Package index
-
add.df.covar.line()add_df_covar_line() - Add covariate levels detection function plots
-
adj.check.order() - Check order of adjustment terms
-
adj.cos() - Cosine adjustment term, not the series.
-
adj.herm() - Hermite polynomial adjustment term, not the series.
-
adj.poly() - Simple polynomial adjustment term, not the series.
-
adj.series.grad.cos() - Series of the gradient of the cosine adjustment series w.r.t. the scaled distance.
-
adj.series.grad.herm() - Series of the gradient of the Hermite polynomial adjustment series w.r.t. the scaled distance.
-
adj.series.grad.poly() - Series of the gradient of the simple polynomial adjustment series w.r.t. the scaled distance.
-
AIC(<ddf>) - Akaike's An Information Criterion for detection functions
-
apex.gamma() - Get the apex for a gamma detection function
-
assign.default.values() - Assign default values to list elements that have not been already assigned
-
average.line.cond() - Average conditional detection function line for plotting
-
average.line() - Average detection function line for plotting
-
book.tee.data - Golf tee data used in chapter 6 of Advanced Distance Sampling examples
-
calc.se.Np() - Find se of average p and N
-
cdf.ds() - Cumulative distribution function (cdf) for fitted distance sampling detection function
-
cds() - CDS function definition
-
check.bounds() - Check parameters bounds during optimisations
-
check.mono() - Check that a detection function is monotone
-
coef(<ds>)coef(<io>)coef(<io.fi>)coef(<trial>)coef(<trial.fi>)coef(<rem>)coef(<rem.fi>) - Extract coefficients
-
compute.Nht() - Horvitz-Thompson estimates 1/p_i or s_i/p_i
-
covered.region.dht() - Covered region estimate of abundance from Horvitz-Thompson-like estimator
-
create.bins() - Create bins from a set of binned distances and a set of cutpoints.
-
create.command.file() - create.command.file
-
create.model.frame() - Create a model frame for ddf fitting
-
create.varstructure() - Creates structures needed to compute abundance and variance
-
ddf(<ds>) - CDS/MCDS Distance Detection Function Fitting
-
ddf.gof() - Goodness of fit tests for distance sampling models
-
ddf(<io.fi>) - Mark-Recapture Distance Sampling (MRDS) IO - FI
-
ddf(<io>) - Mark-Recapture Distance Sampling (MRDS) IO - PI
-
ddf() - Distance Detection Function Fitting
-
ddf(<rem.fi>) - Mark-Recapture Distance Sampling (MRDS) Removal - FI
-
ddf(<rem>) - Mark-Recapture Distance Sampling (MRDS) Removal - PI
-
ddf(<trial.fi>) - Mark-Recapture Analysis of Trial Configuration - FI
-
ddf(<trial>) - Mark-Recapture Distance Sampling (MRDS) Trial Configuration - PI
-
DeltaMethod() - Numeric Delta Method approximation for the variance-covariance matrix
-
det.tables() - Observation detection tables
-
detfct.fit.opt() - Fit detection function using key-adjustment functions
-
detfct.fit() - Fit detection function using key-adjustment functions
-
dht.deriv() - Computes abundance estimates at specified parameter values using Horvitz-Thompson-like estimator
-
dht() - Density and abundance estimates and variances
-
dht.se() - Variance and confidence intervals for density and abundance estimates
-
distpdf.grad() - Gradient of the non-normalised pdf of distances or the detection function for the distances.
-
ds.function() - Distance Sampling Functions
-
flnl.constr.grad.neg() - (Negative) gradients of constraint function
-
flnl.grad() - Gradient of the negative log likelihood function
-
flnl() - Log-likelihood computation for distance sampling data
-
flt.var() - Hessian computation for fitted distance detection function model parameters
-
g0() - Compute value of p(0) using a logit formulation
-
getpar() - Extraction and assignment of parameters to vector
-
gof.ds() - Compute chi-square goodness-of-fit test for ds models
-
gstdint() - Integral of pdf of distances
-
histline() - Plot histogram line
-
integratedetfct.logistic() - Integrate a logistic detection function
-
integratelogistic.analytic() - Analytically integrate logistic detection function
-
integratepdf.grad() - Numerically integrates the non-normalised pdf or the detection function of observed distances over specified ranges.
-
integratepdf() - Numerically integrate pdf of observed distances over specified ranges
-
io.glm() - Iterative offset GLM/GAM for fitting detection function
-
is.linear.logistic() - Collection of functions for logistic detection functions
-
is.logistic.constant() - Is a logit model constant for all observations?
