2, ... , k, j = 1, 2, ... , T and 
l = 1, 2, ... , t. Pooling the data over t occasions, the data can be 
summarized as n11, where 

Hence nii is the number of animals trapped in the jth ring of the ith 
web. Let the total sample size be n = LLn;i- Then density can be 
estimated by 

iJ=n•h(O) 
2nk 

' j 

where the estimate h(O) is obtained through standard point transect 
methods (Chapter 5). The estimator of the sampling variance is 

Jr the population is distributed randomly (i.e. Poisson), then Wilson and 
Anderson recommend [cv(n)f = 1/n. Generally, some degree of spatial 
aggregation can be expected, and [cv(n)J2 = 2/n or 3/n might then be 
more appropriate. If the number of replicate webs, k, is sufficient, it is 
preferable to estimate the sampling variance of n empirically (Section 
3.7.2). 

Data analysis is similar to the general theory for point transects, 
including model selection and inference issues. The challenge with the 
trapping web is to collect trapping data that mimic the assumptions of 
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point transect sampling and analysis theory. In particular, trap spacing 
must be related to average home range size or average distance moved 
and there are presently few guidelines for this decision. 

Excessive animal movement near the web centre is problematic. The 
density of traps near the web centre is high relative to that near the 
edge of the web. Thus. even if animal movement is random, there is a 
tendency to trap animals near the web centre, regardless of their original 
location. If the trap spacing is too small, the problem is made worse 
and overestimation will likely result. If the animals tend to move in 
home ranges that are small relative to the size of the web and the trap 
spacing, then the trapping web may perform well. Alternatively, if 
animals move somewhat randomly over wide areas in relation to the 
size of the web and the trap interval chosen, then overestimation may 
be substantial (see the darkling beetle example, below). 

6.11.3 Monte Carlo simulations 

Wilson and Anderson (1985b) performed a Monte Carlo study to 
investigate the robustness of density estimation from trapping web data. 
Their simulations mimicked small mammal populations whose members 
were allowed to move in defined home ranges. Home range was simu
lated from bivariate normal, bivariate uniform and bivariate U-shaped 
distributions, and from a 'random excursion' model. More details are 
given by Wilson and Anderson (1985b). A 4 ha area was simulated, 320 
traps were positioned in a two-dimensional plane, and animal density was 
set at two levels, IOO/ha and 25/ha. Home range centres were allowed 
to be spatially random (Poisson), or clumped at three levels of aggre
gation. Three average probabilities of first capture were simulated at 
0.09. 0.16 and 0.24, and these probabilities were allowed to vary by time 
(trapping occasion), behaviour (trap-shy or trap-happy) and heteroge
neity (individual variability); this is model M11m in Otis et al. (I 978: 43). 
Trapping was simulated for six, eight and ten occasions. 

The Monte Carlo results indicated that the combination of a trapping 
web design and a point transect estimator of density was quite robust. 
The procedure had typically low bias under a wide variety of realistic 
situations. Confidence interval coverage was lower than the nominal 
level, due in part to the use of the Fourier series estimator (Buckland 
1987a). The method was recommended in cases where the capture 
probability was > 0.16 and the number of trapping occasions was at 
least six:. In some extreme situations (e.g. the random excursion model, 
with low capture probabilities and a clumped spatial distribution), the 
bias was in the 20-30% range, which might still be substantially less 
than traditional capture-recapture estimators. 
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The trapping web does not make any assumptions about geographic 
closure and is easy to implement in the field. No unique marks or tags are 
required, and several different types of trap can be used. The results of 
Wilson and Anderson (1985b) indicated that the trapping web was very 
promising as an alternative to standard capture-recapture methods. The 
work of Parmenter et al. (1989), summarized in Section 6.11.5, was 
carried out as a field test of the method where the true density was known. 

6.11.4 A simple example 

Anderson el al. (1983) presented an example of trapping web data from 
a 4.8 km area south of Los Alamos. New Mexico, where Peromyscus 
spp. were trapped for t = 4 nights on a web very similar to that of Fig. 
6.9, with trap separation of 0 = 3m. The mice were captured in baited 
live traps and marked using a monel metal tag placed in one ear. Only 
initial captures were used in the analysis; animals were thus 'removed 
by marking'. No unmarked mice were caught in the inner area (out to 
ring 7) on the fourth night and only two new captures were made in 
this area on the third night. This was taken as evidence that the 
probability of capture near the web centre was one. A plot of the 
histogram indicated that mice from beyond the web were being attracted 
to the baited traps in the web, as the number of captures in rings 19 
and 20 (i.e. n19 and n20) was somewhat higher than expected. Thus, the 
distance data were truncated to exclude the two outer rings. This left 
76 'detections' in 18 distance groups for analysis; frequencies were I, 1, 
0. 6, 2, 2, 3, 2, 4, 7, 4, 5, 8, 6, 7, 6, 7 and 5, respectively (Anderson et 
al. 1983). Note the lower frequencies in the inner rings, where the area 
sampled is small relative to that in the outer rings. 

Two models were fit to these data: half-normal and hazard-rate, each 
with cosine adjustment parameters, No adjustment parameters were 
required and the AIC values were similar for the two models (424.18 and 
425.76, respectively). Both models fit the data well as judged by the x2 

goodness of fit tests ( x2 = 13.2 with 16 df and 13.6 with 15 df, respectively). 
Density is estimated at 97.8 mice/ha (s"e = 21.3) under the half-normal 
model and 86.1 mice/ha (s°e= 12.7) under the hazard-rate model. These 
estimates compare with 76 animals trapped on the web of area 0.97 ha, 
suggesting that most animals were caught. Only one web was sampled, 
hence no inference to a larger area is justified in this simple example. 

6.11.5 Darkling beetle surveys 

Populations of two species of ground-dwelling darkling beetles were 
studied in a shrub-steppe ecosystem in southwestern Wyoming to field 
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test the validity of the trapping web on a series of known populations 
(Parmenter et al. 1989). These beetles (10-30 mm body length) attain 
natural densities so great (> 2000 beetles/ha) that relatively small plots 
could be surveyed and still have test populations of reasonable size. 
These beetles are wingless and could be contained by low metal fences. 
They are easily marked on their elytra with coloured enamel paint, and 
are relatively long-lived, allowing longer periods of trapping and in
creased capture success. Pitfall traps were made from small metal cans 
(80-110 mm), and the web was surrounded by a metal enclosure wall. 
Traps were placed along 12 lines, each 11 m long, with Im trap spacing 
along the lines. Nine additional traps were placed at the centre of the 
web, giving 141 in total. 

Beetles were captured, marked with enamel and released. These 
marked beetles constituted the population of known size that was 
subsequently sampled using the trapping web design. Surveys were done 
in two different years and different colours were used to denote the 
year. Several subpopulations. each of known size, were released, allow
ing analyses to be carried out both separately and in combination, to 
test the method on a wide range of densities. Additional details were 
given in Parmenter et al. ( 1989). 

Overall the method performed quite well, yielding a correlation co
efficient between jj and D of at least 0.97 for each of four models for 
g(r). The negative exponential model performed better than the Fourier 
series, exponential power series and half-normal models. The <lata 
exhibited a spike near the web centre. almost certainly caused by 
considerable movement of beetles and by trap spacing that was too 
small. All models were fitted after transforming the distance data to 
areas, a procedure that is no longer recommended. In summary, the 
results of these field tests were certainly encouraging. 

Reanalysis of the darkling beetle data using current theory and 
program DISTANCE provided a less optimistic impression in that 
density was substantially overestimated, leading to important insights. 
The first is that traps were too closely spaced along the lines; trap 
spacing should have been greater to compensate for the wide area over 
which beetles of this species move. Second, the beetles had no 'home 
range' and thus tended to wander widely in relation to the size of the 
web, which is a function of trap spacing. The trapping web design was 
envisioned for use with animals that have some form of home range or 
'territory'. Third, it is clear that some random movement may result in 
too many animals being trapped near the web centre. The problem can 
also arise in bird surveys where some random movement results in the 
detection of too many birds near the point. This condition leads to a 
spiked distribution and overestimation of density. Clearly, the additional 
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mne traps placed near the web centre aggravated this problem. Thus, 
we do not recommend that traps be concentrated at the centre. Research 
is needed to understand the relationship between spacing and density 
of traps and the nature of the movement. 

If the data are spiked, one might analyse the distance data using some 
left truncation to eliminate the high numbers trapped near the web 
centre. Alternatively, one could constrain i(r) to be a low order, slowly 
decreasing function that does not track the spiked nature of the data, 
but this solution is rather arbitrary and may be ineffective. More 
experience is needed with sampling from populations of known size to 
understand better trap spacing and appropriate modelling. Still, this 
application of point transect sampling has many advantages over cap
ture-recapture. Further studies on populations of known size, using live, 
snap or pitfall traps or mist nets, could lead to additional insights. 

6.12 Migration counts 

The main theme of this book is estimation of population abundance by 
modelling distance data. Counts from migration watch points may be 
converted into estimates of population size using similar techniques, but 
by modelling time instead of distance. Typically there will be regular, 
perhaps daily, counts of numbers of animals passing a watch point. If 
the animals pass in clusters, then the sampling unit will be the cluster. 
The basic data are start and end times of watch periods and number of 
animals or clusters passing during each watch period. Thus the data are 
in frequency form, being grouped by watch period. There will be gaps 
between watch periods. corresponding to night or to poor weather. For 
the basic method, animals are assumed to migrate at the same rate 
during unwatched periods as during watches. If no migration occurs at 
night, then time should be defined to end at dusk and start again at 
dawn. If migration occurs at night. but possibly at a different rate, the 
rate should be estimated by another method, for example by sonar 
(active or passive) or radar, or by radio-tagging animals. To model 
migration time, as distinct from distances in line transect sampling, the 
following changes are needed to the methodology. First, in line transect 
sampling the density function is assumed to be symmetric about the 
line, so only even functions (cosines for the Fourier series model and 
even powers for polynomial models) are used. For migration !;Ounts. 
odd functions are also needed. Related to this, the key function requires 
both a location and a scale parameter, whereas only a scale parameter 
is necessary for line transect sampling, because if sightings to the left 
of the line are recorded as negative, and distances to the right as 
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positive. the expected distance from the transect is zero under the 
assumption that the density function is symmetric about the line. Third, 
allowance must be made for a large number of counts, equal to the 
number of separate watch periods, whereas in a grouped analysis of line 
transect data, the number of groups for perpendicular distances seldom 
exceeds a dozen or so. Finally, having fitted the density to migration 
times. abundance is estimated by taking the ratio of the area under the 
entire density to the combined area corresponding to watch periods 
alone. and multiplying this ratio by the total number of animals counted 
during watches. Thus, different software is needed to obtain the abun
dance estimate and its standard error. 

We use here as an example the California grey whale census data 
collected at Monterey, California. The California stock of grey whales 
migrates from feeding grounds in the Bering and Chukchi Seas to 
calving areas in Mexican waters every winter. returning north in spring. 
Aerial and ship surveys confirm that almost the entire population passes 
close inshore at several points. Counts at coastal migration watch points 
can therefore be used to estimate population size. Counts at Monterey 
were annual from 1967-68 through to 1979-80. and further surveys were 
carried out in 1984-85, 1985-86 and 1987-88. Reilly et af. (1980, 1983) 
gave more information on these surveys, and Buckland and Breiwick 
(in press) provided abundance estimates corresponding' to all surveys. 
We use analyses of the grey whale count data for 1987-88, extracted 
from Breiwick et al. (unpublished) and Buckland et al. (in press), to 
illustrate analysis of migration count data. In that year, counts were 
made from two stations (north and south) a few yards apart, to allow 
estimation of numbers of pods missed during watch periods. The data 
analysed were numbers of pods passing within each count period, so 
that the data are grouped, the group endpoints being the start and end 
of each watch period. Information on duplicate detections was used to 
reduce the data sets from both stations to a single set of counts of the 
number of pods detected by at least one station in each watch period. 
Pods detected travelling north were excluded from the analyses. 

The key function selected for fitting the counts was, apart from a 
scaling factor, the normal density: 

where y corresponds to time, measured in days from a predetermined 
date. Adjustments to the fit of the key were made by adding Hermite 
polynomial terms sequentially, adjusting the fit first for skewness, then 
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kurtosis, and so on. Four adjustment terms were fitted to the data sets, 
and likelihood ratios were used to detennine which fit was 'best'. If a 
one-term fit was found to offer no significant improvement over no 
terms. but a two-tenn fit gave a significant improvement over no terms 
at the 5% level. the two--term fit was favoured over both the one-term 
and the zero-term fits. A three-term (i.e. five-parameter) fit was selected, 
and this fit is shown in Fig. 6.10. To convert the fitted density to an 
estimate of population size, it is necessary to evaluate the proportion 
of the entire untruncated density that corresponds to watch periods. To 
ensure that the Hermite polynomial fits were sensible in the tails of the 
migration, zero counts were added for I December 1987, before the 
migration started, and 29 February 1988, after it ended. This had little 
effect for 1987-88, when counts took place throughout the main migra
tion period (Fig. 6.10), but for some earlier surveys, many pods had 
passed before the first or after the last count of the season, making the 
addition of zero counts necessary (Buckland and Breiwick, in press). 

In total, and excluding pods travelling north, n = 3593 pods were seen 
from at least one station. The ·£ goodness of fit statistic corresponding 
to Fig. 6. IO was xiis = 334.55. This value is more indicative of overdis
pcrsion of counts than of intrinsic lack of fit of the Hennite polynomial 
model; in other words, counts in successive watches show greater than 

Fig. 6.IO. Histogram of number of California grey whale pods sighted, adjusted 
for watch length, by date, 1987-88 survey. Also shown is the Hermite polynomial 
fit to the histogram. 
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Poisson variation. The overdispersion was compensated for by multi
plying the Poisson variance on the total count by the dispersion par
ameter, estimated as the x2 statistic divided by its degrees of freedom; 
this multiplicative correction is sometimes termed a variance inflation 
factor (Cox and Snell 1989). Thus the dispersion parameter estimate is 
334.55/125 = 2.676, giving iie(n) = -,i(3593 • 2.676) = 98.1 pods. The fit of 
the Hermite polynomial model to the counts yields a multiplicative 
correction for animals passing outside watch periods of Ji= 2.4178 with 
standard error 0.0068. 

Swartz et al. (1987) reported on experiments in which whales were 
radio-tagged in 1985 and 1986. Of these, 15 were recorded both at night 
and in daylight. An unpaired t-test on the difference in log day and 
night speeds revealed no significant difference between Monterey and 
the Channel Islands (1 11 = - 1.495; p > 0.1). After pooling the data from 
both locations, a paired t-test revealed a significant difference in log 
speeds between day and night (t14 = 2.284; p < 0.05). A back-transforma
tion with bias correction gave a multiplicative correction factor for 
hours of darkness of 1.100 (ire= 0.045); thus it is estimated that rate of 
passage is 10% higher at night, and thus night counts, if they were 
feasible, would generate counts 10% higher. Counts were carried out for 
ten hours each day. On average, it is reasonable to add an hour to each 
end of the day, giving roughly 12 hours of daylight (including twilight) 
per 24 hours. Thus the multiplicative correction applies approximately 
to one half of the total number of whales estimated, giving a multipli
cative correction factor of in= 1.050 (s"e = 0.023). Swartz (personal com
munication) notes that the behaviour of the animals off the Channel 
Islands is very different from when they pass Monterey. If a correction 
factor is calculated as above from the nine radio-tagged whales off 
Monterey that were recorded both during the day and at night, we 
obtain in= 1.020 (s"e = 0.023). Although this does not differ significantly 
from one, we apply it, so that the variance of the abundance estimate 
correctly reflects the uncertainty in information on this potentially 
important parameter. 

During the 1987-88 season, counts were carried out independently by 
observers in identical sheds, 5 m apart. Buckland et al. (in press) 
analysed these double count data using the approach of Huggins (1989, 
1991) and Alho (1990). which incorporates covariates to allow for 
heterogeneity in mark-recapture experiments. We summarize the method 
here. The procedures for matching detections from the two stations are 
described by Breiwick et al. {unpublished). We assume the matches are 
made without error. 

Assuming that the probability of detection of a pod from one station 
is independent of whether it is detected from the other. and independent 
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of whether other pods are detected by either station, the full likelihood 
for all pods passing Monterey during watch periods is 

M 

L*=K-n (1 - P,1)1 _;s,, 

where M = tolal number of pods passing during count periods, 
P;J = probability that pod i is detected from station j, i: I, ... , M, 

j = 1, 2, 

_ f I, pod ii~ detected from station j, 
O;J -1 0 otherwise, 

and K depends on M, but not on the parameters that define PU· 
Huggins (1989) shows that inference can be based on the conditional 

likelihood, 

L=n 
; a I 

where n = number of pods detected from at least one station. 

d Pi; an 1ty=
p, 

' with p; = I - n (I - Pu)= probability that pod i is detected from at 
j•I 

least one station. 

Thus 1tij is the probability that pod i is detected from station j given 
that it is detected from at least one station. 

Both Huggins (1989, 1991) and Alho ( 1990) model the p,; using logistic 
regression. Algebra yields: 

1tij_ Pu , loge -
1 
~- - log,. - - - log, p,1 , where ,i' = 3 - j 
-rr.,; 1-pij 

Hence logistic regression for the pij can be obtained simply by carrying 
out logistic regression for the conditional probabilities 1t;j, and setting 
an offset variable, equal to - logefi,/, for each observation. In the first 
iteration. the offset variable is set to zero (corresponding to normal 
logistic regression for rr.;1). Estimates fi,J are then calculated from the 
itiJ, from which the offset variable is estimated. The model is refitted, 
and the process is repeated until convergence is achieved. Model fitting 
was carried out using Genstat (Genstat 5 Committee, 1987). 
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Potential covariates were date, Beaufort, components of wind direc
tion parallel and perpendicular to the coast, visibility code, distance 
offshore, pod size and rate of passage (pods per hour); observer, station 
and watch period were entered as factors. Estimates pij and f; were 
calculated from the final iteration, from which M was estimated as 

with 

Thus a correction factor for pods missed by both stations is given by 

with 

. it 
[m=

n 

Probability of detection of a pod was adequately modelled as a 
function of five covariates: pod size; rate of passage; migration date; 
visibility code; and the component of wind direction parallel to the 
coast. None of the factors (observer, watch period, station) explained a 
significant amount of variation. Probability of detection increased with 
pod size (p < 0.001), with rate of passage (p < 0.001) and with migration 
date (p < 0.05), and decreased with visibility code (p < 0.05). It was also 
greater when the wind was parallel to the coast from 330° (slightly west 
of north), and smaller when from 150° (east of south). The correction 
factor fm was estimated by J,.. = 1.0632, with standard error 0.00447. 

