Package index
-
add.df.covar.line()
add_df_covar_line()
- Add covariate levels detection function plots
-
adj.check.order()
- Check order of adjustment terms
-
adj.cos()
- Cosine adjustment term, not the series.
-
adj.herm()
- Hermite polynomial adjustment term, not the series.
-
adj.poly()
- Simple polynomial adjustment term, not the series.
-
adj.series.grad.cos()
- Series of the gradient of the cosine adjustment series w.r.t. the scaled distance.
-
adj.series.grad.herm()
- Series of the gradient of the Hermite polynomial adjustment series w.r.t. the scaled distance.
-
adj.series.grad.poly()
- Series of the gradient of the simple polynomial adjustment series w.r.t. the scaled distance.
-
AIC(<ddf>)
- Akaike's An Information Criterion for detection functions
-
apex.gamma()
- Get the apex for a gamma detection function
-
assign.default.values()
- Assign default values to list elements that have not been already assigned
-
average.line.cond()
- Average conditional detection function line for plotting
-
average.line()
- Average detection function line for plotting
-
book.tee.data
- Golf tee data used in chapter 6 of Advanced Distance Sampling examples
-
calc.se.Np()
- Find se of average p and N
-
cdf.ds()
- Cumulative distribution function (cdf) for fitted distance sampling detection function
-
cds()
- CDS function definition
-
check.bounds()
- Check parameters bounds during optimisations
-
check.mono()
- Check that a detection function is monotone
-
coef(<ds>)
coef(<io>)
coef(<io.fi>)
coef(<trial>)
coef(<trial.fi>)
coef(<rem>)
coef(<rem.fi>)
- Extract coefficients
-
compute.Nht()
- Horvitz-Thompson estimates 1/p_i or s_i/p_i
-
covered.region.dht()
- Covered region estimate of abundance from Horvitz-Thompson-like estimator
-
create.bins()
- Create bins from a set of binned distances and a set of cutpoints.
-
create.command.file()
- create.command.file
-
create.model.frame()
- Create a model frame for ddf fitting
-
create.varstructure()
- Creates structures needed to compute abundance and variance
-
ddf(<ds>)
- CDS/MCDS Distance Detection Function Fitting
-
ddf.gof()
- Goodness of fit tests for distance sampling models
-
ddf(<io.fi>)
- Mark-Recapture Distance Sampling (MRDS) IO - FI
-
ddf(<io>)
- Mark-Recapture Distance Sampling (MRDS) IO - PI
-
ddf()
- Distance Detection Function Fitting
-
ddf(<rem.fi>)
- Mark-Recapture Distance Sampling (MRDS) Removal - FI
-
ddf(<rem>)
- Mark-Recapture Distance Sampling (MRDS) Removal - PI
-
ddf(<trial.fi>)
- Mark-Recapture Analysis of Trial Configuration - FI
-
ddf(<trial>)
- Mark-Recapture Distance Sampling (MRDS) Trial Configuration - PI
-
DeltaMethod()
- Numeric Delta Method approximation for the variance-covariance matrix
-
det.tables()
- Observation detection tables
-
detfct.fit.opt()
- Fit detection function using key-adjustment functions
-
detfct.fit()
- Fit detection function using key-adjustment functions
-
dht.deriv()
- Computes abundance estimates at specified parameter values using Horvitz-Thompson-like estimator
-
dht()
- Density and abundance estimates and variances
-
dht.se()
- Variance and confidence intervals for density and abundance estimates
-
distpdf.grad()
- Gradient of the non-normalised pdf of distances or the detection function for the distances.
-
ds.function()
- Distance Sampling Functions
-
flnl.constr.grad.neg()
- (Negative) gradients of constraint function
-
flnl.grad()
- Gradient of the negative log likelihood function
-
flnl()
- Log-likelihood computation for distance sampling data
-
flt.var()
- Hessian computation for fitted distance detection function model parameters
-
g0()
- Compute value of p(0) using a logit formulation
-
getpar()
- Extraction and assignment of parameters to vector
-
gof.ds()
- Compute chi-square goodness-of-fit test for ds models
-
gstdint()
- Integral of pdf of distances
-
histline()
- Plot histogram line
-
integratedetfct.logistic()
- Integrate a logistic detection function
-
integratelogistic.analytic()
- Analytically integrate logistic detection function
-
integratepdf.grad()
- Numerically integrates the non-normalised pdf or the detection function of observed distances over specified ranges.
-
integratepdf()
- Numerically integrate pdf of observed distances over specified ranges
-
io.glm()
- Iterative offset GLM/GAM for fitting detection function
-
is.linear.logistic()
- Collection of functions for logistic detection functions
-
is.logistic.constant()
- Is a logit model constant for all observations?
