Package index
- 
          add.df.covar.line()add_df_covar_line()
- Add covariate levels detection function plots
- 
          adj.check.order()
- Check order of adjustment terms
- 
          adj.cos()
- Cosine adjustment term, not the series.
- 
          adj.herm()
- Hermite polynomial adjustment term, not the series.
- 
          adj.poly()
- Simple polynomial adjustment term, not the series.
- 
          adj.series.grad.cos()
- Series of the gradient of the cosine adjustment series w.r.t. the scaled distance.
- 
          adj.series.grad.herm()
- Series of the gradient of the Hermite polynomial adjustment series w.r.t. the scaled distance.
- 
          adj.series.grad.poly()
- Series of the gradient of the simple polynomial adjustment series w.r.t. the scaled distance.
- 
          AIC(<ddf>)
- Akaike's An Information Criterion for detection functions
- 
          apex.gamma()
- Get the apex for a gamma detection function
- 
          assign.default.values()
- Assign default values to list elements that have not been already assigned
- 
          average.line.cond()
- Average conditional detection function line for plotting
- 
          average.line()
- Average detection function line for plotting
- 
          book.tee.data
- Golf tee data used in chapter 6 of Advanced Distance Sampling examples
- 
          calc.se.Np()
- Find se of average p and N
- 
          cdf.ds()
- Cumulative distribution function (cdf) for fitted distance sampling detection function
- 
          cds()
- CDS function definition
- 
          check.bounds()
- Check parameters bounds during optimisations
- 
          check.mono()
- Check that a detection function is monotone
- 
          coef(<ds>)coef(<io>)coef(<io.fi>)coef(<trial>)coef(<trial.fi>)coef(<rem>)coef(<rem.fi>)
- Extract coefficients
- 
          compute.Nht()
- Horvitz-Thompson estimates 1/p_i or s_i/p_i
- 
          covered.region.dht()
- Covered region estimate of abundance from Horvitz-Thompson-like estimator
- 
          create.bins()
- Create bins from a set of binned distances and a set of cutpoints.
- 
          create.command.file()
- create.command.file
- 
          create.model.frame()
- Create a model frame for ddf fitting
- 
          create.varstructure()
- Creates structures needed to compute abundance and variance
- 
          ddf(<ds>)
- CDS/MCDS Distance Detection Function Fitting
- 
          ddf.gof()
- Goodness of fit tests for distance sampling models
- 
          ddf(<io.fi>)
- Mark-Recapture Distance Sampling (MRDS) IO - FI
- 
          ddf(<io>)
- Mark-Recapture Distance Sampling (MRDS) IO - PI
- 
          ddf()
- Distance Detection Function Fitting
- 
          ddf(<rem.fi>)
- Mark-Recapture Distance Sampling (MRDS) Removal - FI
- 
          ddf(<rem>)
- Mark-Recapture Distance Sampling (MRDS) Removal - PI
- 
          ddf(<trial.fi>)
- Mark-Recapture Analysis of Trial Configuration - FI
- 
          ddf(<trial>)
- Mark-Recapture Distance Sampling (MRDS) Trial Configuration - PI
- 
          DeltaMethod()
- Numeric Delta Method approximation for the variance-covariance matrix
- 
          det.tables()
- Observation detection tables
- 
          detfct.fit.opt()
- Fit detection function using key-adjustment functions
- 
          detfct.fit()
- Fit detection function using key-adjustment functions
- 
          dht.deriv()
- Computes abundance estimates at specified parameter values using Horvitz-Thompson-like estimator
- 
          dht()
- Density and abundance estimates and variances
- 
          dht.se()
- Variance and confidence intervals for density and abundance estimates
- 
          distpdf.grad()
- Gradient of the non-normalised pdf of distances or the detection function for the distances.
- 
          ds.function()
- Distance Sampling Functions
- 
          flnl.constr.grad.neg()
- (Negative) gradients of constraint function
- 
          flnl.grad()
- Gradient of the negative log likelihood function
- 
          flnl()
- Log-likelihood computation for distance sampling data
- 
          flt.var()
- Hessian computation for fitted distance detection function model parameters
- 
          g0()
- Compute value of p(0) using a logit formulation
- 
          getpar()
- Extraction and assignment of parameters to vector
- 
          gof.ds()
- Compute chi-square goodness-of-fit test for ds models
- 
          gstdint()
- Integral of pdf of distances
- 
          histline()
- Plot histogram line
- 
          integratedetfct.logistic()
- Integrate a logistic detection function
- 
          integratelogistic.analytic()
- Analytically integrate logistic detection function
- 
          integratepdf.grad()
- Numerically integrates the non-normalised pdf or the detection function of observed distances over specified ranges.
- 
          integratepdf()
- Numerically integrate pdf of observed distances over specified ranges
- 
          io.glm()
- Iterative offset GLM/GAM for fitting detection function
- 
          is.linear.logistic()
- Collection of functions for logistic detection functions
- 
          is.logistic.constant()
- Is a logit model constant for all observations?