The number of whales passing Monterey is equal to the number of 
pods multiplied by the average pod size, which was estimated by the 
average size of pods detected (excluding those moving north). This gave 
S = 1.959 (iie = 0.020). A correction factor for mean pod size was calcu
lated using data from Reilly et al. (I 980), comparing recorded pod sizes 
with actual pod sizes, determined by observers in an aircraft. For pods 
of size one, an additive correction of 0.350, with standard error 
0.6812/✓225 = 0.0454, was used. The correction for pods of size two was 
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0.178 (s°e=0.9316/✓ 101 =0.0927), for pods of size three, 0.035 
(s"e = 1.290/✓28 = 0.244), and for pods of size four or greater, the cor
rection was 0.333 (se = 0. 78251✓27 = 0.151). A multiplicative correction 
factor for mean pod size was then found as: 

j. = 1 + 0.350n1 + O. i 78n2 + ~.035n3 + 0.333n4+ = I. 131 
n•s 

with 

ie(iln) = ✓[(0.0454n1)2 + (0.0927n?)2 + (0.2438ni)2 + (0.1506n4+)2 

+ 0.68tl2n1 + 0.93162n1 + l.2902n3 + 0.78252n4+]l(n · S) = 0.026 

where n = total number of pods recorded, 
n, = number of pods of size i, i = I, 2, 3, 

and n4+ = number of pods of size four or more. 
The revised abundance estimate was thus found as follows. Counts of 

numbers of pods by watch period were combined across the two stations, 
so that each pod detected by at ]east one station contributed a frequency 
of one. The Hermite polynomial model was applied to these counts, to 
obtain a multiplicative correction factor .fr to the number of pods 
detected for whales passing at night or during poor weather. The 
correction for different rate of passage at nightf,. was then made. Next, 
the multiplicative correction 1: was applied, to allow for pods passing 
undetected during watch periods. The estimated number of pods wlls 
then multiplied by the mean pod size, and by the correction factor J; 
for underestimation of pod size, to obtain the estimate of the number 

Table 6.7 Estimates of abundance and of intermediate parameters, California 
grey whales, 1987-88 

'"' % contribution 515% confidence 
Parameter Estimate error lo vaf(N) interval 

£(Number of pods seen by at least 35513 98 J9 (3406, 3790) 
one station) " £(11) 
Correc1ion for pods passing outside 2.418 0,007 0 (2.405, 2.431) 
watch periods, /1 
Correction for night passage rate,/n 1.020 0.023 27 (0.\176, 1.066) 
Correction for pods missed during 1.063 0 004 (l.OS4, 1.072) 
watch periods, fm 
Total number of pods passing '419 337 {8781, 10 104) 
Monterey 
Mean recorded pod size !.959 0.020 5 (J.5120, 1.999) 
Correction for bias in recorded pod 1.131 0.026 28 ( J.081. 1.183) 
size, Is 
Total number of whales passing 20869 913 (19 156, 22 736) 
Monterey 
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Table 6.8 Estimated number of pods, pod size and number of whales by year. 
(Standard error~ in paremheses.) For any given fit, the number of parameters 
is two greater than the number of terms, corresponding to the two parameters 
of the normal key 

Sample Estimated E51imated Relative Abso[Ule 
Year No. of ' size no. of abundance abundance ' average 

terms (df] ( pods) ''"'' pod size estimate estimate 

1967---08 4 83.0 903 4051 2.438 9878 12921 
(45] (253) (0.063) (667) (964) 

1968---69 0 70.6 1079 4321 1135 9227 12070 
[61] (134) (0.046) (348) (594) 

1969-70 104.5 1245 4526 2.128 9630 12597 
[671 (155) (0.043) (383) (640) 

1970-71 2 116.2 1458 40'1 2.021 8185 10707 
1901 (115) (0.033) (267) (487) 

1971-72 0 71.3 857 3403 2.193 7461 9760 
[56] (127) (0.048) (323) (524) 

1972-73 4 91.5 1539 5279 2.187 11543 15099 
[71] (152) (0.034) (378) (688) 

1973-74 4 133.7 1496 5356 2.098 11235 14696 
IMI (186) (0.034) (431) (731) 

1974--75 0 159.2 1508 4868 2.034 9904 12955 
(74] (174) (0.035) (394) (659) 

1975-76 2 JOI.I 1187 5354 2.073 11100 14520 
[47] (218) (0.039) (497) (796) 

1976--77 0 139.7 "" 5701 2.052 11700 15304 
[87] (153) (0.028) (353) (669) 

1977-78 0 S0.2 657 7001 1.843 12904 16879 
[ 3 I I (356) (0.046) (731) (1095) 

1978-79 4 152.9 1730 4970 2.016 10018 13104 
[84] (159) (0.034) (361) (629) 

1979--80 4 109.3 1451 6051 2.068 12510 16364 
15~ (220) (0.033) (498) (832) 

19~5 3 105.2 1756 7159 2.290 16393 21443 
{49] (301) (0.038) (740) (1182) 

1985----86 141.4 1796 6873 2.237 15376 20113 
(104] (191) (0.042) (SIS) (927) 

1987-88N 3 205.9 2426 7756 2.040 15825 
(92] (221) (0.027) (497) 

1987---88S 3 152.8 2404 7642 2.104 16082 
[91] (194) (0.029) (464) 

1987---88 15954 20869 
(average) (481) (913) 

of whales passing Monterey during the 1987-88 migration. Thus the 

abundance estimate for 1987-88 is given by 

fl=n-i,-J,.-jm·S-]s 

with 
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cv(N) = ✓ { [cv(n)f + [cv(_fi)j2 + [cv(j,)12 + [cv(/m)J2 + [cv(s)f + [cv(i,)]2} 

Table 6.7 shows the different components to the estimate N. Combining 
them, estimated abundance is 20 869 whales, with cv(N) ""0.0437 and 
approximate 95% confidence intervaJ (19 200, 22 700). 

Buckland and Breiwick (in press) scaled their relative abundance 
estimates for the period 1967-68 to 1987-88 to pass through an absolute 
abundance estimate for 1987-88. Rescaling them to pass through the 
revised estimate above yields the estimates of Table 6.8. Figure 6.11 plots 
the absolute abundance estimates and shows the estimated increase in 
abundance assuming an exponential model with non-zero asymptote. The 
estimated mean annual rate of increase is 3.3% per annum (se == 0.4%). 

6.13 Point-to-object and nearest neighbour methods 

The term 'distance sampling' has been used by botanists in particular 
to describe methods in which a random point or object is selected, and 
distances from it to the nearest objcct(s) are measured. A discussion of 
these methods was given by Digglc (1983: 42-4). In the simplest case. 
the distance y to the nearest object is measured; y is a random variable 
with a pdf, say f(y). However, there is no detection function; the nearest 
object will be detected with probability one. This is very different from 
the distance sampling from which this book takes its title, for which 
there is also a sample of distances y with pdf f(y). The two pdfs can 
be very similar mathematically. but they are conceptually very different. 
It is the concept of a detection function that distinguishes the distance 
sampling of this book. Hence we do not describe point-to-object and 
nearest neighbour methods in detail here. 

For point-to-object and nearest neighbour methods, if the distribution 
of objects is random, then object density is estimated by 

kn D=-=
k 

•L 

where k = number of random points or objects, 
n = number of point/object-to-object distances measured at each 

point or object, 
'ii= distance of ith nearest object to the )th random point or 

object, i= I, .... n; )=I, ... , k. 
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Fig. (i.11. Estimates of abundance by year of California grey whales, and 
predicted abundance from a weighted exponential regression of abundance 
estimates on year. Year 1967 signifies winter 1967-68, etc 

When the distribution of objects is overdispcrscd (i.e. aggregated), 
density is underestimated if distances are measured from a random 
point, and overestimated if distances are measured from a random object. 
An average of the two therefore tends to have lower bias than either 
on its own. Diggle (1983) listed three ad hoc estimators of this type. 

Some authors have used point-to-object distances only, together with 
a correction factor for non-Poisson distribution (Batcheler 1975; Cox 
1976; Warren and Batcheler 1979), although Byth (1982) showed by 
simulation that the approach can perform poorly. 

Nearest neighbour and point-to-object methods have been used prim
arily to measure spatial aggregation of objects, and to test the assump
tion that the spatial distribution is Poisson. Their sensitivity to 
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departures from the Poisson distribution is useful in this context, but 
renders the methods bias-prone when estimating object density. Except 
in special cases, such as estimating the density of forest stands (Cox 
1976), we do not recommend these methods for density estimation. Their 
disadvantages are: 

I. All objects out to the nth nearest to the selected point or object must 
be detected. In areas of low density, this may require considerable 
search effort. 

2. It can be time-consuming to identify which are the n nearest objects, 
and at lower densities it may prove impractical or impossible to 
determine them. 

3. The effective area surveyed cannot be easily predicted in advance, 
and is highly correlated with object density; a greater area is covered 
in regions of low object density. By contrast, good design practice 
in line and point transect surveys ensures thal area covered is 
independent of object density within strata, leading to more robust 
estimation of average object density. 

Point transects and point-to-object methods may both be considered 
as generalizations of quadrat counts. In both cases, the quadrat may be 
viewed as circular. For point transects, the area searched, a= kmv2, is 
fixed (and possibly infinite), but the observer is not required to detect 
all objects in that area. For point-to-object methods, the number of 
objects n to be detected from each point is fixed, but the radius about 
each point is variable; all objects within that radius must be detected. 
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Study design 
and field methods 

7 .1 Introduction 

The analysis methods presented in Chapters 3-5 depend on proper field 
methods, a valid design, and adequate sample size. This ch.apter presents 
broad guidelines for the design of a distance sample survey and outlines 
appropriate field methods. In general, a statistician or quantitative 
person experienced in distance methods should be consulted during the 
initial planning and design of the study. Just as important is the need 
for a pilot study. Such a preliminary study will provide rough estimates 
of the encounter rate 11/L (line transect sampling) or nlk (point transect 
sampling), and of variance components from which refined estimates of 
n and of L or k for the main study are obtained. Additionally, oper
ational considerations can be reviewed and training of participants can 
occur. A pilot study is strongly recommended as it can provide insights 
into how best lo meet the important assumptions. 

Careful consideration should be given to the equipment required to 
allow collection of reliable data. This may include range finders, bino
culars with reticles, angle boards or rings, a camera, a compass, and 
various options for an observation platform, which might vary from 
none (i.e. one pair of feet) to a sophisticated aircraft or ship, or even 
a submersible (Fig. 7.1). 

The primary purpose of material presented in this chapter is to ensure 
that the critical assumptions are met. Considerable potential exists for 
poor field procedures to ruin an otherwise good survey. Survey design 
should focus on ways to ensure that three key assumptions are true: 
g(O) = I, no movement in response to the observer prior to detection, 
and accurate measurements (or accurate allocations to specified distance 
categories). If the population is clustered, it is import.tot that cluster 
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Fig. 7.1. Line transect sampling can he carried out from several different types 
of observation platform. Here, a two-person submersible is being used to survey 
rockfish off the coast of Alaska. Distances are measured using a small, hand•held 
sonar gun deployed from inside the submersible. 

size be determined accurately. In addition, a minimum sample size (n) 
in the 60-80 range and g(y) with a broad shoulder are certainly 
important considerations. Sloppiness in detecting objects near, and 
measuring their distance from, the line or point has been all too 
common, as can be seen in Section 8.4. In many line and point transect 
studies, the proper design and field protocol have not received the attention 
deserved. 

Traditional strip transects and circular plots should be considered in 
early design deliberations. These finite population sampling methods 
deserve equal consideration with the distance sampling methods. How
ever, if there is any doubt that all objects within the strip or circle are 
detected, then distances should be taken and analysed (Burnham and 
Anderson 1984). The tradeoffs of bias and efficiency between strip 
transects and line transects have been addressed (Burnham el al. 1985). 
Other sampling approaches should also be considered; Seber (1982, 
1986) provided a compendium of alternatives and new methods are 
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occasionally developed, such as adaptive sampling (Thompson 1990). A 
common alternative for animals is capture-recapture sampling, but 
Shupe et al. (1987) found that costs for mark-recapture sampling 
exceeded those of walking line transects by a factor of three in rangeland 
studies in Texas. Guthery (1988) presented information on time and cost 
requirements for line transects of bobwhite quail. 

If all other things were equal, one would prefer line transect sampling 
to point transect sampling. More time is spent sampling in line transect 
surveys, whereas more time is often spent travelling between and locat
ing sampling points in point transect sampling (Bollinger et al. 1988). 
In addition, it is common to wait several minutes prior to taking data, 
to allow the animals (usually birds) time to readjust to the disturbance 
caused by the obs"erver approaching the sample point. Point transect 
sampling becomes more advantageous if the travel between points can 
be done by motorized vehicle, or if the points arc established along 
transect lines, with fairly close spacing (i.e. rather than a random 
distribution of sampling points throughout the study area). If the study 
area is large, the efficient utilization of effort may be an order of 
magnitude better for line transect surveys. This principle is reinforced 
when one considers the fact that it is objects on or near the line or 
point that are most important in distance sampling. Thus, in distance 
sampling, the objects seen at considerable distances (i.e. distances y such 
that g(y) is small, say less than 0.1) from the line or point contain 
relatively little information about density. In pomt transect surveys, the 
count of objects beyond g(r) = 0.1 may be relatively large because the 
area sampled at those distances is so large. 

Point transect sampling is advantageous when terrain or other vari
ables make it nearly impossible to traverse a straight line safely while 
also expending effort to detect and record animals. Multispccics song
bird surveys in forest habitats are usually best done using point transect 
sampling. Point transects may often be more useful in patchy environ
ments, where it may be desirable to estimate density within each habitat 
type; it is often difficult to allocate line transects to allow efficient and 
unbiased density estimation by habitat. One could record the length of 
lines running through each habitat type and obtain estimates of density 
for each habitat type (Gilbert et al. in prep.). However, efficiency may 
be poor if density is highly variable by habitat type, but length of 
transect is proportional to the size of habitat area. Additionally, habitat 
often varies continuously, so that it is more precisely described at a 
single point than for a line segment. Detection may be enhanced by 
spending several minutes at each point in a point transect, and this may 
aid in ensuring that g(O) = I. Remaining at each point for a sufficient 
length of time is particularly important when cues occur only at discrete 
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times (e.g. bird calls). Some species may move into the sample area if 
the observer remains at the site too long. Even in line transect sampling 
the observer may want to stop periodically to search for objects. 

7.2 Survey design 

Survey design encompasses the placement (allocation) of lines or points 
across the area to be sampled and across time. The population to be 
sampled must be clearly defined and its area delimited. A good map or 
aerial photo of the study area is nearly essential in planning a survey. 
An adequate survey must always use multiple lines or points (i.e. 
replication). Consideration must be given to possible gradients in den
sity. If a substantial transition in density is thought or known to exist, 
it is best to lay the lines parallel to the direction of the gradient (Fig. 
I .4). This would also be true if points were to be placed systematically 
along lines. Alternatively. spatial stratification of the study area might 
be considered. For example, if two main habitat types occurred in the 
area of interest, one might want to estimate density in each of the two 
habitat types. A consideration here is to be sure that adequate sample 
size is realized in both habitat types. If little is known a priori, the strata 
(i.e. habitat types) should be sampled in proportion to their size. 
Detection probability often varies with topography, habitat type, and 
density of objects of interest. Proper design, such as the approaches 
suggested below, will cope with these realities. 

It was often thought that an observer could roam through an area 
and record only the sighting distances r; to each object detected. This 
type of cruising may lead to nearly useless data and unreliable density 
estimates (Burnham et al. 1980; Hayes and Buckland 1983). 

7.2.1 Transect layout 

Several options exist for the layout of individual lines in a line transect 
survey or points in a point transect survey. A favoured and practical 
layout is a systematic design using parallel transects, with a random 
first start (e.g. Figs 1.4 and 1.6). Then transects extend from boundary 
to boundary across the study area and are usually of unequal length. 
Transects are normally placed at a distance great enough apart to avoid 
an object being detected on two neighbouring transects, although this 
is not usually critical. Care must be taken such that the transect direction 
does not parallel some physical or biological feature, giving an unrep
resentative sample. For example, if all the lines were on or near fence 
rows. the sample would be clearly unrepresentative (Guthery 1988). 
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A common mistake is to have lines follow established roads or corridors. 
If there is a strong density gradient perpendicular to a linear physical 
feature, then a design in which lines are parallel to this gradient, and 
hence perpendicular to the linear feature, should be considered. 

A second approach might be to lay out a series of contiguous strips 
of width 2w, pick k of these at random, and establish a line or point 
transect in the centre of each selected strip. Thus, transects would be 
parallel, but the spacing between transects would be unequal. In some 
sense, theory would suggest that a valid estimate of the sampling 
variance could be obtained only with a completely random sample. 
However, the precision of the systematic sample is often superior to 
random sampling. There is no compelling reason to use randomly placed 
lines or points, although a grid of lines or points should be positioned 
randomly, and oriented either randomly or perpendicular to density 
contours. Designs that permit overlapping transects should probably be 
avoided except in specialized cases; this requirement limits the number 
of possible layouts. Also, designs that require extensive and time
consuming travel between transect lines or points are inefficient. 

A third approach is to establish a system of rectangles, whereby the 
observer travels the perimeter searching for objects along the line or 
around the points along the line (Fig. 7.2). This allows, for example, 
an observer on foot to return to a vehicle without losing time walking 
between transects. This design may be advantageous where a system of 
roads exists on the study area. The position of the sample rectangles 
can be selected in several ways (e.g. the southwest corners of the 
rectangles could be selected at random or they could be placed system
atically with a random first start). Many parts of central and western 
North America have roads on a I-mile grid, 'section lines', making this 
design easy to implement in the field. 