-
keyfct.grad.hn() - The gradient of the half-normal key function
-
keyfct.grad.hz() - The gradient of the hazard-rate key function
-
keyfct.th1() - Threshold key function
-
keyfct.th2() - Threshold key function
-
keyfct.tpn() - Two-part normal key function
-
lfbcvi - Black-capped vireo mark-recapture distance sampling analysis
-
lfgcwa - Golden-cheeked warbler mark-recapture distance sampling analysis
-
logisticbyx() - Logistic as a function of covariates
-
logisticbyz() - Logistic as a function of distance
-
logisticdetfct() - Logistic detection function
-
logisticdupbyx() - Logistic for duplicates as a function of covariates
-
logisticdupbyx_fast() - Logistic for duplicates as a function of covariates (fast)
-
logit() - Logit function
-
logLik(<ddf>) - log-likelihood value for a fitted detection function
-
mcds() - MCDS function definition
-
MCDS.exeMCDSmcds_dot_exe - Run MCDS.exe as a backend for mrds
-
mrds-packagemrds - Mark-Recapture Distance Sampling (mrds)
-
mrds_opt - Tips on optimisation issues in
mrdsmodels
-
NCovered() - Compute estimated abundance in covered (sampled) region
-
nlminb_wrapper() - Wrapper around
nlminb
-
p.det() - Double-platform detection probability
-
p.dist.table()p_dist_table() - Distribution of probabilities of detection
-
parse.optimx() - Parse optimx results and present a nice object
-
pdot.dsr.integrate.logistic() - Compute probability that a object was detected by at least one observer
-
plot(<det.tables>) - Observation detection tables
-
plot(<ds>) - Plot fit of detection functions and histograms of data from distance sampling model
-
plot(<io.fi>) - Plot fit of detection functions and histograms of data from distance sampling independent observer model with full independence (
io.fi)
-
plot(<io>) - Plot fit of detection functions and histograms of data from distance sampling independent observer (
io) model
-
plot(<rem.fi>) - Plot fit of detection functions and histograms of data from removal distance sampling model
-
plot(<rem>) - Plot fit of detection functions and histograms of data from removal distance sampling model
-
plot(<trial.fi>) - Plot fit of detection functions and histograms of data from distance sampling trial observer model
-
plot(<trial>) - Plot fit of detection functions and histograms of data from distance sampling trial observer model
-
plot_cond() - Plot conditional detection function from distance sampling model
-
plot_layout() - Layout for plot methods in mrds
-
plot_uncond() - Plot unconditional detection function from distance sampling model
-
predict(<ds>)predict(<io.fi>)predict(<io>)predict(<trial>)predict(<trial.fi>)predict(<rem>)predict(<rem.fi>) - Predictions from
mrdsmodels
-
print(<ddf.gof>) - Prints results of goodness of fit tests for detection functions
-
print(<ddf>) - Simple pretty printer for distance sampling analyses
-
print(<det.tables>) - Print results of observer detection tables
-
print(<dht>) - Prints density and abundance estimates
-
print(<p_dist_table>) - Print distribution of probabilities of detection
-
print(<summary.ds>) - Print summary of distance detection function model object
-
print(<summary.io.fi>) - Print summary of distance detection function model object
-
print(<summary.io>) - Print summary of distance detection function model object
-
print(<summary.rem.fi>) - Print summary of distance detection function model object
-
print(<summary.rem>) - Print summary of distance detection function model object
-
print(<summary.trial.fi>) - Print summary of distance detection function model object
-
print(<summary.trial>) - Print summary of distance detection function model object
-
prob.deriv() - Derivatives for variance of average p and average p(0) variance
-
prob.se() - Average p and average p(0) variance
-
process.data() - Process data for fitting distance sampling detection function
-
pronghorn - Pronghorn aerial survey data from Wyoming
-
ptdata.distance - Single observer point count data example from Distance
-
ptdata.dual - Simulated dual observer point count data
-
ptdata.removal - Simulated removal observer point count data
-
ptdata.single - Simulated single observer point count data
-
qqplot.ddf() - Quantile-quantile plot and goodness of fit tests for detection functions
-
rem.glm() - Iterative offset model fitting of mark-recapture with removal model
-
rescale_pars() - Calculate the parameter rescaling for parameters associated with covariates
-
sample_ddf() - Generate data from a fitted detection function and refit the model
-
setbounds() - Set parameter bounds
-
setcov() - Creates design matrix for covariates in detection function
-
setinitial.ds()sethazard() - Set initial values for detection function based on distance sampling
-
sim.mix() - Simulation of distance sampling data via mixture models Allows one to simulate line transect distance sampling data using a mixture of half-normal detection functions.
-
solvecov() - Invert of covariance matrices
-
stake77 - Wooden stake data from 1977 survey
-
stake78 - Wooden stake data from 1978 survey
-
summary(<ds>) - Summary of distance detection function model object
-
summary(<io.fi>) - Summary of distance detection function model object
-
summary(<io>) - Summary of distance detection function model object
-
summary(<rem.fi>) - Summary of distance detection function model object
-
summary(<rem>) - Summary of distance detection function model object
-
summary(<trial.fi>) - Summary of distance detection function model object
-
summary(<trial>) - Summary of distance detection function model object
-
survey.region.dht() - Extrapolate Horvitz-Thompson abundance estimates to entire surveyed region
-
test.breaks() - Test validity for histogram breaks(cutpoints)