- 
          keyfct.grad.hn()
- The gradient of the half-normal key function
- 
          keyfct.grad.hz()
- The gradient of the hazard-rate key function
- 
          keyfct.th1()
- Threshold key function
- 
          keyfct.th2()
- Threshold key function
- 
          keyfct.tpn()
- Two-part normal key function
- 
          lfbcvi
- Black-capped vireo mark-recapture distance sampling analysis
- 
          lfgcwa
- Golden-cheeked warbler mark-recapture distance sampling analysis
- 
          logisticbyx()
- Logistic as a function of covariates
- 
          logisticbyz()
- Logistic as a function of distance
- 
          logisticdetfct()
- Logistic detection function
- 
          logisticdupbyx()
- Logistic for duplicates as a function of covariates
- 
          logisticdupbyx_fast()
- Logistic for duplicates as a function of covariates (fast)
- 
          logit()
- Logit function
- 
          logLik(<ddf>)
- log-likelihood value for a fitted detection function
- 
          mcds()
- MCDS function definition
- 
          MCDS.exeMCDSmcds_dot_exe
- Run MCDS.exe as a backend for mrds
- 
          mrds-packagemrds
- Mark-Recapture Distance Sampling (mrds)
- 
          mrds_opt
- Tips on optimisation issues in mrdsmodels
- 
          NCovered()
- Compute estimated abundance in covered (sampled) region
- 
          nlminb_wrapper()
- Wrapper around nlminb
- 
          p.det()
- Double-platform detection probability
- 
          p.dist.table()p_dist_table()
- Distribution of probabilities of detection
- 
          parse.optimx()
- Parse optimx results and present a nice object
- 
          pdot.dsr.integrate.logistic()
- Compute probability that a object was detected by at least one observer
- 
          plot(<det.tables>)
- Observation detection tables
- 
          plot(<ds>)
- Plot fit of detection functions and histograms of data from distance sampling model
- 
          plot(<io.fi>)
- Plot fit of detection functions and histograms of data from distance sampling independent observer model with full independence (io.fi)
- 
          plot(<io>)
- Plot fit of detection functions and histograms of data from distance sampling independent observer (io) model
- 
          plot(<rem.fi>)
- Plot fit of detection functions and histograms of data from removal distance sampling model
- 
          plot(<rem>)
- Plot fit of detection functions and histograms of data from removal distance sampling model
- 
          plot(<trial.fi>)
- Plot fit of detection functions and histograms of data from distance sampling trial observer model
- 
          plot(<trial>)
- Plot fit of detection functions and histograms of data from distance sampling trial observer model
- 
          plot_cond()
- Plot conditional detection function from distance sampling model
- 
          plot_layout()
- Layout for plot methods in mrds
- 
          plot_uncond()
- Plot unconditional detection function from distance sampling model
- 
          predict(<ds>)predict(<io.fi>)predict(<io>)predict(<trial>)predict(<trial.fi>)predict(<rem>)predict(<rem.fi>)
- Predictions from mrdsmodels
- 
          print(<ddf.gof>)
- Prints results of goodness of fit tests for detection functions
- 
          print(<ddf>)
- Simple pretty printer for distance sampling analyses
- 
          print(<det.tables>)
- Print results of observer detection tables
- 
          print(<dht>)
- Prints density and abundance estimates
- 
          print(<p_dist_table>)
- Print distribution of probabilities of detection
- 
          print(<summary.ds>)
- Print summary of distance detection function model object
- 
          print(<summary.io.fi>)
- Print summary of distance detection function model object
- 
          print(<summary.io>)
- Print summary of distance detection function model object
- 
          print(<summary.rem.fi>)
- Print summary of distance detection function model object
- 
          print(<summary.rem>)
- Print summary of distance detection function model object
- 
          print(<summary.trial.fi>)
- Print summary of distance detection function model object
- 
          print(<summary.trial>)
- Print summary of distance detection function model object
- 
          prob.deriv()
- Derivatives for variance of average p and average p(0) variance
- 
          prob.se()
- Average p and average p(0) variance
- 
          process.data()
- Process data for fitting distance sampling detection function
- 
          pronghorn
- Pronghorn aerial survey data from Wyoming
- 
          ptdata.distance
- Single observer point count data example from Distance
- 
          ptdata.dual
- Simulated dual observer point count data
- 
          ptdata.removal
- Simulated removal observer point count data
- 
          ptdata.single
- Simulated single observer point count data
- 
          qqplot.ddf()
- Quantile-quantile plot and goodness of fit tests for detection functions
- 
          rem.glm()
- Iterative offset model fitting of mark-recapture with removal model
- 
          rescale_pars()
- Calculate the parameter rescaling for parameters associated with covariates
- 
          sample_ddf()
- Generate data from a fitted detection function and refit the model
- 
          setbounds()
- Set parameter bounds
- 
          setcov()
- Creates design matrix for covariates in detection function
- 
          setinitial.ds()sethazard()
- Set initial values for detection function based on distance sampling
- 
          sim.mix()
- Simulation of distance sampling data via mixture models Allows one to simulate line transect distance sampling data using a mixture of half-normal detection functions.
- 
          solvecov()
- Invert of covariance matrices
- 
          stake77
- Wooden stake data from 1977 survey
- 
          stake78
- Wooden stake data from 1978 survey
- 
          summary(<ds>)
- Summary of distance detection function model object
- 
          summary(<io.fi>)
- Summary of distance detection function model object
- 
          summary(<io>)
- Summary of distance detection function model object
- 
          summary(<rem.fi>)
- Summary of distance detection function model object
- 
          summary(<rem>)
- Summary of distance detection function model object
- 
          summary(<trial.fi>)
- Summary of distance detection function model object
- 
          summary(<trial>)
- Summary of distance detection function model object
- 
          survey.region.dht()
- Extrapolate Horvitz-Thompson abundance estimates to entire surveyed region
- 
          test.breaks()
- Test validity for histogram breaks(cutpoints)