Transects should not be deliberately placed along roads or trails, as 
these are very likely to be unrepresentative. Transects following or 
paralleling ridgetops, hedgerows, powerlines, or stream bottoms are also 
likely to be unrepresentative of the entire area. We strongly recommend 
against biasing samples towards such unrepresentative areas. Transects 
placed subjectively (e.g. 'to avoid dense cover' or 'to be sure the ridge 
is sampled') are poor practice, and should always be avoided. 

The design of point transects would best be done, from a statistical 
viewpoint, completely randomly (ignoring, for the moment, any need to 
stratify). This follows from sampling theory whereby the layout of plots 
(circular or rectangular) should be placed at random. However, in this 
random design, the amount of time to travel from point to point is 
likely to be excessive and occasional pairs of points may be quite close 
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Fig, 7.2. A practical design for line or point transect surveys is to establish a 
series of rectangles for which the perimeters (or points along the perimeter) are 
sampled. This design is useful when a network of roads exists on the 5tudy area. 
A might be appropriate for surveys where density in undisturbed habitats is of 
intt:rest, while 8 would be useful in studies of the entire area. Many landscapes 
have extensive habitat along roads and associated roadsides, fenct: rows, borrow 
pits, etc. Perimeter areas to be surveyed can be established at random or 
systematically with a random first start. 

together. This consideration has led ornithologists, in particular, to place 
a series of points along a transect line. Thus, there might be 20 lines, 
each having, say, 10 sampling points. These should not be analysed as 
if they are 200 independent samples; one must be certain that the 
estimated sampling variance is correctly computed, by taking the tran
sect line of 10 points as the sampling unit. Points could be established 
at grid intersections of a rectangular grid to achieve a systematic design. 
Again, the problem here might be the amount of time required to travel 
from point to point. One might spend 30 minutes walking between 
successive points and only 5-10 minutes sampling objects at each point. 

Detection probability often varies with topography, habitat type, and 
the density of objects of interest. Proper design, such as the approaches 
suggested above, will cope with these realities. 

If the survey is to be repeated over time to examine time trends in 
density, then the lines or points should be placed and marked perma
nently. Sampling of duck nests at the Monte Vista National Wildlife 
Refuge has been done annually for 27 years using permanent transect 
markers set up in 1963 (numbered plywood signs atop 2.5 m metal 
poles). Repeated sampling should be done at time intervals large enough 
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so that the stochastic errors of successive samples arc not highly de
pendent. If an area is to be sampled twice within a short time period, 
one could consider using a system of transects running north-south on 
the first occasion and another set of transects running east-west on the 
second occasion. This scheme, although using overlapping transects. 
might give improved coverage. However, other schemes might be con
sidered if a strong gradient in density was suspected. 

Point transects should also be permanently marked if the survey is to 
be repeated. One must be cautious that neither the objects of interest 
nor predators are attracted to the transect markers (e.g. poles and signs 
would not be appropriate for some studies if raptors used these markers 
for perching and hunting). A good cover map would aid in establishing 
sample points and in relocating points in future surveys. In addition, a 
cover map or false colour infrared image might be useful in defining 
stratum boundaries. 

If there are smooth spatial trends in the large-scale density over an 
area, then systematically placed lines or points are better than random 
placement. Ideally, the analysis would fit these trends by some means 
and derive the variance from the model residuals (Burdick 1979). This 
topic is addressed in Section 6.3, but is in need of more theoretical 
development. 

No problem arises if a stationary object 1s detected from two different 
lines or points. If an animal moves after detection from one line or 
point to another in a short time period (e.g. the same day), then this 
may become problematic if it happens frequently and is in response to 
the presence of the observer. Some sophisticated surveys are designed 
to obtain double counts of the same object from independent platforms, 
to allow estimation of g(O) or to correct for the effects of movement 
(Section 6.4). 

7.2.2 Sample size 

A basic property of line and point 1ransect sampling theory is that it is 
the absolute size of the sample that is important when sampling large 
populations, not the fraction of the population sampled. Thus. if 
L = 2400 m (corresponding to, say, n = 90) was sufficient for estimating 
the density of box turtles on a square kilometre of land, it would also 
be sufficient for the estimation of density on 25 square kilometres of 
land (assuming the sampling was done at random with respect to the 
turtle population). Thus, it would not take 25 x 2400 m of transect to 
sample the 25 square kilometres area. 

The size n of the sample is an important consideration in survey 
design. If the sample is too small, then little information about density 
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is available and precision is poor. Verner (1985) notes that some surveys 
have had very small sample sizes (n:::: IO); almost no information about 
density is contained in so few observations and little can be done 
regardless of the analysis method used. If the sample 'is too large, 
resources might have been used more advantageously elsewhere. 

As a practical minimum, n should usually be at least 60-80. Even 
then, the components of variance associated with both n and j(O) (line 
transects) or h(O) (point transects) can be large. If the population is 
clustered, the sample size (i.e. the number of clusters detected) should 
be larger to yield similar precision for the abundance estimate of 
individuals, substantially so if the variance of cluster size is large. If 
there is a target cv for the density estimate of 25% and n = l00 would 
achieve this for the density of clusters, then a larger n is needed to yield 
a cv of 25% for the density of individuals. This increase is because 
variation in cluster size increases the cv of the density estimate for 
individuals. The variance component associated with cluster size is rarely 
the largest component. 

Sample sizes required are often quite feasible in many survey situations. 
For example, in aerial surveys of pronghorn (Antilocapra americana), 
it is possible to detect hundreds of clusters in 15-20 hours of survey 
time. The long-term surveys of duck nesting at the Monte Vista National 
Wildlife Refuge have detected as few as 41 nests and as many as 
248 nests per year over the past 27 years. Effort involved in walking 
approximately 360 miles per year on the refuge requires about 47 person 
days per year. Cetacean surveys may need to be large scale to yield 
adequate sample sizes; in the eastern tropical Pacific, dolphin surveys 
carried out by the US National Marine Fisheries Service utilize two 
ships, each housing a cruise leader and two teams of three observers, 
together with crew members, for 4-5 months annually. Even with this 
effort, sample sizes are barely sufficient for estimating trends over eight 
or more years with adequate precision, even for the main stock of 
interest. 

Sample size in point transects can be misleading. One might detect 60 
objects from surveying k points and believe this large sample contains 
a great deal of information about density. However, the area sampled 
increases with the square of distance, so that many of the observations 
are actually in the tail of g(r) where detection probability is low. 
Detections at some distance from the point may be numerous partially 
because the area sampled is relatively large. Thus, sample size must be 
somewhat larger for point transect surveys than line transect surveys. 
As a rough guideline, the sample size for point transects should be 
approximately 25% larger than that for line transect surveys to attain 
the same level of precision. 
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Generally, w ·should be set large in relation to the expected average 
distance (either E(x) or E(r)). The data can be easily truncated during 
the analysis, but few (if any) detected objects should be ignored during 
the actual field survey because they are beyond some preset w, unless 
distant detections are expensive in terms of resources. For example, 
dolphin schools may be detected during shipboard surveys at up to 12 
km perpendicular distance. These distant sightings add little to estima
tion and are likely to be truncated before analysis, so that the cost of 
taking these data is substantial (closing on the school, counting school 
size, determining species composition) relative to the potential value of 
the observations. A pilot study would provide a reasonable value for w 
for planning purposes. 

Although we focus discussion here on sample size, the line or point 
is usually taken as the sampling unit for estimating the varianc~ of 
encounter rate, and often of other parameter estimates. Thus a sample 
size of n = 200 objects from just one or two lines forces the analyst to 
make stronger assumptions than a smaller sample from 20 short lines. 
The strategy of dividing individual lines into segments, and taking these 
as the sampling units, can lead to considerable underestimation of 
variance (Section 3.7.4). 

(a) Line transects The estimation of the line length to be surveyed 
depends on the precision required from the survey and some knowledge 
of the encounter rate (no/ Lr,) from a pilot study or from comparable 
past surveys. Here it is convenient to use the coefficient of variation, 
cv(i>) = f.e(b)I D, as a measure of precision. One might want to design 
a survey whereby the estimated density of objects would have a coeffi• 
dent of variation of 0.10 or 10%; we will denote this target value by 
cvr(i>). Two general approaches to estimating line length are outlined. 

First, assume that a small-scale pilot study can be conducted and 
suppose n0 objects were detected over the course of a line (or series of 
lines) of total length Lr,. For this example, let n0 = 20 and Lo= 5 km. 
This information allows a rough estimate of the line length and, thus, 
sample size required to reach the stated level of precision in the estima
tor of density. The relevant equation is 

where 
va,{ /(OJ)} 
(/(0)}' 
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While a small pilot survey might be adequate to estimate L0/no for 
planning purposes, the estimation of b poses difficulties. However, the 
value of b appears to be fairly stable and Eberhardt (1978b) provided 
evidence that b would typically be between 2 and 4. Burnham el al. 
(1980: 36) provided a rationale for values of bin the range l.5-3. They 
recommended use or a value or 3 for planning purposes, although 2.5 
was tenable. They felt that using a value or 1.5 risks underestimating 
the necessary line length to achieve the required precision. Another 
consideration is that b will be larger for surveys where the detection 
function has a narrow shoulder. Here we use b"" 3 so that 

L = ( (/1)2) ( io) = 75.o km 

Equating the following ratios 

and solving for n gives n = 300; the proper interpretation here is that 
we estimate that there will be 300 detections given L = 75 km, although 
the actual sample size will be a random variable. Thus, to achieve a 
coefficient of variation of 10% one would need to conduct 75 km of 
transects and expect to detect about 300 objects. 

A pilot study to estimate L0/n0 can be quite simple. No actual 
distances are required and no can be as small as, perhaps, 10. Thus, one 
could traverse randomly placed transects of a predetermined length Lo 
and record the number of detections no in estimating (L0/n0). The value 
of w used in the pilot study should be the same as that to be used in 
the actual survey. Alternatively, the ratio might be taken from the 
literature or from one's experience with the species of interest. Of course, 
the results from the first operational survey should always be used to 
improve the survey design for future surveys. 

Second, if the pilot survey is quite extensive, then b can be estimated 
from the data as b,;,, 11-0 • (cv(b))" (Burnham et al. 1980: 35). From this 
more intensive pilot survey, the coefficient of variation is computed 
empirically and denoted as cv(b). Substituting b into Equation 7.1, the 
line length required to achieve the target precision is given by 

Lri(cv(b))' 
L~- -

(cv,(b)) 2 
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For this approach to be reliable, n0 should be in the 60-80 range; it is 
perhaps most useful when refining the second year of a study, based on 
the results from the first survey year. 

Many surveys are limited by money or labour restrictions such that 
the maximum line length is prespecified. Thus, it is advisable to compute 
the coefficient of variation to assess whether the survey is worth doing. 
That is, if the cv(b) is too large, then perhaps the survey will not provide 
any useful information and, therefore, should not be conducted. The 
equation to use is 

For the example, if practical limitations allowed only L = 10 km, 

( 3 )"' cv(f>) = I0{
2
0/S) = 0.274 or roughly 27% 

The investigator must then decide if this level of precision would 
adequately meet the survey objectives. If for example b = 100, then 
an approximate 95% log-based confidence interval would be [59, 169]. 
This information might still be useful because the encounter rate is quite 
high in this example. 

If animals occur in clusters, the above calculations apply to precision 
of the estimated density of clusters. That is, D becomes D, , the number 
of animal clusters per unit area. For clustered populations, a pilot survey 
yields an estimate of the standard deviation of cluster size, 

" ✓ 2,(s;-S)' 
sd(s) =' --_-'-n--~I~ 

The coefficient of variation of mean cluster size for a survey in which 
n clusters are detected is then 

5e(s)IS= sd(s)/(S · ✓ n) 

For the case of cluster size independent of detection distance, we have 

1cv(b)}2 = {cv(bs)}2 + [ sd:sir ! (7.2) 
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Now we substitute n = L . - 2 b Lo (n0/L0) and {cv(Ds)} =I,· no to get 

We must select a target precision, say cv(iJ) = cv1. Solving for L gives 

(7.3) 

Suppose that a coefficient of variation of 10% 1s required, so that 
cv, = 0.1. Suppose further that, as above, no= 20, L, = 5 and b = 3, and 
in addition sd(s)/S = I. Then 

L = 5 • (3 +I)= 100 km 
20. o.11 

rather than the 75 km calculated earlier for 10% coefficient of variation 
on b,. 

Paradoxically, these formulae yield a more precise estimate of popu
lation size for a population of (unknown) size N = l000 animals, for 
which 50 animals are detected in 50 independent detections of single 
animals, than for a population of l000 animals, for which 500 animals 
are detected in 50 animal clusters, averaging IO animals each. This is 
partly because finite population sampling theory is not usect here. If it 
was. variance for the latter case would be smaller, as 50% of the 
population would have been surveyed, compared with just 5% in. the 
first case. A disadvantage of assuming finite population sampling is that 
il must be assumed that sampling is without replacement, whereas 
animals may move from one transect leg to another or may be seen 
from different legs. Use of finite population corrections is described in 
Section 3.7.5. 

In some studies, animals occur in loose agglomerations. In this cir
cumstance, it may be impossible to treat the population as clustered, 
due to problems associated with defining the position (relative to the 
centreline) and size of animal clusters. However, if individual animals 
are treated as the sightings, the usual analytic variance estimates are 
invalid, as the assumption of independent sightings is seriously viol
ated. Resampling methods such as the bootstrap (Section 3.7.4) allow 
an analysis based on individual animals together with valid variance 
estimation. 
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(b) Point transects The estimation of sample size and number of points 
for point transect surveys is similar to that for line transects. The 
encounter rate can be defined as the expected number of detections per 
point, estimated in the main survey by nlk. Given a rough estimate 
n0fko from a pilot survey and the desired coefficient of variation, the 
required number of sample points can be estimated as 

k,( b )·(k") 
(cv(.i)))2 I¾ 

(7.4) 

As for line transect sampling, b may be approximated by no multiplied 
by the square of the observed coefficient of variation for b from the 
pilot survey. If the pilot survey is too small to yield a reliable coefficient 
of variation, a value of 3 for b may again be assumed. If the shoulder 
of the detection function is very wide, this will tend to be conservative, 
but if detection falls off rapidly with distance from the point, a larger 
value for b might be advisable. Some advocates of point transects argue 
that detection functions for point transect data are inherently wider than 
for many line transect data sets, because the observer remains at each 
point for some minutes, ensuring that all birds within a few metres of 
the observer are recorded, at least for most species. For line transects, 
the observer seldom remains still for long, so that probability of detec
tion might fall away more rapidly with distance from the line. 

Having estimated the required number of points k, the number of 
objects detected in the main survey should be approximately k • nofko. 
Suppose a pilot survey of IO points yields 30 detected objects. Then, if the 
required coefficient of variation is 10% and b is assumed to be 3, the 
number of points for the main survey should be k = (3/0.1 2

) • (10/30) = 
100, and roughly 300 objects should be detected. 

The above calculations assume that the points are randomly located 
within the study area, although these procedures are also reasonable if 
points are regularly spaced on a grid, provided the grid is randomly 
positioned within the study area. If points are distributed along lines 
for which separation between neighbouring points on the same line is 
appreciably smaller than separation between neighbouring lines, preci
sion may prove to be lower than the above equations would suggest, 
depending on variability in density; if objects are distributed randomly 
through the study area, precision will be unaffected. 

Point transects have seldom been applied to clustered populations, 
although no problems arise beyond those encountered by line transect 
sampling. Equation 7.2 still applies, but the expression n = k • nolko 
should be substituted. giving 
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In Equation 7.4, {cv(b)} 2 is replaced by {cv(.bs)}2
• Solving for 

{cv(bs)}2 and substituting in the above gives 

[ {- )'] - 2 I ko sd(s) {cv(D)} = - • - - b + -_-
k n0 s 

Selecting a target precision cv(b) = cv1 and solving for k gives 

k _ k0 {b + [sd(s)/Sf} 
- 11() - cvf (7.5) 

Continuing the above example, now with clusters replacing individual 
objects, the number of points to be surveyed is 

{3 + [sd(s)/S]2} 
30-0.1 2 

If the pilot survey yielded sci(s)IS= I (a plausible value), then 

k= 10-(3+1)=133 
30,0.1 2 

so that roughly 133 points are needed. 

7.2.3 Stratification 

Sampling effort can be partitioned into several strata in large-scale 
surveys. This allows separate estimates of density in each stratum (such 
as different habitat types). Sampling can be partitioned into temporal 
strata during the day or seasonaJiy. Post-stratification can be used in 
some cases. For example, the individual lines can be repartitioned by 
habitat type, based on a large-scale aerial photo on which line locations 
are drawn accurately. Thus, estimates of density by habitat type can be 
made. For example, Gilbert et al. (in prep.) used a geographic informa
tion system (GIS) in this manner for the long-term nesting studies of 
waterfowl at the Monte Vista National Wildlife Refuge. 

