Numerically integrates the non-normalised pdf or the detection function of observed distances over specified ranges.
Source:R/integratepdf.grad.R
integratepdf.grad.Rd
Gradient of the integral of the detection function, i.e., d beta/d theta in the documentation. This gradient of the integral is the same as the integral of the gradient, thanks to Leibniz integral rule.
Usage
integratepdf.grad(
par.index,
ddfobj,
int.range,
width,
standardize = FALSE,
point = FALSE,
left = 0,
pdf.based = TRUE
)
Arguments
- par.index
the index of the parameter of interest
- ddfobj
the ddf object
- int.range
vector with the lower and upper bound of the integration
- width
the truncation width
- standardize
TRUE if the non-standardised detection function should be integrated. Only implemented for standardize = FALSE, so users should not touch this argument and it can probably be removed.
- point
are the data from point transects (TRUE) or line transects (FALSE).
- left
the left truncation. Defaults to zero.
- pdf.based
evaluate the non-normalised pdf or the detection function? Default is TRUE.