-
keyfct.grad.hn()
- The gradient of the half-normal key function
-
keyfct.grad.hz()
- The gradient of the hazard-rate key function
-
keyfct.th1()
- Threshold key function
-
keyfct.th2()
- Threshold key function
-
keyfct.tpn()
- Two-part normal key function
-
lfbcvi
- Black-capped vireo mark-recapture distance sampling analysis
-
lfgcwa
- Golden-cheeked warbler mark-recapture distance sampling analysis
-
logisticbyx()
- Logistic as a function of covariates
-
logisticbyz()
- Logistic as a function of distance
-
logisticdetfct()
- Logistic detection function
-
logisticdupbyx()
- Logistic for duplicates as a function of covariates
-
logisticdupbyx_fast()
- Logistic for duplicates as a function of covariates (fast)
-
logit()
- Logit function
-
logLik(<ddf>)
- log-likelihood value for a fitted detection function
-
mcds()
- MCDS function definition
-
MCDS.exe
MCDS
mcds_dot_exe
- Run MCDS.exe as a backend for mrds
-
mrds-package
mrds
- Mark-Recapture Distance Sampling (mrds)
-
mrds_opt
- Tips on optimisation issues in
mrds
models
-
NCovered()
- Compute estimated abundance in covered (sampled) region
-
nlminb_wrapper()
- Wrapper around
nlminb
-
p.det()
- Double-platform detection probability
-
p.dist.table()
p_dist_table()
- Distribution of probabilities of detection
-
parse.optimx()
- Parse optimx results and present a nice object
-
pdot.dsr.integrate.logistic()
- Compute probability that a object was detected by at least one observer
-
plot(<det.tables>)
- Observation detection tables
-
plot(<ds>)
- Plot fit of detection functions and histograms of data from distance sampling model
-
plot(<io.fi>)
- Plot fit of detection functions and histograms of data from distance sampling independent observer model with full independence (
io.fi
)
-
plot(<io>)
- Plot fit of detection functions and histograms of data from distance sampling independent observer (
io
) model
-
plot(<rem.fi>)
- Plot fit of detection functions and histograms of data from removal distance sampling model
-
plot(<rem>)
- Plot fit of detection functions and histograms of data from removal distance sampling model
-
plot(<trial.fi>)
- Plot fit of detection functions and histograms of data from distance sampling trial observer model
-
plot(<trial>)
- Plot fit of detection functions and histograms of data from distance sampling trial observer model
-
plot_cond()
- Plot conditional detection function from distance sampling model
-
plot_layout()
- Layout for plot methods in mrds
-
plot_uncond()
- Plot unconditional detection function from distance sampling model
-
predict(<ds>)
predict(<io.fi>)
predict(<io>)
predict(<trial>)
predict(<trial.fi>)
predict(<rem>)
predict(<rem.fi>)
- Predictions from
mrds
models
-
print(<ddf.gof>)
- Prints results of goodness of fit tests for detection functions
-
print(<ddf>)
- Simple pretty printer for distance sampling analyses
-
print(<det.tables>)
- Print results of observer detection tables
-
print(<dht>)
- Prints density and abundance estimates
-
print(<p_dist_table>)
- Print distribution of probabilities of detection
-
print(<summary.ds>)
- Print summary of distance detection function model object
-
print(<summary.io.fi>)
- Print summary of distance detection function model object
-
print(<summary.io>)
- Print summary of distance detection function model object
-
print(<summary.rem.fi>)
- Print summary of distance detection function model object
-
print(<summary.rem>)
- Print summary of distance detection function model object
-
print(<summary.trial.fi>)
- Print summary of distance detection function model object
-
print(<summary.trial>)
- Print summary of distance detection function model object
-
prob.deriv()
- Derivatives for variance of average p and average p(0) variance
-
prob.se()
- Average p and average p(0) variance
-
process.data()
- Process data for fitting distance sampling detection function
-
pronghorn
- Pronghorn aerial survey data from Wyoming
-
ptdata.distance
- Single observer point count data example from Distance
-
ptdata.dual
- Simulated dual observer point count data
-
ptdata.removal
- Simulated removal observer point count data
-
ptdata.single
- Simulated single observer point count data
-
qqplot.ddf()
- Quantile-quantile plot and goodness of fit tests for detection functions
-
rem.glm()
- Iterative offset model fitting of mark-recapture with removal model
-
rescale_pars()
- Calculate the parameter rescaling for parameters associated with covariates
-
sample_ddf()
- Generate data from a fitted detection function and refit the model
-
setbounds()
- Set parameter bounds
-
setcov()
- Creates design matrix for covariates in detection function
-
setinitial.ds()
sethazard()
- Set initial values for detection function based on distance sampling
-
sim.mix()
- Simulation of distance sampling data via mixture models Allows one to simulate line transect distance sampling data using a mixture of half-normal detection functions.
-
solvecov()
- Invert of covariance matrices
-
stake77
- Wooden stake data from 1977 survey
-
stake78
- Wooden stake data from 1978 survey
-
summary(<ds>)
- Summary of distance detection function model object
-
summary(<io.fi>)
- Summary of distance detection function model object
-
summary(<io>)
- Summary of distance detection function model object
-
summary(<rem.fi>)
- Summary of distance detection function model object
-
summary(<rem>)
- Summary of distance detection function model object
-
summary(<trial.fi>)
- Summary of distance detection function model object
-
summary(<trial>)
- Summary of distance detection function model object
-
survey.region.dht()
- Extrapolate Horvitz-Thompson abundance estimates to entire surveyed region
-
test.breaks()
- Test validity for histogram breaks(cutpoints)