308 



SURVEY DESIGN 

For slratified survey designs. the formulae for sample size determina
tion are more complex. The starting point for a given stratum is the 
formula 

Each of the two coefficients of variation is proportional to 1/E(n), hence 

va,(D) = JY [_b,_ + _b,_l 
E(n) E(n) 

where h1 = var(n)/ E(n) and b2 = E(n). var{i(0)}/{/(0)}2 

Now use 

to get 

E(n)"' 2LD 
/(0) 

var(b) = D2 [ (b1 ;i1((0)] 

=[f][(b,+~,)/(0)] 

If, over the different strata, the detection function is the same, then 
/(0) and b2 will be the same over strata. This is often a reasonable 
assumption. It is plausible that b1 may be constant over strata; this can 
be checked by estimating b1 = var(n)/ E(n) in each stratum. If these 
conditions hold, then for stratum v, 

• [D"] var(Dv) = L,, K 

for some K. which can be eslimated. To allocate total line length effort, 
L = I: Lv, we want to minimize the sampling variance of the estimated 
total number of objects in all strata, N = I: Av bv, where Au is the size 
of area v and summation is over v = I, 2, ... , V. If we prelend that each 
bv is independently derived (it should not be under these assumptions), 
then 
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var(N) = L [Au]2 var(iU 

"KI [A,J' [ f:] (7.6) 

For fixed L, it is easy to minimize Equation 
Lv. The answer is expressible as the ratios 

7.6 with respect to the 

L 0 Av ✓Dv 
y=LAv ✓Dv 

(7.7) 

The total effort L comes from 

(7.8) 

Formula 7.7 shows that allocation proportional to ✓D0 is not unreas
onable if stratum sizes are similar. The result in Equation 7.7 is derived 
under an inconsistency in that given the assumptions made, f(O) should 
be based on all distance data pooled and the estimators would look like 

and 

(7.9) 

The first order approximate variance of Equation 7.9 is expressible as 

from which we get an expression for the coeffici~nt of variation of N 
in this case of using pooled distances to get one /(0): 

cv(N) a [b,/(0)] [ I + RI p; l 
2L L 1tv Dv 1tv Dv 

(7.10) 
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where 

and the relative line lengths by stratum are 

Thus, given L, the allocation problem is to minimize Equation 7.10. 
We can use the Lagrange multiplier method to derive the equations 

to be solved for the optimal Tti. n1, ... , Ttv. Those equations can he 
written as 

j= I, ... , V 

Fixed point theory can sometimes be used to solve such equations 
numerically; in this case, it seems to work well. The previous V equations 
are rewritten below and one must iterate until convergence to compute 
the Ttr This method is related to the EM algorithm in statistics (Demp
ster et al. 1977; Weir 1990). 

j=l, ... ,V 

We programmed these in SAS, explored their behaviour, and concluded 
that a good approximation to the optimal Ttj is to use Ttj = p1, 

j = I, 2,. V. Thus, approximately in this case of pooled distance data, 

(7.11) 

Note the relationship between Equations 7.l 1 and 7.7. Optimal relative 
line lengths (i.e. 1t 1, .•• , 1tv) should fall somewhere between the results 
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of Equations 7.7 and 7.11; the exact values of 7ti. .... , 7tv are not as 
critical to the precision of .iJ1, ••. , Dv as the total line length L. 

7.2.4 Trapping webs 

Trapping webs represent an application of point transect theory (An
derson et al. 1983). The method has been evaluated by computer 
simulation (Wilson and Anderson 1985b) and on known populations of 
beetles (Parmenter et al. 1989) and has performed well. The method was 
conceived for use in trapping studies of small mammals where the 
estimation of population density was of interest. The use of distance 
sampling theory relaxed the assumptions of traditional capture-recapture 
models (essentially ball and urn models). The method may perform well 
for populations whose members move relatively little or have somewhat 
fixed home ranges. Populations of individuals that move randomly over 
areas large in relation to the trapping web are problematic. In this 
respect, the positive results found by Parmenter et al. (1989) may have 
been somewhat fortuitous, or at least, require some alternative analysis 
methods (Section 6.11). 

The design of studies using the trapping web approach should be laid 
out as in Fig. 1.7. As with point transects, some movement of objects 
through time will result in objects being overrepresented by the traps 
near the centre of the web, thus leading to overestimation of population 
density. Placing additional traps near the centre of the web may exacer
bate this overestimation, and is not now recommended. Use of at least 
eight lines is suggested, and 10, 12 or even 16 might be considered. 
Guidelines for the number of traps are less well defined, although a 
practical objective is to obtain a sample of trapped animals of at least 
60-80, and preferably around n = 100. A pilot study using 100-150 traps 
may often lead to insight on the number required to achieve an adequate 
sample size. A variety of traps can be used, including snap, live or pitfall 
traps. Animals, of course, do not have to be marked, unless they are 
to be returned to the population and thereafter ignored in future samples 
('removal by marking'). Simple marking with a felt-tip pen will often 
suffice. 

Trap spacing remains to be studied and we offer only the guideline 
that traps be spaced along the lines at a distance roughly equal to half 
the home range diameter of the species being studied. Wilson and 
Anderson (I 985b) suggested 4.5-8 m spacing for mice, voles or kangaroo 
rats and 8-12 m spacing for larger mammals such as rabbits or ground 
squirrels. Commonly, captured animals are removed from the population 
after their initial capture. The field trapping can be done over sequential 
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nights (or days) until it seems clear that no new animals are being caught 
near the centre. Alternatively, if at the centre of the web most animals 
that have been marked and released have subsequently been recaptured, 
then one might conclude that sufficient trapping occasions have been 
carried out. 

Trapping webs can be established using a stake at the web centre and 
a long rope with knots to denote the trap spacing. Then, the investigator 
can travel in a circle laying out traps in roughly straight lines radiating 
from the centre. However, it is not important the traps be on perfectly 
straight lines. In multiyear surveys, the location of each trap is often 
marked by a numbered metal stake. We recommend that recaptures of 
released animals are recorded, and that each trap has a unique number. 
allowing captures to be assigned to traps. These data allow assumptions 
to be assessed, and additional analytic methods, such as bootstrap 
sampling within a web, to be implemented. Further research on the 
trapping web is needed before more detailed guidelines can be given. 
DISTANCE can perform analyses on single or multiple trapping web 
surveys, and provides a useful tool for such research. 

7 .3 Searching behaviour 

Line and point transects are appropriately named because so much that 
is critical in this class of sampling methods is at or near the line or 
point. Search behaviour must try to optimize the detection of objects 
in the vicinity of the line or point, and search effort or efficiency should 
decrease smoothly with distance. The aims are to ensure that the 
detection function has a broad shoulder and the probability of detection 
at the line or point is unity (g(O) = I). 

(a) Line transects In line transect surveys, the above aims might be 
enhanced by moving slowly. emphasizing search effort on and near the 
line, having two or more observers traverse the transects. or using aids 
to detection such as binoculars. In surveys carried out by foot, the 
observer is free to use a trained dog, to walk slowly in clumps of heavy 
cover and faster in low or less suitable cover, or stop frequently to 
observe. The observer may leave the centreline temporarily, provided he 
or she records detection distances from the transect line, not from his 
or her current position. Aerial surveys commonly employ two observers, 
one covering each side of the aircraft, in addition to the pilot, who 
might guard the centreline. Shipboard surveys frequently use three or 
more observers on duty at any one time. In many surveys, it is good 
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practice to look behind occasionally in case an object that was hidden 
on first approach can be seen. 

The survey must be conducted so as to avoid undetected movement 
away or toward the line or point in response to the observer. To achieve 
this, most detection distances should exceed the range over which objects 
might respond to the observer. If a motorized observation platform is 
used, the range of response might be reduced by using platforms with 
quiet motors or by travelling faster. In surveys carried out by foot, the 
observer can ensure more reliable data by moving quietly and unobtrus
ively. Detection distances can be improved by use of binoculars. If 
detection cues are continuous. high power binoculars might be used, for 
example tripod-mounted 25 x binoculars on shipboard surveys of dol
phins that typically occur in large schools. If cues are discrete, for 
example whales surfacing briefly, or songbirds briefly visible amongst 
foliage, lower magnification is necessary, so that field of view is wider. 
Indeed, binoculars are often used only to check a possible detection 
made by the naked eye. In some studies. one observer might scan 
continuously with binoculars while another searches with the naked eye. 
Tape cassette players are sometimes used to elicit calls from songbirds, 
although the observer should avoid attracting birds in towards the 
transect line. (Note that regular use of tape-cassette players in the ter
ritories of some species can cause unacceptable disturbance.) 

Certain types of double counting can be problematic. If the objects 
of interest are immobile objects such as nests, then the fact that a 
particular nest is detected from two different lines or points is fully 
allowed under the general theory. Double counting becomes a potential 
problem only if motile objects are surveyed such that the observer or 
the observation platform chases animals from one line or point to 
another or if animals 'roll ahead' of the observer, hence being counted 
more than once (e.g. 'chain flushes' in surveys of grouse). Movement in 
response to the observer that leads to double counting should be 
recognized and avoided in the planning and conduct of a survey. 

Although the analysis theory allows the observer to search on only 
one side of the line (i.e. b = n • }(0)/ L), we caution against this practice 
unless the animal's position relative to the line can be determined 
reliably and animal movement is relatively minor. If there is a tendency 
to include animals from the non-surveyed side of the line, then counts 
near the line will be exaggerated (this is a special type of heaping) and 
density will be overestimated. Animal movement from one side of the 
line to the other adds further complications and possible bias in the 
estimators. No problem would be anticipated if a single observer searches 
through a side window of an aircraft because there is little chance of 
including animals from the non-surveyed side of the transect (unless, 
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again, undetected movement is taking place ahead of the observer's 
view). However, if lhe aircraft has forward visibility, such as a helicop
ter, there may be a tendency to include animals on both sides of and 
very near to the line into the first distance category. 

Two alternatives exist for aerial surveys where forward visibility is 
good but only one observer is available; both involve searching both 
sides of the line. First, the observer could search a more narrow transect 
(smaller w) on both sides of the line. This procedure would concentrate 
most of the searching effort close to the line and this would help ensure 
that g(O) = 1. Second, and perhaps less satisfactory, the width of the 
transect could be larger on one side of the line than the other side. This 
would result in an asymmetric detection function and could be more 
difficult to model. Theory allows asymmetry in g(x), and, if modelling 
proved too problematic. one could always truncate the distance data 
and alleviate the problem. In al! cases, one should always be cautious 
to make sure that animals close to the line are not missed. Whenever 
possible, more than one observer should be used in aerial surveys. 

Survey design such as searching only one side of the line illustrates 
the importance of carefully considering the assumptions of the theory 
in deciding how best to conduct a survey. Surveying only one side of 
the line makes the assumptions about movement and measurement error 
crucial because they will more directly affect the data near the transect 
centreline. Errors in assigning the detection of an animal to the left or 
right side of the line are irrelevant if both sides of the line are surveyed, 
but they arc critical if only one side is surveyed. Data near the centreline 
are most important in obtaining valid estimates of density. 

(b) Point trnnsects For point transect surveys, the longer the observer 
remains at each point, the more likely is the probability of dete..:tion at 
the point to be unity, and the broader is the shoulder of the detection 
function. This advantage is offset by possible movement of ohjects into 
the sampled area, which leads to overestimation of density. Optimal 
time to spend at each point might be assessed from a pilot study. In 
some cases, it might be useful to observe the point from a short distance 
and record distances to objects of interest before any disturbance caused 
by the approach of the observer. Another option is to wait at the point 
a short period of time before recording, to allow objects to resume 
normal behaviour. As for line transects, binoculars may be useful for 
scanning, for checking possible detections. or for identifying the species. 
Tape cassette recorders may help elicit a response, but as for line 
transects, great care must be taken not to attract objects towards the 
observer. After the recording period, the observer may find it necessary 
to approach an object detected during that period, to identify it. 
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Detection distances can also be measured out before moving to the next 
point. If distances are assessed by eye, the task is made easier by use 
of markers at known distances. 

If the radius of each point is fixed at some finite w, one could consider 
the population 'closed' and use a removal estimator to estimate the 
population size N (White et al. 1982: 101-19). To keep the option of 
this approach open, the time {measured from the start of the count at 
the point) at which each object is first detected should be recorded. The 
count period may then be divided into shorter time intervals, and data 
for each interval pooled across points. The relevant data would be the 
number of objects detected in the first time interval, the number of new 
objects detected in the second time interval, and so on. The theory exists, 
but it has not been used in this type of application. We recommend 
experimentation with this approach, perhaps with relatively small trun
cation distances w so that heterogeneity in probability of detection is 
reduced, as a check on the point transect estimates. Of special interest 
with such time/distance data is the potential to check that no new 
detections occur near the point towards the end of the counting period. 

(c) General comment.> Ideally, provided g(O) = I, one would like to 
collect distance data with a very broad shoulder. The choice of an 
adequate model for g(y) is then relatively unimportant, and D can be 
estimated with good precision. For many studies, proper conduct of the 
survey can achieve high detection probabilities out to some distance. 
Many of the methods employed to ensure g(O) = I also help to widen 
the shoulder of the detection function. 

Survey data for which the detection function drops off quickly with 
distance from the line or point, with a narrow shoulder and long tail, 
are far from ideal (Fig. 2.1 ). Model selection is far more critical and 
precision is compromised. Occasionally, little can be done at the design 
stage to avoid spiked data, but usually, such data indicate poor survey 
design or conduct (e.g. poor allocation of search effort near the line or 
point, poor precision in distance or angle estimation, or failure to detect 
objects prior to responsive movement towards the observer). 

In multispecies surveys in diverse or complex habitats, there are likely 
to be errors in species identification (Bart and Schoultz 1984). As density 
increases, 'swamping' may occur; accurate data recording might be 
compromised by the number of sightings, calls, and other cues experi
enced during a short time interval (Bibby et al. 1985). Here, the binomial 
method of Jarvinen and Viiisiinen (1975; line transects) or Buckland 
(1987a; point transects), in which distances arc assigned to one of just 
two distance intervals, might be considered, especially if estimates of 
only relative abundance are tequired. 
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7 .4 Measurements 

Accurate measurement of distances and angles is quite important. The 
observer must work carefully and avoid errors in recording or transcrib
ing data. Ancillary data. such as sex, species, and habitat type, are often 
taken. These data are partitioned by individual line or sample point and 
recorded. A field form is suggested to structure the recording of data. 
A field form for recording data is efficient and nearly essential. Figure 
7 .3 shows two examples; another was presented by Burnham er al. (1980: 
34). The format for such field forms can usually be improved upon after 
use during the pilot study. Note-taking on various aspects of the survey 
should be encouraged and these can be recorded on separate sheets. 

Fatigue can compromise accurate data, thus the field effort must 
consider the time spent surveying each day. Certainly it is unreasonable 
to believe that an observer can remain at peak searching ability 
throughout a 7-10-hour day. Fatigue may play a larger role in aerial 
surveys or foot surveys in difficult terrain. These are important issues 
and this section provides guidance on data collection. 

The careful measurement or estimation of distances near the line or 
point is critical. In summary, every possible effort must be made to ensure 
that accurate measurements are made, prior to any undetected movement, 
of all objects on or near the line or point. This cannot be overemphasized. 

7.4.1 Sighting distance and angle data 

For point transects. analyses are based on observer-to-object distances, 
but for line transects, the widely used methods all require that the 
shortest distance between a detected object and the line is recorded or 
estimated. By the time the observer reaches the closest point on the line, 
the object may not be visible or may have moved in response to the 
observer's presence. These problems are minor for aircraft surveys in 
which the speed of the observation platfonn is sufficient to render 
movement of the object between detection and the point of closest 
approach unimportant. For shipboard surveys of marine mammals, 
sighting distances are frequently several kilometres, and it may take up 
to half an hour to arrive at the point of closest approach. Further. for 
many surveys, it is necessary to turn away from the centreline when an 
animal cluster is detected, both to identify and to count the animals in 
the cluster. Hence the natural distance to record is the sighting or radial 
distance r; by recording the sighting angle 0 also, the shortest distance 
between the animal and the line, i.e. the perpendicular distance x, may 
be calculated as x = r • sin (0) (Fig. 1.5). However, rounding errors in 
the data cause problems. Angles are seldom recorded to better accuracy 
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Study area _________ _ Cloud co,e, (%) ___ Wind ,peed __ _ 

Oi>server name ___________ _ "·"------
Line number Line length (km) __ . Start time 

Sighting Perpendicular Covey Number of 

number dist.a.nee 

Sighting Covey 

numbet size 

Males Femai,,s Unknown 

Perpendicular distance interval (m) 
----~---

0 - 50 50 - JOO 100 15(1 15(1- 250 

End time __ 

25(1 - 400 

Fig. 7.3. Two examples of a hypothetical recording form for a line transect 
survey of grouse. The eirnmple at the top i~ for taking ungrouped perpendicular 
distance data for coveys and the sex of covey mates as ancillary information. 
The example at the bottom allows for recording of covey sizes and grouped 
perpendicular distance data. Infonnation on each line, such as its length and 
the proportion of that length in each habitat type, would be recorded just once 
on a separate form. Most surveys are somewhat unique, requiring specialized 
forms for use in the field. 

than the nearest 5°, so that an animal recorded to have a sighting 
distance r = 8 km and sighting angle e = 0° will have a calculated per
pendicular distance of x = 0 km, when the true value might be 
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x = 350 m or more. Since estimation of abundance depends crucially on 
the value of the fitted pro!:>ability density for perpendicular distances 
evaluated at zero distance,f(O) (Burnham and Anderson 1976), the false 
zeros in the data may adversely affect estimation. The problem is 
widespread, and more than 10% of distances are commonly recorded as 
zero. even for land surveys in which distance~ and angles are apparently 
measured accurately (e.g. Robinette et al. 1974). Possible solutions, 
roughly in order of effectiveness, are: 

I. Record distances and angles more accurately 
2. 'Smear' the data (see below) 
3. Use models for the detection function that always have a shoulder 
4. Group the data before analysis 
5. Use radial distance models. 

Only the first of these solutions comes under the topic of this chapter. 
but we cover the others here for completeness, and to emphasize that 
solution I, better survey design, is far more effective than the analytic 
solutions 2-5. 

L Improving accuracy in measuring angles and distances is certainly 
the most effective solution. It may be achieved by improving technology, 
for example by using binoculars with reticles (graticules) or range 
finders, and using angle boards or angle plates on tripods. Most im
portant is that observers must be thoroughly trained, and conscientious 
in recording data; there is little benefit in using equipment that enables 
angles to be measured to the nearest degree if observers continue to 
record to the nearest 5°. Training should include explanation of why 
accuracy is important, and practice estimates of distances and angles 
for objects whose exact position is known should be made, under con
ditions as similar as possible to survey conditions. 

2. The concept of ·smearing' the data was introduced by Butterworth 
(1982b). Although often criticized, for example by Cooke (1985), the 
technique has become widely used for data from cetacean shipboard 
surveys. It is an attempt to reduce the effects on the estimates of 
recording inaccurate locations for detections, through rounding sighting 
distances and angles lo favoured values. When rounding errors occur, 
the recorded position of an animal may be considered to be at the centre 
of a sector called the 'smearing sector' (fig. 7.4); the true position of 
the animal might be anywhere within the sector. Butterworth and Best 
( 1982) assigned each perpendicular distance a uniform distribution over 
the interval from the minimum distance between the sector and the 
centreline to the maximum distance, and selected a distance at random 
from this distribution to replace the calculated perpendicular distance. 
Hammond ( 1984) compared this with assigning a uniform distribution 
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Fig. 7.4. The observer at O records an animal at position A, at radial distance 
r, and with 5ighting angle 0,. The true position of the animal is considered to 
be anywhere within the shaded smearing sector. The size of the sector is 
determined by smearing parameters 4> and s. 

over the sector, selecting a new sighting distance/angle pair at random 
from the sector and calculating the corresponding perpendicular dis
tance. He also investigated assigning a normal distribution to both the 
distance and the angle instead of a uniform distribution. He concluded 
that the degree and method of smearing had relatively little effect on 
estimation of /(0), but that estimation under either method was im
proved relative to the case of unsmeared data. 

1f the data are grouped before analysis, it is unnecessary to sample 
at random from the assumed distribution within the smearing sector. For 
example if smearing is uniform over the smearing sector, the sector 
can be considered to have an area of unity, and the proportion of the 
sector within each perpendicular distance interval may be calculated. 
This is carried out for each observation and the resulting proportions 
are summed within each interval. They c_an then be rounded to the 
nearest integer values and line transect models applied in the normal 
way for grouped data. Alternatively the methods of Section 3.4 (grouped 
data) follow through when the 'frequencies' are not integer, so that 
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rounding is not required. This approach is described by Buckland and 
Anganuzzi (1988a). 

Values must be assigned to the smearing parameters to control the 
level of smearing. Butterworth (1982b) incorporated time and vessel 
speed in his routine. since distance was calculated as speed by time taken 
to close with a whale or whales. The values for the smearing parameters 
were selected in a semi-arbitrary manner, by examining the apparent 
accuracy to which data were recorded. Hammond and Laake (1983) 
chose the level of smearing in a similar way, although the method of 
smearing was different; the semicircle ahead of the vessel was divided 
into smearing sectors so that any point within the semicircle fell in 
exactly one sector. Objects (in this case. dolphin schools) recorded as 
being in a given sector were smeared over that sector. Butterworth et 
al. (1984) used data from experiments with a buoy that was fitted with 
a radar reflector to estimate smearing parameters. None of these offer 
a routine method for smearing, whereas the angle and distance data 
contain information on the degree of rounding, suggesting that estima
tion of the smearing parameters from the data to be smeared should be 
possible. Buckland and Anganuzzi (1988a) suggested an ad hoc method 
for this. Denote the recorded sighting distance and angle by r, and 8, 
respectively, and the corresponding smearing parameters bys and 4> (Fig. 
7 .4), to be estimated. Then the smearing sector is defined between angles 
0, - 4'/2 and 0, + ct,12. and between radial distances r, • s and r, • (2 - s). 
Smearing is uniform over the sector, and grouped analysis methods are 
used, so that Monte Carlo simulation is not required (above). This is 
the method recommended by Buckland and Anganuzzi, although they 
also considered two improvements to it. First, rounding error increases 
with distance from the observer. so that a recorded distance of 1.3 km say 
is more likely to be rounded down to 1.0 km than 0. 7 km is to be rounded 
up. This may be accounted for by defining the smearing sector between 
radial distances r, • s and rrls. Second, th.ere are fewer observations 
at greater perpendicular distances, since the probability of detection 
falls off. Hence smearing should not be uniform over the smearing sector. 
but should be weighted by the value of a fitted detection function at 
each point in the sector. The recommended method therefore has two 
identifiable sources of bias. One leads to oversmearing, and the other to 
undersmearing. Buckland and Anganuzzi concluded that the more correct 
approach did not lead to better performance, apparently because the two 
sources of bias tend to cancel. and considered that the simpler approach 
was preferable. 

Buckland and Anganuzzi (1988a) estimated the smearing parameters 
by developing an ad hoc measure of the degree of rounding in both the 
angles and the distances. In common with Butterworth (1982b), they 
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found that errors seemed to be larger in real data than the degree of 
rounding suggests. They therefore introduced a multiplier to increase 
the level of smearing and investigated values from LO to 2.5. They noted 
that undcrsmearing was potentially more serious than oversmearing, and 
recommended that the estimated smearing parameters be multiplied by 
two, which would be correct for example if an angle between 5° and 
10° was rounded at random to either endpoint of the interval rather 
than rounded to the nearest endpoint. 

The above methods are all ad hoc. Methodological development is 
needed here to allow the rounding errors to be modelled. 

3. If many perpendicular distances are zero, a histogram of perpen
dicular distances appears spiked: that is the first bar will be appreciably 
higher than the rest. If, for example, the exponential power series model 
is fitted to the data, it will fit the spike in the data, leading to a high 
value for /(0) and hence overestimation of abundance. Models for which 
g'(O) is always zero (i.e. the slope of the detection function at x = O is 
zero) arc usually less influenced by the erroneous spike. and are there
fore more robust. This does not always follow; if distance data fall away 
very sharply close to zero, then only very slowly at larger distances, the 
single-parameter negative exponential model is unable to fit the spike, 
whereas the more flexible two-parameter hazard-rate model can. If the 
spike is spurious, the negative exponential model can fortuitously pro
vide the more reliable estimation (Buckland 1987b), although its lack 
of nexibility and implausible shape at small perpendicular distance rule 
it out as a useful model. 

4. If data are grouped such that all perpendicular distances that are 
likely to be rounded to zero fall in the first interval, the problem of 
rounding errors should be reduced. This solution is less successful than 
might be anticipated. First, interval width may be too great, so that the 
histogram of perpendicular distances appears spiked; in this circum
stance, different line transect models can lead to widely differing esti
mates of object density (Buckland 1985). Second, the accuracy to which 
sighting angles are recorded often appears to be quite variable. If a 
detection is made at a large distance, the observer may be more intent 
on watching the object than recording data; in cetacean surveys the 
animal may no longer be visible when he/she estimates the angle. Thus 
for a proportion of sightings, the angle might only be recorded to the 
nearest 10° or 15°, and 0° is a natural value to round to when there is 
considerable uncertainty. An attempt to impress upon observers that they 
should not round angles to 0° in minke whale surveys in the Antarctic 
led to considerable rounding to a sighting angle of 3° on one vessel! 

5. Because rounding errors in the angles are the major cause of 
heaping at perpendicular distance zero when data are recorded by 
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sighting angle and distance, it is tempting to use radial distance models 
to avoid the difficulty. Such models have been developed by Hayne 
(1949), Eberhardt (1978a), Gates (1969), Overton and Davis (1969), 
Burnham (1979) and Burnham and Anderson (1976). However, Burn
ham et al. (1980) recommended that radial distance models should not 
be used, and Hayes and Buckland (1983) gave further reasons to support 
this recommendation. First, hazard-rate analysis indicates that rand 0 
are not independently distributed, whereas the models developed by the 
above authors all assume that they are. Second. hazard-rate analysis 
also suggests that if detectability is a function of distance r but not of 
angle 0, then the expected sighting angle could lie anywhere in the 
interval 32.7° to 45°, whereas available radial distance models imply that 
it should be one or the other of these extremes, or use an ad hoc inter
polation between the extremes. Third. all models utilize the reciprocal 
of radial distances, which can lead to unstable behaviour of the estimator 
and large variances if there are a few very small distances. Fourth, 
despite claims to the contrary, it has not been demonstrated that any 
existing radial distance models arc model robust. A model might be 
developed from the hazard-rate approach, but it is not clear whether it 
would be pooling robust, or whether typical data sets would support the 
number of parameters necessary to model the joint distribution of (r, 0) 
adequately. We therefore give a strong recommendation to use perpendi
cular distance models rather than any existing radial distance model. 

7.4.2 Ungrouped data 

The basic data to be recorded and analysed are the n distances. Gener
ally, these are the individual perpendicular distances x; for line transect 
surveys or the sighting distances , 1 for point transect surveys. Alterna
tively, in line transect surveys, the sighting distances r; and sighting 
angles 0; can be measured, from which x, = r; • sin (01) (above). These 
ungrouped data are suitable for analysis, especially if they are accurate. 
Heaping at zero distance is especially problematic, again illustrating the 
need to know the exact location of the line or point. Well-marked, 
straight lines are needed for line transect surveys. Upon detection of an 
object of interest, the surveyor must be able to determine the exact 
position of the line or point, so that the proper measurement can be 
taken and recorded. If sighting angles are being measured, a straight 
line is needed or the angle will not be well defined. 

We recommend the use of a steel tape for measurements for foot 
surveys of terrestrial populations up to about 30 m. If a stick or lath is 
used for 'beating', it can be marked off in appropriate measures and 
used as a measuring stick. If this is to be done, it is wise to use a yard 
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or metre rule. Many surveyors have successfully used a range finder in 
obtaining estimates of distances out to about !~Om. We discourage the 
use of visual observation alone in estimating distances and angles. Unless 
the observers are unusually well trained. such a procedure invites heaping 
of measurements (at best) or biased estimates of distan~ with different 
biases for different observers (at worst). Scott et al. ( 1981) found significant 
variability in precision among observers and avian species. but no bias in 
the errors. Often. even simple pacing is superior to ocular estimation. 

Observers have a tendency to record objects detected just beyond w 
as within the surveyed area. This might be called 'heaping at w' and 
was noted in the surveys at the Monte Vista National Wildlife Refuge 
(Chapter 8) where w = 8.25 or 12 ft in differing years. In either case, 
there were more observations in the last distance category than expected 
for nearly all years. 

For shipboard surveys, sighting distances are frequently estimated 
using reticles or graticules, which are marks on binocular lenses (Fig. 7.5). 
The observer records the number of marks down from the horizon to the 
detected object. This number may be transformed to a distance from the 
observer using a modification of a method proposed by R. C. Hobbs (pers. 
comm.), as follows (Fig. 7.6). 

Hori?on ,-------~~ 

Fig. 7.5. Diagram of reticles used on binoculars on shipboard surveys of marine 
mammals. Use of these marks allows the computation of sighting distance (text 
and Fig. 7.6). 
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Let R = radius of the Earth= 6370 km; 
v = vertical height of the binoculars above the sea surface; 
0 = angle of declination between successive divisions on the reticle; 
¢i = angle between two radii of the Earth. one passing through the 

observer ~nd the other passing through any point on the 
horizon, as seen bv the observer 

=cos- 1 {R/(R+v)} • 

Now suppose that 1he reticle reading is d di\'isions below the horizon, 
so that the angle of declination between the horizon and the sighting is 
\jl = d • 0. Then the sighting distance is approximately 

R+e- /R2-,2 
r= '-

tan((j>+i.J,) 

This is a quadratic in r, and the smaller root provides the solution we require: 

r = cos(<p + lj,) [(R + r) sin(<p + lj,) -v/ R 2 sin2 (<p + 1),)-v(lR + v) cos2(¢ +if,)] 

::::, cos(¢>+ '{I) [R sin( q, +'{I)- v R2 sin2 ( <p + ljr )- 2Rv cos2 (q:> +'{I)] 

For example. if the observer's eyes are JO m or 0.01 km above sea level, 
the angle between successive divisions of the reticle is 0.1°, and the 
reticle reading is 3.6 divisions below the horizon, then 

¢i = cos· 1 {6370/(6370+ 0.01)} = 0.10" and \jl = 0.36° 

so that 

r = cos(0.46G) [6370 sin(0.46°) 

-,/63702 sin2(0.46°)- 2 x 6370 x O.QJ cos2(0.46°)] = 1.26 km 

Note that the horizon is at h = R • tan (¢1) = 11.3 !.;n (Fig. 7.6). These 
calculations ig· ore th"' l;Te,:b --F ilght refraction. which are generally 
small for sigh; _:s clo~er than the horizon. 

If binoculars are tripod-mounted. sighting angles can be accurately 
measured from an angle ring on the stem of the tripod, provided 
observers are properly trained, and the importance of measuring angles 
accurately is stressed. If binoculars are hand-held. angle boards (Fig. 
7.7), perhaps mounted on ship railings, may be found useful; although 
accuracy is likely to be poor relative to angle rings on tripods, it should 
still be appreciably greater than for guessed angles. Distance and angle 
experimen·ts. using buoys at known positions, should be carried out if 
at all possible, both to estimate bias in measurements and to persuade 
observers that guesswork can be poor! 
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• 

Fig. 7.6. Geometry or the procedure for computing sighting distances from 
ocular data for shipboard surveys of marine mammals. Reticles provide an 
estimate or \V. the angle or declination or the detected object from the horizon. 
which must be converted into the distance r from the observer to the object. 

Ungrouped sightings data are seldom collected for aerial surveys (see 
below). but ir terrain is uneven, so that it is not possible to ny at a 
fixed altitude, perpendicular distance can be estimated by recording both 
the angle of declination and the altitude at the time the aircraft passes 
the detected object. 

7.4.3 Grouped dara 

It is sometimes difficult to measure distances exactly and, therefore. it 
might be convenient to record data only by distance interval. Then, the 
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90 

Fig. 7.7. Sighting angles can often be more accurately estimated by the use of 
an angle board as shown here. Such devices can be hand made and are useful 
in many applications of distance sampling. 

exact distance of an object detected somewhere between, say, 0 and 40 
m will not be recorded, but only that it was in the distance interval 
0-40. During the course of the survey, a count n1 will be made of objects 
in this first distance interval. The survey results will be the frequencies 
ni, n2, ••• , n,, corresponding to the u distance classes with total sample 
size n = L n1. 

In general. let c, denote the designated distance from the line or point 
and assume that we have u such distances: 0 =co< c 1 < c2 ••• < c,, = w. 
In the case of left truncation, c0 > 0. Note, also, that c,, can be finite 
or infinite. These ·cutpoints' result in u distance intervals and the 
grouped data are the frequencies n; of objects detected in the various 
intervals. Specifically, let n; = the number of objects in distance interval 
i corresponding to the interval (c,_ 1, c;). Ir at all possible, there should 
be at least two intervals in the region of the shoulder. In general, the 
width of the distance intervals should increase with distance from 
the line or point, at least at the larger distances. The width of each 
distance interval might be set so that the n, would be approximately 
equal. This rough guideline can be implemented if data from a pilot 
study are available. Alternatively, if the underlying detection function is 
assumed to be approximately half-normal. then Table 7.1 indicates a 
reasonable choice for group interval widths for various u, where ii must 
be selected by the biologist. Thus for a line transect survey of terrestrial 
animals, if u = 5 distance intervals were required, and it was thought 
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that roughly 20% of detections would be beyond 500 m, then .1"" 100 m, 
and the interval cutpoints are I 00 m, 200 m, 350 m, 500 m and ""· The 
grouped data would be the frequencies n1, ni, ... , ns. As a guideline, u, 
the number of distance classes in line transect surveys, should not be less 
than four and five is much better than four. Too many distance intervals 
tend to defeat the advantages of such grouping; certainly 7-8 inter
vals should be sufficient in most cases. Defining too many intervals 
makes classification of objects into the correct distance interval error
prone and time-consuming. In addition, the use of too many distance 
intervals distracts attention from the main goal: detections near the line 
or point. 

Table 7.1 Suggested relative interval cutpoints for line and point transects. An 
appropriate value for tr. must be selected by the user 

Number of 
intervals, u 

4 
5 
6 
7 
8 

Suggested relative in1erval 
cutpoints for line transects 

A, 2A, 4A, = 
A, 2A, 3.5A, 5A, oo 

A. 2A, 3A, 5A, 7A,= 
A, 2A, 3A, 4.SA, 6A, 8A,""' 
A, 2A, 3.1, 4A, 5.5A, 7A, 9.SA ... 

Suggested relative interval 
cutpoints for point transects 

2A, 3,1, 4A, "" 
2A, 3A, 4,1, 5.56. 00 

2A, JA, 4A, SA, 6. 5.1, co 

2A, 3,1, 4A, 5A, M. 7.5,1, oo 

U., 3,1, 4A, 5A, 6A, 76, 8.SA,"" 

Collection of grouped data allows a relaxation of the assumption that 
distances are measured exactly. Instead, the assumption is made only 
that an object is counted in the correct distance interval. Holt and 
Powers ( 1982) reported on an aerial survey of several species of dolphin 
where counts were made by the following distance intervals: 0.0, 0.05, 
0.15, 0.25, .. nautical miles. Terrestrial surveys of jackrabbits might 
use 0, 50, 100,175,250, =m. Note, here the final distance interval is 
between 250 m and oo. As few as two distance intervals (i.e. 'binomial' 
models) are sometimes used in point transect surveys (Buckland 1987a) 
and in line transect surveys (Jarvinen and Vaisiinen 1975; Beasom et al. 
1981), although. no goodness of fit test can be made. In general. the 
use of between five and seven distance intervals will be satisfactory in 
many line transect surveys. 

It is commonly thought that all objects in the first distance interval 
must be detected (i.e. a census of the first band). This is incorrect; 
the width of this interval might be 40 m and it is not necessary that 
all objects be detected in the 0-40 m band. Of course, as the shoulder 
in the data is broadened, there arc significant advantages in estima
tion. As a guideline, we recommend that the probability of detection 
should not fall appreciably below unity over at least the first two 
intervals. 
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0 C 
13 ,,._ 13 C 0 

Fig. 7.8. The area below an aircraft can be excluded as shown (shaded area). 
Here grouped data are recorded in four distance intervals (A-D) of increasing 
widths with distance. Adapted from Johnson and Lindzey (unpublished). 

Nearly all aerial surveys collect grouped data. The proper speed and 
altitude above the ground can be selected after some preliminary survey 
work. Here it may not be practical to record counts for the first distance 
interval because visibility below the aircraft is impaired (Fig. 7.8). 
Ideally the altitude would be high enough so as to leave the objects 
undisturbed and, thus, avoid movement prior to detection. After this 
consideration, the aircraft should be flown as low as practical to enhance 
detection of objects. The altitude should be recorded occasionally during 
the survey to be sure the pilot is flying at the proper height. The distance 
intervals may be substantially in error if altitude is not as recorded or 
if the altitude varies due to terrain. Markers of some type are typically 
fixed to the aircraft to delineate the distance intervals on the ground 
for a fixed height above ground (Fig. 7.9). Two sets of markers are 
required (like the front and rear sight on a rifle); usually markers can 
be placed on the aircraft windows and wing struts. Observers should be 
cautioned not to assign objects to distance intervals until they arc nearly 
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Fig. 7.9. Airplane wing struts can be marked to delineate boundaries of the 
distance intervals on the ground. Other marks on the side window of the airplane 
are used to assure proper classification of animals to the correct distance interval. 
Compare with Fig. 7.8. From Johnson and Lindzey (unpublished). 

perpendicular to the aircraft. If such assignment is attempted while the 
object is still far ahead of the aircraft, there is a tendency to assign 
incorrectly the object to the next largest distance interval (this problem 
is related to parallax). Occasionally observations are made from only 
one side of the aircraft, but this is fairly inefficient, often problematic, 
and should be used only in unusual situations. 

Some types of aircraft are far better for biological surveys than others 
(Fig. 7.10). Ideally, the aircraft should allow good visibility ahead of 
and directly below the observer. Some helicopters meet these require
ments. but are expensive to rent and operate. Airplanes with a high 
wing and low or concave windows can also make excellent platforms 
for aerial detection, and craft with clear 'bubbles' at the nose, designed 
for observation work, are available. 

The density of many populations of interest is fairly low, so that 
recording the counts n, (and perhaps cluster sizes) can be done by hand 
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Fig. 7.10. Some aircraft are specifically designed for aerial observation. Note 
the forward and lateral visibility and the high wing on the aircraft. Helicopters. 
while more expensive, often provide similar advantages plus the ability to hover 
or proceed more slowly than a fixed-wing aircraft. 

without distracting the observer and, thus, failing to monitor the line. 
However, it is often best to use a tape recorder, ideally with an 
automatic time signal, so that the observer can continue searching 
without distraction. In some cases it might be feasible to use a laptop 
computer to record data. Some aerial surveys have used the LORAN 
C navigation system to maintain a course on the centreline, monitor 
altitude, posi1ion and distances (Johnson an<l Lindzey unpublished). A 
video camera has been mounted in the aircraft to record the area near 
the line in pronghorn surveys in Wyoming (F. Lindzey, personal com
munication). The video can be studied after the flight in an effort to 
verify that no objects were missed on or near the line. Bergstedt and 
Anderson (1990) used a video camera mounted on an underwater sled 
pulled by a research vessel to obtain distance data. 

An advantage of collecting grouped data in the field is that exact 
distances are not required. Instead, one merely classifies an object 
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detected into the proper distam:e class. Thus, if an object is somewhere 
near the centre of the distance class, proper classification may be easy. 
Problems occur only when the object is detected near the boundary 
between two distance intervals. If this is of concern, one could record 
the data on two different distance interval sets. Thus, each detection is 
accurately recorded on one or other of the two sets of intervals. The 
analysis theory for this situation has been developed but the computer 
software has not, and we believe that the method may be sensitive to 
assumptions on how the observer decides to allocate detections to one 
interval set or the other. A simpler solution is to use a single set of 
cutpoints, and record which detections are close to a cutpoint. These 
are then split between the two intervals, so that a frequency of one half 
is assigned to each (Gates 1979). Of course, a reduction in the number 
of distance intervals will result in fewer incorrect classifications. 

Field studies of measurement error in aerial surveys have been limited. 
Chafota (1988) placed 59 bales of wood shavings (22.7 kg each) in short 
grass prairie habitat in northeastern Colorado to mimic pronghorn. A 
fixed-wing aircraft (Cessna 185) was flown at 145 km/hr at 91.4 m above 
the ground to investigate detection and measurement errors. Four line 
transects were flown using existing roads to mark the flight path 
(L ::c 83.8km). The centreline of the transect was offset 60 m on both 
sides of the plane because of the lack of visibility below and near the 
aircraft (Fig. 7.8). Coloured streamers were attached to the wing struts 
of the aircraft to help the observer in delineating distance intervals 
(0 25, 25-50, 50-100 and 100-400 m). No marks were put on the 
window, thus the observer had only a 'front sight'. Neither the pilot 
nor the observer had experience in line transect surveys, although both 
had had experience with aerial strip transect sampling, and neither had 
knowledge of the number or placement of the bales. The observer did 
not have training in estimating distances. The performance of the 
observer on two assessment_s was reported. 

In the first assessment 59 bales were placed in the 0-25 m band to 
assess the observer's ability to detect objects on or near the centreline 
(which was offset 60 m). Here the observer detected 58 out of 59 objects 
in the first band (0-25 m), and the undetected bale was at 22.9 m. 
However, six of the 58 were recorded as being in the 26-50 band. Worse. 
two bales were classed in the 50--IOO band and an additional two bales 
were classed in the 100--400 band. Chafota (1988) suggested that possibly 
the aircraft was flown too low or went off the flight line during part or 
the survey, thus leading to the large estimation errors. 

The second assessment employed 53 bales, including one outside the 
400 m distance. The results are shown in Table 7.2. Here. the detection 
was quite good, as one might expect in the case of relatively large objects 
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placed in short grass prairie habitat. Only one of the 53 bales wen1 
undelected (193.9 m). However, the tendency to exaggerate distances is 
quite clear. Chafota (1988) stressed the need for training in the estima
tion of distances, an effective pilot study and a carefully designed field 
protocol. We would concur with these recommendations and add the 
need for window marking to be used in conjunction with the streamers 
on the wing struts, an accurate altimeter to maintain the correct altitude, 
and a navigation system that allows accurate night lines and positioning 
(see Johnson and Lindzey unpublished). Chafota (1988) also offered 
insight into the effects of measurement errors on b from the results of 
Monte Carlo studies. 

Table 7.2 Performance of an observer in detecting bales of wood shavings placed 
at known distances from the cen1reline in short grass prairie habitat (from 
Chafota 1988) 

Observed distance inlerval (m) 

Distance Actual 
interval (m) frequencies 0-25 25-50 50-100 100-400 > 400 

0-25 21 8 12 0 0 
25-50 14 1 J 10 0 0 
50-100 12 0 9 2 0 
100----400 5 0 0 3 0 

> 400 1 0 0 0 0 

Recorded frequencies: 9 16 21 5 

It is possible to record sighting distances and sighting angles as 
grouped. This procedure is not recommended except under unusual 
circumstances. Transformation of grouped sighting distances and angles 
into grouped perpendicular distances has several problems and often 
calls for additional analytic methods to be used prior to the estimation 
of density. The smearing procedure can be applied to grouped or 
ungrouped (but heaped) data, It is invariably preferable to collect data 
that do not require smearing, if at all possible. 

7.4.4 Cluster size 

Ideally, the size of each cluster observed would be counted accurately, 
regardless of its distance from the line or point. In practice, one may 
only be able to estimate the size of the clusters, and such estimates may 
be biased. Additionally, there may be a tendency to underestimate the 
size of clusters at the larger distances and small clusters may remain 
undetected at the larger distances (i.e. size-biased sampling), leading to 
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overestimation of average cluster size if S is used. In general, proper 
estimation of E(s) is possible, but more complicated than use of the 
simple mean. 

Survey design and conduct should attempt to minimize the difficulties 
in measuring cluster size. More than one observer may aid in getting 
an accurate count of cluster size. Photography may be useful in some 
clustered populations, and this has been tried in surveys of dolphin 
populations. It may be possible to leave the centreline to approach the 
more difficult clusters, and thereby obtain an accurate count. Sometimes 
it may be reasonable to obtain estimates of average cluster size from 
the data in only the first few distance bands for which both size-biased 
and poor estimation of cluster size are less problematic. 

Clusters should be recorded only if the centre of the cluster is within 
the sampled area (0 to w), but the size of detected clusters should include 
all individuals within the cluster, even if some of the individuals are 
beyond w. If the centre of a detected cluster is beyond w, it should not 
be recorded and no individuals in the cluster should be recorded, even 
though some individuals might be within the sampled area ( < w). 

Cluster size and the variability among clusters may vary seasonally. 
For example, Johnson and Lindzey (unpublished) found that pronghorn 
populations split into small groups of nearly equal size in the spring, 
whereas much larger and more variable clusters were found during the 
autumn and winter months. Surveys should be conducted while vari
ability in cluster size is low to avoid a relatively large variance in b 
from the contribution of val'(E(s)). Small. variable clusters are preferable 
to large clusters with little variability because the number of detections 
(i.e. independent observations) wi!l be greater. 

7.4.5 Other considerations 

In distance sampling it is important to use an objective method in 
establishing the exact location of the lines or points in the field. 
Subjective judgement should not play a role here. 

If more than one observer is used, the design should allow estimation 
by individual observer. In line transect surveys, it may be interesting to 
partition and record the detections and cluster size by whether they are 
to the left or right of the centreline. Examination of these data may 
allow a deeper understanding of the detection process that might be 
useful in the final analysis. For example, in marine surveys, glare may 
be worse one side of the line than the other. and such d<:1ta allow the 
effect of glare to be quantified. 

In point transect surveys it might be useful to record a sighting angle 
0; (where 0" ,,;: 0; ,,;: 360") for each detected object. Here. 0° would be 
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Fig, 7.11. Disturbance by an observer approaching a sample point can often be 
detected by recording angles 8 (0° ..: e ..: 360°) where 0° is directly ahead of the 
observer's direction of approach. Thus, an angle is recorded for each object 
detected. These angles might be recorded by group (e.g. 45-135, 136-225, 
226-315, and 316---45°). 

directly ahead of the direction of approach by the observer (Fig. 7.11). 
Analysis of such angles could be used to identify a disturbance effect 
by the observer approaching the sample points. If found to be present, 
the disturbance effect might be due to animals moving ahead (toward 0°) 
or merely remaining silent and hidden from the observer. 

7.5 Training observers 

Large-scale surveys usually employ several technicians to gather the data 
to be used in estimation of density. This section provides some consider
ations in preparing technical staff members for their task. 

Perhaps the first consideration is to interest the staff in the survey 
and its objectives and to familiarize them with the study area and its 
features. Then they must be carefully trained in species identification 
and become familiar with relevant information about the biology of the 
species of interest. Particular attention must be given to activity patterns 
and calls or songs or other cues of the species. Some time in the field 
with a good biologist is essential. Clear survey instructions must be given 
and proper data recording forms should be available. Again. a small• 
scale pilot survey will be highly beneficial. People wilh prior experience 
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are helpful to a team effort. Discussions held at the end of each day of 
surveying can be used to answer questions and listen to suggestions. A 
daily review of histograms of the incoming data will likely reveal 
possible problems to be corrected (e.g. heaping). 

Training of observers is essential if estimates of absolute abundance 
are required. It is particularly difficult to estimate distances to purely 
aural cues; Reynolds et al. (1980) used an intensive 2-week training 
period, during which distances to singing or calling birds were first 
estimated and then checked by pacing them out or by using rangefinders. 
This is done for different species and for different cues from a single 
species. The training period should also be used to validate identifica
tions made by each observer. Ramsey and Scott (1981a) recommended 
that observers' hearing ability be tested, and those with poor hearing 
be eliminated. 

If most objects are located aurally, then the assumption that they are 
not counted more than once from the same line or point may be 
problematic. If for example a bird calls or sings at one location, then 
moves unseen by the observer to another location and again vocalizes, 
it is likely to be recorded twice. Training of observers, with warnings 
about more problematic species, can reduce such double counting. In 
some point transect surveys, points are sufficiently close that a single 
bird may be recorded from two points. Although this violates the 
independence assumption, it is of little practical consequence. 

In point transect surveys, bias arising from either random or respon
sive movement and from inadvertent double counting is likely to be less 
if the time spent at each point is short, but assumptions that the 
detection function is unity at the point and has a shoulder are then 
more likely to be violated. Scott and Ramsey (1981) give a useful 
account of the effect on bias of varying the count period, and in 
particular warn against longer times, as bird movement can lead to 
serious overestimation. 

Technicians should have instruction and practice in the use of instru
ments to be used in the survey (e.g. rangefinders, compass, LORAN C, 
2-way radios). If distances are to be paced or ocularly estimated, then 
calibration and checking is recommended. ' 

Basic safety and first aid procedures should be reviewed in planning 
the logistics of the survey. In particular, aircraft safety is a critical 
consideration in aerial survey work (e.g. proper safety helmets. fire 
resistant clothing, fire extinguisher, knowledge of emergency and survi
val procedures). Radio communication, a good flight plan, and an 
emergency locator transmitter (EL T) are important for surveys in remote 
areas or in rugged terrain. Fortunately, many conservation agencies have 
strict programmes to help ensure aircraft safety for their employees. 
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7 .6 Field methods for mobile objects 

We listed among the assumptions for line transect sampling that any 
movement of animals should be slow relative to the observer (Hiby 1986) 
and independent or the observer. In fact it is possible to relax the 
requirement that movement is slow. Consider for example seabird sur
veys. Procedures as laid down by Tasker et al. (1984) work well for 
birds feeding or resting on the sea, or for strip transects for which an 
instantaneous count of flying birds within a specified area can be made, 
but traditional line or strip transect estimates can have large upward 
bias for seabirds in flight. Provided the seabirds do not respond to the 
observation platform, the following approach allows valid abundance 
estimation. For birds resting on the sea or feeding in one place, use 
standard line or strip transect methods; for species that occur in flocks, 
treat the flock as a detection, and record flock (cluster) size. The 
position recorded for a flock should be the 'centre of gravity' of the 
flock, not the closest point of the flock to the observer. Record and 
analyse seabirds in flight separately. Whenever a flying bird (or flock) 
is detected, wait until it comes abeam of the observation platform, and 
only then record its position. For line transects, its perpendicular 
distance is estimated at this point; for strip transects, the bird is recorded 
only if it is within the strip when it comes abeam. Do not record the 
bird if it is lost from view before it comes abeam. If it alights on 
the water, record its position at that time, and record it as resting on the 
water. Having obtained separate density or abundance estimates for 
resting/feeding and for tlying birds. sum the two estimates. If birds are 
known to respond to the observation platform, but only when quite 
close to it. the above procedure may be modified. Determine the smallest 
distanced beyond which response or flying birds to the platform is likely 
to be minimal. Instead of waiting for the bird to come abeam, its 
position is now recorded when its path intersects with a line perpen
dicular to the transect a distance d ahead of the platform. For this 
procedure to work, probability of detection at distance d, g{d), should 
equal, or be close to, one. In this circumstance, flying birds that are 
first detected after they have crossed the line will have mostly intersected 
it at relatively large perpendicular distances, and can be ignored. 

For point transect surveys. objects that pass straight through the plot, 
such as birds flying over the plot, should be ignored. Strictly, the count 
should be instantaneous. If the count is considered to correspond to the 
start of the count period. objects moving into the plot during the count 
should be ignored, whereas those that move out of the plot should be 
recorded at their initial location. Tr the count is intended to be of all 
detected objects present at the end of the count period. the converse 
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holds. The first option is the easier to implement in the field. If objects 
that are moving through the plot are recorded at the location they were 
detected, density is overestimated (Chapter 5). 

7. 7 Field methods when detection on the centreline is not 
certain 

A similar strategy to that of Section 7.6 can be adopted for objects that 
are only visible at well-spaced discrete points in time, so that g(O) < L 
Consider for example a species of whale that dives for prolonged 
periods. Suppose detected whales are only recorded if they are at the 
surface at the time they come abeam of the observation platform, and 
their perpendicular distance is estimated at that time. Then a conven
tional line transect analysis yields an estimate of the density of whales 
multiplied by the proportion of whales at the surface at any given time. 
If that proportion can be estimated, then so can population abundance. 
This strategy is of little use on slow-moving platforms such as ships, 
since most detected whales will have dived, or moved in response to the 
vessel, by the time the vessel comes abeam. However. it can be very 
successful for aerial surveys. Its weakness is that further survey work 
must be carried out to estimate the proportion of whales at the surface 
at a given time. This is done by monitoring individual whales over 
prolonged periods. Possible problems arc that it may not be possible to 
monitor sufficient whales for sufficiently long periods; monitored whales 
may be affected by the presence of the observer, and may spend an 
atypical amount of time at the surface; if whales go through periods of 
short dives followed by longer dives, most of the monitored sequences 
may be short-dive sequences, since whales are more likely to be lost if 
they dive for a longer period; whales that habitually spend more time 
at the surface are more likely to be detected and monitored; it can be 
difficult to define exactly what is meant by at the surface, especially if 
monitoring of individual whales is done from a surface vessel. and the 
line transect surveys from the air. 

Methods for estimating g(O) from cetacean shipboard surveys were 
described in Section 6.4. Discussion of survey design is given there; we 
do not address the topic here because methodological development is 
not sufficiently advanced to allow us to make general recommendations 
with confidence. However, most of the methods described in Section 6.4 
rely on detections made from two 'independent observer' platforms. 
These methods usually require that duplicate detections (whales detected 
from both platforms) arc identified. In this circumstance, general rec
ommendations on field procedures can be made. First, all sighting cues 
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should be recorded, for easier assessment of which detections are dupli
cates. To facilitate this goal further, the exact time of each cue should 
be noted, preferably using a computerized recording system. Methods 
are generally sensitive to the judgement of which detections are dupli
cates, so every attempt should be made to minimize uncertainty, and 
the uncertainty should be reflected in the estimated variance of i(O) 
(Schweder et al. 1991). Ancillary data such as animal behaviour, cluster 
size and weather should be recorded for each detection, to allow the 
analyst to use stratification or covariate modelling to reduce the impact 
of heterogeneity on g(O) estimation. 

7 .8 Field comparisons between line transects, point 
transects and mapping censuses 

Several researchers have attempted to evaluate the relative merits of 
point transect sampling, line transect sampling and mapping censuses 
through the use of field surveys. We summarize their conclusions here. 

7.8.J Breeding birds in Californian coastal scrub 

DeSante (1981) examined densities of eight species of breeding bird in 
36 ha of Californian coastal scrub habitat. True densities were estab
lished by an intensive programme of colour banding, spot-mapping and 
nest monitoring. Point transect data were collected by four observers 
who were ignorant of the true densities. Points were chosen on a grid 
with roughly 180 m separation between neighbouring points. This gave 
13 points, three of which were close to the edge of the study area. Only 
one-half of those three plots were covered, so that in effect 11.5 points 
were monitored. The recording time at each point was 8 minutes. Each 
point was covered four times by each of the four observers. Detection 
distances were grouped into bands 9.14 m (30 ft) wide out to 182.9 m 
(600 ft), and into bands twice that width at greater distances. The 'basal 
radius', within which all birds are assumed to be detected, was estimated 
as the internal radius of the first band that had a density significantly 
less than the density of all previous bands. Significance was determined 
by likelihood ratio testing with a critical value of four (Ramsey and 
Scott 1979). The density of territorial males was estimated using counts 
of singing males only, unless twice that number was less than the total 
count for that species, in which case the density of territorial males was 
estimated from half the total count. This follows the procedure of 
Franzreb (I 976) and Reynolds er al. (1980). Only experienced observers 
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were used, and they were given four days of intensive training. One day 
was spent verifying observers' identifications from calls and songs, one 
day estimating and verifying distances to both visual and aural detec
tions, and two days carrying out simultaneous counts at points. DeSante 
found that the point transect data yielded underestimates of density, by 
about 18% when estimates for all eight species are summed. individual 
species were undereslimated by between under 2% and roughly 70% 
(Table 7.3; taken from DeSante 1981). Correlation between actual 
density and estimated density across the eight species was good 
(r = 0.982). Variation in bias between observers was small. The use of 
the method of Ramsey and Scott (1979) undoubtedly contributed to 
underestimation of density in DeSante's study; the method assumes that 
all birds within the basal radius are detected, and the basal radius is 
estimated here from a small number of points, almost certainly giving 
rise to estimates of basal radii that are too large. An analysis of the 
original data by more recent methods might prove worthwhile. 

Table 7.3 Actual density and point transect estimates of density of eight bird 
species in a Californian coastal scrub hah1tat (from DeSante 1981). The negative 
errors indicate that the point transect estimates are low, possibly due to poor 
choice (in the light of recent development~) of point transect detection model 

Actual Point transect estimates 
Species density/36 ha Density/36 ha % error Basal radius (m) 
Scrub jay 3.8 I.I -70.0 64.0 
Bushtit 2.2 2.1 -5.0 45.7 
Wren tit 36.3 26.9 - 25.9 54.9 
Bewick's wren 9.4 8.3 - 11.4 91.4 
Rufous-sided towhee 14.0 8.5 - 39.4 91.4 
Brown towhee 0.6 0.4 - 36.7 64.0 
White-crowned sparrow 32.4 31.8 - 1.9 91.4 
Song sparrow 35.5 31.2 - 12.2 64.0 
Total 134.2 I 10.3 - 17.8 

7.8.2 Breeding birds in Sierran subalpine forest 

DeSante (1986) carried out a second assessment of the point transect 
method. in a Sierran subalpine forest habitat. On this occasion a 48 ha 
study plot was identified in the Inyo National Forest, California. Methods 
were similar to the above study, with actual densities estimated by 
intensive spot-mapping and nest monitoring. Twelve points were estab
lished with a minimum separation of 200 m, a"nd count time at each 
point was eight minutes, preceded by one minute to allow bird activity 
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Table 7.4 Actual density and poin1 transect estimates or density of 11 bird 
species in a Californian subalpine forest habitat (from DeSante 1986). Densities 
were estimated from detections of singing males alone, excepl where indicated 
by*, for which densities were estimated from counts or all birds. The first row 
for each species corresponds to late June and the second to mid-July 

Actual Point transect estimates 

Species density/ Density/ % Basal 
48 ha 48 ha error radius (m) 

---- --- ---------- -
Cassin's finch 26.9 16.5 - 38.6 90 
Cassin's finch* 20.6 16.8 - 18.5 60 
Dark-eyed junco 23.0 16.5 - 28.2 60 

23.1 10.0 - 56.7 l lO 
Dusky flycatcher* 17. I 28.5 + 66.8 40 

16.4 19.7 + 20.3 50 
Ye!low-rumped warbler 15.3 14.7 - 3.6 100 

15.0 19.4 + 29.3 80 
Mountain chickadee* 12.0 14.9 + 24.3 40 

11.9 9.7 - 18.3 60 
Pine siskin* 12.0 13.6 + 13.2 50 

13.3 8.9 - 32.7 40 
Hermit thrush 5.7 2.8 - 51.6 100 

7.8 12.9 + 65.3 110 
White-crowned sparrow 3.8 1.3 - 67.0 120 

3.0 1.6 - 46.9 100 
American robin* 3.4 6.6 + 95.0 40 

Clark's nutcracker' 2.1 4.1 + 95.9 70 

Ruby-crowned kinglet 1.6 1.5 - 3.3 120 

Total 122.9 121.1 - 1.5 
Ill.I 99.1 - 10.8 

to return to normal after arrival at the point. Counts were carried out 
on four days in late June and a further four days in the second week 
or July. Statistical methodology was the same as for the above study. 
Estimated densities are shown in Table 7.4. Although DeSante gave 
confidence intervals for point transect density estimates. we do not quote 
them here, as they were calculated as if 48 points had been counted. 
when in fact 12 points were each counted four times. His intervals are 
therefore too narrow; repeat counts on the same point do not provide 
independent detections, and such data should be entered into DIS
TANCE with sample effort for a point set equal to the number of times 
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the point was covered. The empirical variance option for n combined 
with the bootstrap option for i(O) then gives valid intervals. We further 
condense DeSante's table to include only common species - those species 
for which there were more than 25 point transect detections. DeSante 
concluded that the results were less encouraging than those obtained in 
his earlier study, and he gave thorough discussion or the possible 
reasons. These include a higher proportion or birds missed close to the 
observer, due to the tall canopy, leading to underestimation, and more 
double-counting of individuals through greater mobility, leading to 
overestimation. Greater mobility relative to the scrub habitat of his 
earlier survey occurred because densities were lower and there were more 
large species, both contributing to larger territories. Further, birds flying 
over the plot were counted; this is poor practice, leading to overestima
tion. Birds first detected flying over the point should either be ignored, 
or counted only if they land within detection distance, and that distance 
should then be recorded (Section 7.6). The relatively poor performance 
of the point transect method may be partially attributable to the fact 
that just 12 points were covered. DeSante considers that an alternative 
scheme of relocating points each day would not have significantly 
increased accuracy. Although this may be true for many species, for 
those species which tend to sing from favoured song posts, four counts 
from each of 12 points is appreciably less informative than one count 
from each of 48 points, even when, as here, the study area is too small 
to accommodate 48 non-overlapping plots. 

7.8.3 Bobolink surreys in New York state 

Bollinger et al. (1988) compared line and point transect estimates with 
known densities of bobolinks (Dolichonyx oryzirorus) in one 17.6 ha 
meadow and one 12.6 ha hayfield in New York state. Intensive banding 
and colour marking established population sizes, and whether each 
individual was present on a given day. Twelve and ten line transects, 
respectively, of between 200 and 500 m length were established at the 
two sites, together with 18 and 14 point transects. One or two transects 
were covered per day, each transect taking 3-7 minutes. The observer 
waited four minutes after arriving at the start or a transect to allow birds 
to return to normal behaviour. and the line(s) was/were covered in both 
morning and afternoon. A four minute waiting period was also used for 
point transects. and a four minute counting period was found to be 
adequate. Two points were covered each morning of the study and two 
each afternoon. Thus, as for DeSante·s studies, adequate sample sizes 
were obtained by repeatedly sampling the same small number of tran
sects. The Fourier series model was applied to both line and point 
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transect data. For point transects, it was applied to squared detection 
distances, which can lead to poor perfonnance, as noted earlier. 

Bollinger et al. found that their point transects took longer to survey 
than line transects on average, but appreciably less time was spent 
counting. The number or males counted during point transects was 
slightly greater on average than during line transects, but substantially 
rewer females, which are more secretive, were counted. Thus, density 
estimates were obtained for both males and females from the line 
transect data, but for males only from the point transect data. The 
Fourier series was unable to fit adequate non-increasing detection fonc
tions to the morning point transect counts, which the authors suggest 
may be indicative of movement of bobolinks away from the observer. 
Both methods overestimated male abundance, with the point transect 
method showing the greater bias (mean relative bias of 140%, compared 
with 76°;., for line transects). Bias was found to be lower in general for 
the afternoon count data. Line transect estimates of female densities 
were approximately unbiased, although there was a suggestion of under
estimation during incubation, countered by overestimation when the 
young were large nestlings or had fledged. About 25% of bias in male 
density estimates was attributed to avoidance of field edges by the birds; 
transects were deliberately positioned so that field edges were not 
surveyed. Survey design to eliminate or reduce this source of bias is 
discussed in Section 7.2. Additional bias was considered to be possibly 
due to 'random' movement of birds, with detection biased towards when 
the birds were relatively close to the observer, or to attraction to the 
observer - although this latter explanation is diflicult to reconcile with 
the suggestion that poor fits for point transect data might be due to 
observer avoidance. It may be that the Fourier series model was inap
propriate for the squared distance data, as was found by Buckland 
(1987a) for the point transect data of Knopf et af. (1988), rather than 
that birds avoided the observer. 

7.8.4 Breeding bird surreys in Californian oak-pine woodlands 

Verner and Ritter (1985) compared line and point transect counts m 
Californian oak-pine woodlands. They also considered counts within 
fixed areas (strip transects and circular plots) and unbounded counts 
from both lines and points as measures of abundance. They defined four 
scales for measures of abundance: a 'nominal scale', which requires 
information only about occurrence; an 'ordinal scale', which requires 
sufficient information to rank species in order of abundance; a ·ratio 
scale', which requires relative abundance estimates - bias should be 
either small or consistent across species and habitats; and an 'absolute 
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scale', which requires unbiased (absolute) estimates of abundance. They 
assessed the performance of different survey methods in relation to these 
scales. True bird densities were unknown. Although the area comprised 
1875 ha of oak and oak-pine woodlands in the western foothills of the 
Sierra Nevada, the study plots were just two 19.8 ha plots of comparable 
relief and canopy cover, one grazed and the other ungrazed. This study, 
in common with most others of its type, therefore suffers from repeated 
sampling of the same small area, and hence non-independent detections. 

Sampling took place over 8-day periods, with two transects and ten 
counts covered per day. The transects were 660 m long and were 
positioned randomly at least 60 m apart each day. The points were 
located at intervals of 150 m along the transects. The design was 
randomized and balanced for start time, starting point and count 
method. All counts were done by a single observer. Four methods of 
analysis were considered: bounded counts (strip transects of width 60 m 
and circular plots of radius 60 m); Emlen's (1977) ad hoc estimator; 
Ramsey and Scott's (1978) method; and the exponential polynomial 
model (Burnham et al. 1980). Note that we do not recommend any of 
these estimators for songbird data. The Fourier series model was found 
to perform less well than the exponential polynomial model. so results 
for it were not quoted. Interval estimates were computed for the ex
ponential polynomial model only. Without more rigorous analysis of 
the data and with no information on true densities. comparisons between 
the methods of analysis and between line and point transects arc severely 
constrained. However, the authors concluded that line and point tran
sects showed similar efficiency for determining species lists (for point 
separation of 150 m and 8 min per point); point transects yielded lower 
counts per unit time, but would be comparable if point separation was 
100 m and counting time was 6 min per point; Ramsey and Scott's (1978) 
method gave widely differing estimates from line transect data relative 
to those from point transect data; more consistent comparisons between 
models were obtained from line transects than from point transects; 
most species showed evidence of movement away from the observer; the 
exponential polynomial model was thought to be the most promising of 
the four methods. 

7.8.5 Breeding birds in riparian vegetation along the lower Colorado 
River 

Anderson and Ohmart (1981) compared line and point transect sampling 
or bird populations in riparian vegetation along the lower Colorado 
River. All observers were experienced. and each carried out replicate 
surveys under both sampling methods in each monih from March to 
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Table 7.5 Density estimates from line and point transect sampling and spot 
mapping of ten bird species in honey mesquite habitat along the lower Colorado 
River (from Anderson and Ohmart 1981). Densities are numbers per 40 ha. 
averaged for March. April and May 1980 

Point transect, Point transect, 
Line first interval first interval Territory 

Species transec1 15 m wide 30 m wide mapping 
Gila woodpecker 2 2 2 2 
Ladder-backed woodpecker 4 3 6 8 
Ash-throated flycatcher 11 12 10 12 
Black-tailed gnatcatcher 14 28 26 24 
Verdin 7 8 10 10 
Cactus wren 4 4 4 8 
Lucy's warbler 37 32 28 41 
Northern oriole 12 15 14 13 
Crissal thrasher 2 1 2 14 
Abert's towhee 21 25 23 21 
Total 114 130 125 153 

June 1980. The distance walked was identical for each sampling method. 
The line transect data were analysed using the method of Emlen (1971), 
and the poin1 transect data using method Ml of Ramsey and Scott 
(1979). Thus, models that can perform poorly were again used, and this 
may have compromised some of the authors' conclusions. For example, 
they sometimes obtained inflated density estimates from the point tran
sect data when detection distances less than 30 m were divided into two 
or more groups, whereas the method performed well when all observa
tions within 30 m were amalgamated into a single group. A more robust 
method would be less sensitive to the choice of grouping. Anderson and 
Ohmart concluded that the point transect ~urveys took longer to com
plete when the time spent at each point was 8 minutes, but that times 
were comparable for recording times of 6 or 7 minutes. More area was 
covered and more birds detected using the line transect method, because 
of the dead time between points for the point transect method. The 
authors tabulated estimated average densities of ten of the more com
mon species, which appear to show relatively little difference between 
line and point transect estimates, or, for most species, between those 
estimates and estimates from territory mapping, although overall, line 
transect estimates were significantly lower than mapping estimates 
(Table 7.5). Neither method generated average estimates significantly 
different from the point transect estimates. However, the authors noted 
that day-to-day variation in point transect estimates was greater than 
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for line transect estimates, and suggested that at least three repeat visits 
to point transects are necessary, whereas two are sufficient for line 
transects. They concluded that the line transect method is the more 
feasible, provided stands of vegetation are large enough to establish 
transects of 700---800 m in length, and provided that the topography 
allows ambulation. They indicated that these transects should be ade
quately cleared and marked. In areas where vegetation occurs in small 
stands, or where transects cannot be cleared, they suggested that point 
transects might be preferable. 

7.8.6 Bird suneys of Miller Sands Island in the Columbia Rirer, 
Oregon 

Edwards el al. (1981) compared three survey methods, two of which 
were line and point transect sampling. They described the third as a 
'sample plot census', in which an observer records all birds that can be 
detected within a sample plot. Distances were not recorded. so correc
tions for undetected birds cannot be made. The method gives estimates 
of absolute density only if all birds in the sample plot are detected. The 
study was carried out on Miller Sands Island in the Columbia River, 
Oregon. Four habitats were surveyed: beach, marsh, upland and tree
shrub. The method of Emlen (1971) was used for the line transect data, 
and the method of Reynolds et al. (1980) for the point transect data. 
The authors found that significantly more species were detected using 
point transects than either line transects or sample plots. However, the 
truncation point for line transects had been 50 m, and for point transects 
150 m. and the sample plots were circles of radius 56.4 m, so the 
difference is unsurprising. Density estimates were found to be similar 
for all three methods, although the point transect estimate was signifi
cantly higher than the line transect estimate in a handful of cases. The 
methods were not standardized for observer effort or for time spent in 
the field, making comparison difficult. 

7,8. 7 Con eluding remarks 

More studies, carefully standardized for effort would be useful. A large 
study area, too large for all territories to be mapped, is required for a 
fair comparison of line and point transect sampling and of mapping 
methods. Within such an area, line and point transect sampling grids 
could be set up using the recommendations of this chapter. so that both 
methods require roughly the same time in the field on the part of the 
observer. In addition, territory mapping should be carried out on a 
random sample of plots within the area, again so that time in the field 
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is comparable with each of the other methods. The analyses of the line 
and point transect data should be comparable, for example using the 
hazard-rate or the Fourier series model in both cases. More than one 
model should be tried. The precision of each method should then be 
compared, and an assessment should be made of whether at least one 
of the methods over- or underestimates relative to the others. If different 
researchers could agree on a common design, this could be repeated in 
a variety of habitats, to attempt to establish the conditions and the types 
of species for which point transect sampling is preferable to line transect 
sampling or vice versa. 

The studies described here tend to favour line transects over point 
transects. This may partly reflect that line transect methodology has had 
longer to evolve than point transect methodology. It i~ important to 
realize that point transect sampling is essentially passive, whereas line 
transect sampling is active. For birds that are unlikely to be detected 
unless they are flushed or disturbed. such as many gamehirds or secretive 
female songbirds, line transect sampling should be preferred. Very 
mobile species are also likely to be better surveyed by line transects, 
provided the guidelines for such species given in this chapter are adhered 
to. For birds that occupy relatively small territories, and which are easily 
detected at close range, such as male songbirds of many species during 
the breeding season, point transects may be preferable. especially in 
patchy or dense habitat. Attempts to estimate abundance of all common 
species in a community by either method alone are likely to perform 
poorly for at least some species. If only relative abundance is required. 
to monitor change in abundance over time. either technique might prove 
useful. However, bias may differ be1ween species. so great care should 
be taken if cross-species comparisons are made. Equally. bias may differ 
between habitats, although well-designed line or point transect studies 
yield substantially more reliable comparisons across both species and 
habitats than straight counts of birds without distance data or other 
corrections for detectability. 

Several other authors compare line transect sampling with census 
mapping. Franzreb (1976, 1981) gives detailed discussion of the merits 
of each, concluding that census mapping is substantially more labour 
intensive. but for some species at least, provides better density estimates. 
Choice of method must take account of the species of interest. whether 
density estimates for non-breeding birds are required. the habitat of the 
study area, resources available, and the aims of the study. In the same 
publication, O'Meara (1981) compares both approaches. His study in
cludes an assessment of the binomial models of Jarvinen and Vaisanen 
(1975). These models were found to be more efficient. both in terms of 
time to record detections into one of just two distance intervals and in 
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terms of variance of the density estimate, than Emlen's (1971, 1977) 
method, which requires detection distances to be recorded so that they 
can be assigned to successive bands at increasing distances from the line. 
Line transect estimates were found to be lower than census mapping 
estimates, apparently due to imperfect detection of birds at or near the 
line (Emlen 1971; Jiirvinen and Viiisiinen 1975), but estimates could be 
obtained for twice as many species from the line transect data. Redmond 
et al. (1981) also compared census mapping with the line transect 
methods of Emlen (1971) and Jii.rvinen and Vii.isiinen (1975), for assess
ing densities of long-billed curlews (Numenius americanus). They also 
found that the method of Jarvinen and V11.isiinen was easier to apply 
than that of Emlen, because it requires just two distance intervals, and 
was far more efficient than census mapping in terms of resources in the 
case of territorial male curlews. Female curlews were not reliably sur
veyed using line transects, nor were males during brood rearing. 

Several field evaluations have been made of distance sampling theory 
in which a population of known size or density is sampled and estimates 
of density made (Laake 1978; Parmenter et al. 1989; White et al. 1989; 
Bergstedt and Anderson 1990; Otto and Pollock 1990). Strictly speaking, 
these are not evaluations of the distance sampling methods, but rather 
an assessment of the degree to which the critical assumptions have been 
met under certain field conditions. We encourage more studies of this 
type as such results often provide insights into various issues. We 
strongly recommend that the person performing the data analysis should 
not know the value of the parameter bein2 estimated. 

7.9 Summary 

Line and point transect sampling are well named because it is the area 
near the line or point that is critical in nearly al! respects. In many ways 
the statistical theory and computational software are now more adequately 
developed than the practical field sampling methods. The proper design 
and field protocol have not received the attention deserved prior to data 
collection. 

Having determined that line or point transect sampling is an appro
priate method for a study, the planning of the sampling programme 
must focus on the three major assumptions and attempt to ensure their 
validity: (I) g(O)"" I, (2) no undetected movement, and (3) accurate 
measurements or counts (e.g. no heaping, especially at zero distance). 
Furthermore, if the population exists in clusters. then accurate counts 
of cluster size must be taken. Sample size, as a rough guideline, should 
be at least 60-80; formulae for determining appropriate sample size are 
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Fig. 7.12. (a) These line transect data are spiked, difficult to model, subject to 
imprecision in estimating density. and usually the result of poor survey design 
or conduct. Proper design and field procedures should result in data more nearly 
as depicted in (b). These data exhibit a sh.oulder and can be analysed effectively 
if no undetected movement occurred and distances were measured accurately. 
Some truncation prior to analysis is suggested in both cases. 

given in Section 7.2. The distance data should be taken such that the 
detection function g(y) has a shoulder (Fig. 7.12). Transect width w 
should be large enough so relatively few detections are left unrecorded; 
plan on data truncation as part of the analysis strategy. 

A pilot study is highly recommended. A preliminary survey provides 
the opportunity to assess a large number of important issues, assump
tions, practicalities, and logistical problems. Failure to complete a pilot 
programme often means wasted resources at a later stage of the survey. 
Consultation with a biometrician familiar with sampling biological 
populations is strongly advised. 
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Regression
 isotonic      6A:180 (8)
 linear      3:79-80 (28-9)
 logistic      6B:288-9 (64-5)
 weighted linear      8:363 (14)
Regression estimator of mean cluster size      3:79-80 (28-9), 4:132-4 (29-31), 5:165-6 (25-6)
Replicate lines or points
 bootstrap      3:95-6 (44-5)
 in survey design      1:6-7 (6-7), 7:298-301 (4-7)
 jackknife      3:92-4 (41-3)
 variance estimation     3:90-2 (39-41), 4:109-10 (6-7), 5:148-9 (8-9)
Reversed logistic model      4:134 (31)
Robust estimation
 criteria for      2:41-2 (13-4), 3:73-4 (22-3)
 models for      2:46-9 (18-21)
 variance      3:94-6 (43-5), 4:119-20 (16-7), 5:155-8 (15-8)

Sample size
 fixed or random      6B:225-35 (1-11)
 modeling variation in      6A:186-98 (14-26)
Sampling in three dimensions
 line transects      6B:263-6 (39-42)
 point transects      6B:266-70 (42-6)
Satterthwaite correction      3:89-90 (38-9), 4:120-1 (17-8), 4:125 (22)
Searching behaviour      7:313-6 (19-22)
Semiparametric model      2:42 (14), 3:73 (22)
Series expansions
 cosine series      2:46-8 (18-20), 3:63-4 (12-3)
 Fourier series      2:48 (20), 3:63-4 (12-3)
 Hermite polynomials      2:46-8 (18-20), 3:63-4 (12-3)
 simple polynomials      2:46-8 (18-20), 3:62-4 (11-3)
Shape criterion      2:36-7 (8-9), 2:42-4 (14-6), 3:54 (3), 3:74 (23), 5:167-8 (27-8)



Shape restriction estimator      6A:181-2 (9-10)
Shoulder      2:36-7 (8-9), 2:42-4 (14-6), 3:54 (3), 3:74 (23), 5:167-8 (27-8), 6A:217-25 (45-53)
Simple polynomials      2:46-8 (18-20), 3:62-4 (11-3)
Simplex procedure      3:66 (15)
Simulations      6B:235-44 (11-20)
Size-biased sampling      1:13 (13), 3:77-87 (26-36), 4:125-35 (22-32), 5:158-66 (18-26)
SIZETRAN      3:103 (52), 4:134 (31)
Smearing      7:319-22 (25-8)
Smoothing methods      8:392-6 (43-7)
Statistical theory      3:52-103 (1-52)
Stratification
 by cluster size      3:77-9 (26-8), 4:132 (29), 5:164-5 (24-5)
 post-stratification      3:77-9 (26-8), 3:99 (48), 7:308 (14), 8:392 (43)
 to reduce heterogeneity      3:99-102 (48-51), 6A:205 (33)
Strip transect sampling      1:3-4 (3-4), 1:12 (12), 2:41 (13), 7:296 (2), 7:337 (43)
Survey design      7:298-313 (4-19)

Test power      2:44-6 (16-8)
Training      7:319 (25), 7:325 (31), 7:335-6 (41-2)
TRANSECT      1:26 (26), 3: 73 (22)
Trapping webs      1:7-8 (7-8), 6B:275-84 (51-60)
Truncation
 for reducing bias in estimating mean cluster size      4:130-1 (27-8), 5:161-4 (21-4)
 for robust estimation of detection function      1:15 (15), 2:50 (22), 4:106-9 (3-6)
 left-truncation      1:15 (15), 6B:273-7 (49-53), 8:377-9 (28-30)
 line transects      4:106-9 (3-6)
 point transects      5:146-8 (6-8)

Units of measurement      1:16 (16)

Variable circular plots, see Point transect sampling
Variance
 bootstrap      3:94-6 (43-5), 4:119-20 (16-7), 5:155-8 (15-8)
 delta method      3:53 (2)
 estimation      3:87-98 (36-47), 4:109-10 (6-7), 4:116-21 (13-8), 5:148-9 (8-9), 5:153-8 (13-8)
 finite population correction factor      3:96-8 (45-7)
 inflation factor      3:102 (51), 6A:187-93 (15-21), 6A:199 (27)
 jackknife      3:92-4 (41-3)
 of mean cluster size      3:77-81 (26-30), 4:123 (20), 5:159 (19), 6A:199 (27)
 of sample size      3:90-1 (39-40), 4:109-10 (6-7), 5:148-9 (8-9), 6A:186-98 (14-26)
 reduction using spatial models      6A:186-200 (14-28)
 use of information matrix      3:66 (15), 3:68 (17)
 use of replicate lines or points      3:90-2 (39-41), 4:109-10 (6-7), 5:148-9 (8-9)
Visual-detectability function      6A:184 (12)

Welsh point transect surveys in conifer plantations      8:409-14 (60-5)
Wooden stake data      8:353-8 (4-9)



Appendix A 
List of common and 
scientific names cited 

Common name 

Abert's towhee 
American robin 
Ash-throated flycatcher 
Baltic rush 
Bewick's wren 
Blackbird 
Blackcap 
Black-tailed gnatcatcher 
Blue-winged teal 
Bobolink 
Brown-headed cowbird 
Brown towhee 
Bullrush 
Bushtit 
Cactus wren 
California grey whale 
Cassin's finch 
Cattail 
Chaffinch 
Chiffchaff 
Cinnamon teal 
Clark's nutcracker 
Coal tit 
Crissal thrasher 
Dall's porpoise 
Dark-eyed junco 
Dark!ing beetle 
Deer 
Dolphins 
Dunnock 
Dusky flycatcher 
Eastern grey kangaroo 

Scientific name 

Pipilo aberti 
Turdus migratorius 
Myiarchus cinerascens 
Juncus halticus 
Thryomanes bewickii 
Turdus merula 
Sylvia atricapilla 
Polioptila melanura 
Anas discors 
Dolichonyx oryzivorus 
Molothru.~ ater 
Pip/lo fuscus 
Scirpus validus 
Psaftriparus minimus 
Campylorhynchus brunneicapillus 
Eschrichtius rQbustus 
CarpQdacus cassinii 
Typha latifo/ia 
Fringilfa coelebs 
Phyl/QSCQpus collybita 
Anas cyanoptera 
Nucifraga columbiana 
Parus ater 
Toxostoma crissale 
Phocoenoides daW 
Junco hyemalis 
Eleodes spp. 
Odocoileus spp. 
Delphinidae 
Prunella modularis 
Empidonax oberholseri 
Macropus giganteus 
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Common name 

Field mouse 
Fin whale 
Fruit bat 
Gadwall 
Garden warbler 
Gila woodpecker 
Goldcrest 
Greasewood 
Green-winged teal 
Grouse 
Hares 
Hermit thrush 
House wren 
Jackrabbit 
Kangaroo 
Ladder-backed woodpecker 
Lake trout 
Lion 
Long-billed curlew 
Long-tailed tit 
Lucy's warbler 
Mallard 
Minke whale 
Mistie thrush 
Mountain chickadee 
Northern bobwhite quail 
Northern oriole 
Northern pintail 
Northern shoveler 
Omao 
Pacific white-sided dolphin 
Pheasant 
Pine siskin 
Porpoise 
Pronghorn 
Quail 
Rabbitbrush 
Rabbits 
Red crab 
Redhead 
Redpoll 
Red-winged blackbird 
Risso's dolphin 
Robin 
Rockfish 
Ruby-crowned kinglet 
Rufous-sided towhee 
Sagebrush 
Saltgrass 

APPENDIX A 

Scientific name 

Peromyscus spp. 
Balaenoptera physalus 
Chiroptera spp. 
Anas s/repera 
Sylvia horin 
Me/anerpes uropygia/is 
Regulus regulus 
Sarcobatus vermiculatus 
Anas carolinensis 
Tetraoninae 
Lepus spp. 
Catharus guuatus 
Troglodytes aedon 
Lepus spp. 
Macropodidae 
Picoides srnluris 
Salvelinus namaycush 
Felidae 
Numenius americanus 
Aegithalos caudatus 
Vermivora luciae 
Anas platyrhynchos 
Balaenoptera acutorostrata 
Turdus viscivorus 
Parus gambeli 
Colinus virgin/anus 
/cterus galbula 
Anas acuta 
Anas clypeala 
Phaeornis obscurus 
Lagenorhynchus obli4Juedens 
Phasianidae 
Carduelis pinus 
Phocoenidae 
Antilocapra americana 
Odontophorinae 
Chrysothamnus spp. 
Leporidae 
Grapsus grapsus 
Aythya americana 
Carduelis flammea 
Agelaius phoenieeus 
Grampus griseus 
Erithacus rubecula 
Sebastes spp. 
Regulus calendula 
Pipilo erythroph1halmus 
Artemisia spp. 
Distichlis stricta 
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Common name Scientific name 
- --··~---------------

Savannah sparrow 
Scrub jay 
Seal 
Sedge 
Siskin 
Song sparrow 
Song thrush 
Spikerush 
Spotted dolphin 
Tree pipit 
Tuna 
Verdin 
Whale 
White-crowned sparrow 
Whitcthroat 
Willow warble, 
Wolf spider 
Wren 
Wrentit 
Yellowfin tuna 
Yellow-rumped warbler 
Yellow warbler 

Passerculus sandwichensis 
Aphe/ocoma coe,ufescens 
Otariidae/Phocidae 
Carex spp. 
Corduelis spinus 
Melospiza mefodia 
Turdus phi/omelos 
Eleocharis macrosachya 
Stene/la attenuata 
Anthus trivia/is 
Tlmnnus spp. 
Auriparus jlaviceps 
Balaenopteridae 
Zono/richia leucophrys 
Sylvia communis 
Phylloscopus lrochi!us 
Atrax spp. 
Troglodytes troglodytes 
Chamaea fasciata 
Thunnus a/bacares 
Dendroica coronata 
Dendroica petechia 
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Appendix B 
Notation and 
abbreviations, 

and their definitions 

The following list is not exhaustive; notation is only included here if it is used 
through much of the text. Some of the notation listed below is occasionally used 
for another purpose; in such cases, the temporary definition is stated in the text. 
Standard mathematical and statistical symbols such as "", L and ' are not listed. 

p. effective strip width= l//(0) = f
0
wg(x)d.x; the half-width of the strip extending 

either side of a transect centreline such that as many objects are detected outside 
the strip as remain undetected within it 

-v effective area = 2nl h(O) = 2n f
0
wrg(r)dr (point transect sampling); the area such 

that as many objects are detected outside it as remain undetected inside it 

1r(s) probability distribution of cluster sizes in area A 
1r"(s) probability distribution of sizes of detected clusters; this differs from 1t(s) 
when sampling of clusters is size-biased 

p effective radius= ✓ (v/1t); the radius of the circle around each point such that 
as many objects are detected beyond p as remain undetected within p 

er a scale parameter, used primarily in the half-normal and hazard-rate detection 
functions 

8 sighting angle (subscript i, if present, denotes the ith detection) 

u area within distance w of surveyed lines or points; the surveyed area 
A size of study area, containing N objects; a sample of size a of this area is 
surveyed (subscript v, if present, denotes the vth stratum) 
AIC Akaike's Information Criterion, used for model selection 

/J dispersion parameter, also called variance innation factor 
B number of bootstrap resamples 
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c the sampling fraction, usually equal to one, but equal to 0.5 if just one side 
of the line is recorded (line transect sampling), or ijl/21t if just an arc of 11> radians 
is counted (point transect sampling and, especially, cue counting) 
c; cutpoint i, separating interval i from interval i + I, grouped distance data 
cov sampling covariance 
cv coefficient of variation= (standard error)/(estimate). When expressed 
numerically, usually converted to a percentage by multiplying by 100 

D density of objects in study area= NI A (subscript v, if present, denotes the 
v th stratum) 

£(.~) the mean size of the Ns clusters in the study area 

/(y) the probability density function of perpendicular distances (line transects) 
or detection distances (point transects) 
f(y, s) the joint probability density function of distances y and cluster sizes s 
f(yls) the conditional probability density function of distances y given cluster 
size s 
/(0) the value of the probability density function of perpendicular distances, 
evaluated at zero distance (line transect sampling) 

g(y) the detection function; the probability that an object at distance y from 
the line or point is detected. If g0 < I, g(y) is the conditional probability, scaled 
such that g(O) = I 
g(y, s) the bivariate deteclion function; the probability that a cluster of size s 
and at distance y from the line or point is detected 
g(yls) the conditional detection function; the probability that a cluster at 
distance y from the line or point is detected, given that it is of sizes; functional 
expression is equivalent to g(y, s) 
g0 the probability that an object that is on the line or point ( y = 0) is detected 

h(O) the slope of the probability density function of detection dfJances, evaluated 
at distance zero (point transect sampling)= /'(O) = 2nlv = 1/J

0 
rg(r)dr 

k number of replicate lines or points (subscript u, if present, denotes the vth 
stratum) 

/; the length of line i in a line transect survey, i "' I, ... , k 

' l the total line length in a line transect survey= I.f; (subscript v, if present, 
denotes the v th stratum) ; - 1 

:£ the likelihood function for data arising from distance sampling 

n sample size; number of objects detected (subscript v, if present, denotes the 
vth stratum) 
N population size; total number of objects in the study area of size A (subscript 
u, if present, denotes the vth stratum) 
Ns when objects occur in clusters, the total number of clusters in the study area 

P" the probability that an object in the surveyed area a is detected 
pelf probability density function, for example /(y) 
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APPENDIX 8 

r the detection or radial distance; the distance or an object from the observer 
at the time the object is detected (subscript i, ir present, denotes the i th detection) 
r111 the distance from a point at which probability of detection is one hair 

s the size of a cluster of objects (subscript i, if present, denotes the ith detection) 
sd standard deviation 
se standard error 

V number of strata 
,ar sampling variance 

w the truncation point; distances exceeding w either arc not recorded or are 
truncated before analysis 

x the perpendicular distance; the distance of a detected object from the transect 
centreline (subscript i, if present, denotes the ith detection) 

y the perpendicular distance x of a detected object from the centreline (line 
transect sampling) or the detection distance r of an object from the point (point 
transect sampling) (subscript i, if present, denotes the ith detection) 

z distance parallel to the centreline of an object from the observer at the moment 
of detection (subscript i, if present, denotes the ith detection) 
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Errata:

p17, 4 lines from bottom:  'function of distances' should read  'function of detected distances'.

p17, 2 lines from bottom:  'function of distances' should read  'function of detected distances'.

p72.:                    var(sigma^ squared) should be sigma**4/n , not 2 sigma**4/n .

p72:                     var(h^(0)) should be 1/(n.sigma**4) not 2/(n.sigma**4), which then equals 
 (h(0))**2/n not 2(h(0))**2/n.

p196,  first line:         First integral should have a lower limit of 0 not -w.

p.359,  last line of first paragraph:  Gilbert et al. (in prep.) should be Gilbert et al. (1996)

p429,  Gilbert reference:   Gilbert, D.W. , Anderson, D.R.,  Ringelman, J.K., and Szymczak, M.R. (1996)
Response of nesting ducks to habitat and management on the Monte Vista 
Wildlife Refuge, Colorado.  Wildlife Monographs, 131, 1-44.
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